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Abstract A two degree of freedom plane disk, performing one-dimensional translational
and rotational motion, placed on the moving belt, is mathematically modelled and numeri-
cally analysed. The friction model for sliding phase is developed assuming classical Coulomb
friction law, valid for any infinitesimal element of circular contact area. As a result, the inte-
gral expressions for friction force and torque are obtained. The exact integral model is then
approximated by the use of different functions, like Padé approximants or their modifica-
tions. Some generalizations of the approximate functions used by other authors are proposed.
The special event-driven model of the investigated system together with numerical simula-
tion algorithm is developed, where in particular the transition conditions between the stick
and slip modes are defined. Some examples of numerical simulation and analysis by the
use of Poincaré maps and bifurcational diagrams are presented. It has been shown, that for
certain parameter sets, the investigated system exhibits very rich multi-periodic stick-slip
oscillations.

Keywords Stick-slip · Event-driven · Coupled friction model · Padé approximants

Introduction

In real mechanical systems, one can very often encounter a situation, when two or more
bodies contact directly each other, leading to impact and friction phenomena. In mathemat-
ical modelling of such systems, it is common to treat them as working in different modes
with the quick transitions between successive phases. Very often the transition from one
mode to another is modelled as instantaneous and the system can be described by the use
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of the piecewise smooth differential equations (PWS). Mechanical systems with dry friction
are then often modelled as systems possessing discontinuous damping characteristics and
belonging to the class of PWS.

Modelling and analysis of friction pair systems exhibiting stick-slip phenomena belongs
to a classical problem of nonlinear dynamics but being still developed and attractive for
researchers [1–5] because of its importance in real engineering systems. Mainly the classical
dimensional Coulomb friction law is assumed in modelling, since it is simple and effective
approach to many engineering friction problems. Moreover, the friction process is usually
recognized as one-dimensional problem, i.e. when friction force simply opposes relative
velocity.

One-dimensional friction model is justified in cases of the very small contact between two
bodies (the point contact). Then sliding friction force opposes the sliding relative velocity and
can be successfully modelled by the use of classical one-dimensional Coulomb friction law.
In this case the friction torque (drilling friction) and its influence on sliding friction force can
be neglected (since the contact point cannot transmit a torque). But there are many examples
of dynamical behaviour of mechanical systems (billiard ball, Thompson top, wobblestone,
electric polishing machine) which cannot be mathematically modelled (in order to obtain
correct numerical simulation) or explained assuming one-dimensional dry friction model.

In the work [6], Contensou indicated that relative normal angular velocity (spin) takes
place an important role in dynamics of some mechanical systems, where contact between
two bodies or spin is relatively large. He developed a two-dimensional mathematical model
of friction, based on the classical Coulomb friction law and being a function of two variables:
relative sliding velocity of the centre of the non-point circular contact area between two inter-
acting bodies and relative normal angular velocity. He obtained results in the integral and
numerical forms for the contact stress distribution according to Hertz theory. A quarter of
century later, the results of Contensou were essentially developed by Zhuravlev [7,8], who
gave exact analytical expressions for friction force and torque in the case of circular contact as
well as corresponding Padé approximations, more convenient to use in practical problems of
modelling and simulation. In the next step, a three-dimensional friction model with circular
Hertz contact and coupling between friction and rolling resistance, where rolling resistance
is a result of a special distortion of contact stress distribution, was developed [9]. Another
approach to the problem is presented in work [10], where the coupled friction model for
circular contact area with circular symmetry of contact stress distribution (without rolling
resistance) was approximated by the use of Taylor expansion of the velocity pseudo potential
and then used in the Thompson top modelling and simulation. This problem of coupling
between different components of friction is noticed and investigated intensively by scientists
recently (see, for instance, a work [11], where the two-dimensional bristle model of friction
is developed).

The mathematical modelling and corresponding numerical methods [12] of mechanical
systems simulation are two closely related problems. In the case of the mechanical systems
with frictional contacts, the numerical simulation techniques can be classified as follows [13]:
(a) regularization methods; (b) event driven integration methods; (c) time stepping methods
[14,15]. The regularization methods [16] rely on the smoothing of the PWS or differential
inclusions systems and result in smooth differential equations allowing for the use of clas-
sical integration methods. However, the stiffness of the obtained problem and possibility of
loss of some original physical properties of the system belong to some disadvantages of this
approach. The event driven integration methods [17–19] use classical integration methods
between switches (transition between modes) and (especially for more complex configura-
tions) linear or nonlinear complementarity problem (LCP or NCP) or Augmented Lagrangian
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method (ALM) to determine the next mode at each event (the instance of crossing the switch-
ing boundary). Time-stepping methods [20–22] are especially developed methods, and they
do not require the determination (in contrast to event-driven methods) of the instances of
crossing the switching boundary. In this case the LCP, NCP or ALM methods are applied to
determine the mode of the system at each the time step.

To the authors’ observation there is still a lack or it is difficult to find any work concerned
modelling and analysis of stick-slip self-excited vibrations occurring in the system, where
there is a coupling between friction force components and friction torque. The aim of this
paper is to begin to fill this gap by modelling and numerical simulation of simple two-degree
of freedom mechanical system with two-dimensional dry friction phenomenon. The paper is
organised as follows. Firstly the model scheme of the mechanical system under investigation
is presented together with corresponding differential governing equations in non-dimensional
form. In the next section the coupled friction model based on the classical friction law for
an infinitesimal element in the integral form is introduced along with different approximate
models. Many of that approximants base on approximations earlier proposed by some authors
[7–9,23], however here we try to generalize some of the results. Then the event-driven hybrid
dynamical model of the investigated system along with the special algorithm for its numer-
ical simulation, is introduced. In the next step, some examples of numerical analysis of the
system exhibiting complicated periodic dynamics are presented.

Mechanical System

In Fig. 1 a mechanical system is presented, where two-dimensional coupled dry friction phe-
nomenon occurs and where a self-excited oscillations induced by a two-dimensional stick-slip
phenomenon can also be found. The presented system can be also used for investigations
on possibility of occurrence of self-excited oscillations induced by the coupling of friction
force and torque (independently of a stick-slip phenomenon). The fundamental part of the
system is a plane disk of radius r̂ , mass m̂ and moment of inertia B̂ (with respect to the
axis perpendicular to the disk plane and containing the geometrical centre of the disk being
simultaneously the mass centre of the disk) imposed on a moving belt of velocity v̂b. Between
the disk and the belt dry friction occurs, which mathematical model will be introduced in the
next section. The disk is joined with elasto-damping elements of stiffness 1/2k̂1 and 1/2k̂2

and with viscous damping coefficients 1/2ĉ1 and 1/2ĉ2, respectively. The joining is made
by the use of two or four separate cords winding the disk in a way shown in the figure. The
cords are tight all the time during the motion of the disk by appropriate initial tension of the
springs. The position of the disk is described by the following two coordinates: x̂ defining
the linear position of the geometrical (mass) centre of the disk along the belt axis and angular
ϕ. Moreover, we assume that the disk does not move along direction perpendicular to the
belt axis and an additional external forcing F̂ at the disk centre is applied.

The governing differential equations of the system have the following form

m̂x̂ ′′ + k̂1
(
x̂ − ϕr̂

) + k̂2
(
x̂ + ϕr̂

) + ĉ1
(
x̂ ′ − ϕ′r̂

) + ĉ2
(
x̂ ′ + ϕ′r̂

) + T̂ = F̂
(
t̂
)
, (1)

B̂ϕ′′ − k̂1
(
x̂ − ϕr̂

)
r̂ + k̂2

(
x̂ + ϕr̂

)
r̂ − ĉ1

(
x̂ ′ − ϕ′r̂

)
r̂ + ĉ2

(
x̂ ′ + ϕ′r̂

)
r̂ + M̂ = 0,

where T̂ and M̂ are dry friction force and torque, respectively, and (. . .)′ denotes the derivative
with respect to real time t̂ .
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Fig. 1 The mechanical system under investigation

Introducing the following non-dimensional quantities

x = x̂

r̂
, t = αt̂, where α =

√
k̂1 + k̂2

m̂
, (2)

we get the following non-dimensional matrix form of the governing equations

Mq̈ + Cq̇ + Kq + FT (q, q̇, t) = Fe (t) , (3)

where
·

(. . .) denotes the derivative with respect to real time t and where the following notation
has been introduced

q =
{

x
ϕ

}
, M =

[
1 0
0 m

]
, K =

[
1 k12

k12 1

]
, C =

[
c c12

c12 c

]
,

FT (q, q̇, t) =
{

T
M

}
, Fe (t) =

{
F (t)

0

}
.
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Fig. 2 The contact area of the
disk and belt

The relations between real and non-dimensional parameters and forces are as follows

m = B̂

m̂r̂2 , k12 = k̂2 − k̂1

k̂1 + k̂2
, c = ĉ1 + ĉ2√

m̂(k̂1 + k̂2)

, c12 = ĉ2 − ĉ1√
m̂(k̂1 + k̂2)

,

T = T̂

r̂(k̂1 + k̂2)
, M = M̂

r̂2(k̂1 + k̂2)
, F = F̂

r̂(k̂1 + k̂2)
, (4)

vb = v̂b

αr̂
,

where vb is non-dimensional velocity of the belt.

Friction Model

Let us consider the presented in Fig. 2 non-dimensional circular contact between two bodies
of area F . The relative motion of the contact area is described by the use of non-dimensional
velocity vs of the pole A (centre of the contact) and non-dimensional angular velocity ωs . We
introduce the coordinate system Axyz, where axes x and y lie in the contact plane and the x
axis has direction of the velocity vs . The quantities used to describe the model of friction refer
to the dimensionless length related to characteristic real dimension r̂ , therefore dimensionless
coordinates of the element dF (the point P) position are x = x̂/r̂ and y = ŷ/r̂ , where x̂
and ŷ are the corresponding real coordinates whereas dimensionless element of area equals
d F = d F̂/r̂2, where d F̂ is the real element. A consequence of dimensionless length and
time is the dimensionless velocity vs = v̂s/

(
αr̂

)
and ωs = ω̂s/α, where v̂s is real velocity

of the point A, ω̂s is real angular velocity of the contact area and where the relation between
non-dimensional t and real time t̂ is t = αt̂ .

Assuming that the classical Coulomb friction law is valid on each element dF with non-
dimensional velocity vP = v̂P/

(
αr̂

)
(where v̂P is real velocity of the point P), we obtain

the following dimensionless form of corresponding infinitesimal dry friction force dTs =
dT̂s/(μN̂ )(where dT̂s is the corresponding real force, N̂ is the normal component of resul-
tant real force of interaction between bodies and μ is dry friction coefficient) acting on the
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body lying above the area F and the corresponding dimensionless infinitesimal moment of
dry friction force dMs = dM̂s/(r̂μN̂ ) (where dM̂s is its real counterpart) with respect to
the pole A

dTs = −σ (x, y)
vP

‖vP‖d F, dMs = ρ × dTs (5)

where dimensionless normal stress distribution σ(x, y) = σ̂ (x, y)r̂2/N̂ has been introduced
(where σ̂ (x, y) is the real stress distribution), whereas ρ = ρ̂/r̂ = −→

AP is dimensionless
vector coupling the pole A with the element dF (where ρ̂ is its real counterpart). One can
easily find that the nondimensional relation (5) is equivalent to the dimensional differential
form of the Coulomb friction law for an element d F̂ : dT̂s = −μσ̂ (x, y) d F̂ v̂P/

∥
∥v̂P

∥
∥ and

dM̂s = ρ̂ × dT̂s .
The resultant dimensionless friction force and dimensionless friction torque are as follows

Ts = −
∫ ∫

F

σ (x, y)
vP

‖vP‖d F, Ms = −
∫ ∫

F

σ (x, y)
ρ × vP

‖vP‖ d F (6)

Taking into consideration that vP = vs + ωs × ρ, where ωs × ρ = vP/A, we obtain the
following relations

vP = vPx ex + vPyey = (vs − ωs y) ex + ωs xey, (7)

ρ × vP = (
xvPx − yvPy

)
ez = (

ωs
(
x2 + y2) − vs y

)
ez,

where ex , ey and ez are the unit vectors of the corresponding axes. Now the corresponding
components of the friction model can be expressed as follows

Tsx (vs, ωs) =
∫ ∫

F

σ (x, y)
vs − ωs y

√
(vs − ωs y)2 + ω2

s x2
dxdy,

Tsy (vs, ωs) =
∫ ∫

F

σ (x, y)
ωs x

√
(vs − ωs y)2 + ω2

s x2
dxdy, (8)

Ms (vs, ωs) =
∫ ∫

F

σ (x, y)
ωs

(
x2 + y2

) − vs y
√

(vs − ωs y)2 + ω2
s x2

dxdy,

where the signs has been changed in order to simplify the notation. It means that the friction
force and torque are Ts = −Tsx ex − Tsyey and Ms = −Msez .

Assuming

vs = λs cos θs, ωs = λs sin θs, where λs =
√

v2
s + ω2

s (9)
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from (8) we obtain the following form of the friction components as functions of one variable
θs

Tsx (θs) =
∫ ∫

F

σ (x, y)
cos θs − sin θs y

√
(cos θs − sin θs y)2 + sin2 θs x2

dxdy,

Tsy (θs) =
∫ ∫

F

σ (x, y)
sin θs x

√
(cos θs − sin θs y)2 + sin2 θs x2

dxdy, (10)

Ms (θs) =
∫ ∫

F

σ (x, y)
sin θs

(
x2 + y2

) − cos θs y
√

(cos θs − sin θs y)2 + sin2 θs x2
dxdy.

In further considerations we assume uniform normal stress distribution of the following
non-dimensional form

σ (x, y) = σ̂ (x, y)r̂2

N̂
= 1

π
, (11)

where σ̂ (x, y) = N̂/(π r̂2). Introducing (11) to Eq. 8 we obtain

Tsx (vs, ωs) = 1

π

∫ ∫

F

vs − ωs y
√

(vs − ωs y)2 + ω2
s x2

dxdy,

Ms (vs, ωs) = 1

π

∫ ∫

F

ωs
(
x2 + y2

) − vs y
√

(vs − ωs y)2 + ω2
s x2

dxdy, (12)

and one can easily find that Tsy(vs, ωs) = 0. Then introducing the polar coordinate system
(ρ, φ) such that x = ρ cos φ and y = ρ sin φ we get from (12) the following form of integral
friction model

Tsx (vs, ωs) = 1

π

2π∫

0

1∫

0

vs − ρωs sin φ
√

v2
s + ρ2ω2

s − 2ρvsωs sin φ
ρdρdφ,

(13)

Ms (vs, ωs) = 1

π

2π∫

0

1∫

0

ρωs − vs sin φ
√

v2
s + ρ2ω2

s − 2ρvsωs sin φ
ρ2dρdφ.

Exact integral forms (13) of the friction model are inconvenient for direct use in math-
ematical modelling and numerical simulations (very time consuming numerical integration
over the F area). The exact analytical solutions to the above integrals exist but they are rather
complex [7–10]. In order to obtain relatively simple friction models but preserving essential
properties of the full integral expressions (13), one can try to construct special approximants.

Tsx |vs=0 = 0, Tsx |ωs=0 = vs

|vs | , Ms |vs=0 = 2

3

ωs

|ωs | , Ms |ωs=0 = 0,

∂Tsx

∂vs

∣∣∣∣
vs=0

= 1

|ωs | ,
∂Tsx

∂ωs

∣∣∣∣
ωs=0

= 0,
∂ Ms

∂vs

∣∣∣∣
vs=0

= 0,
∂ Ms

∂ωs

∣∣∣∣
ωs=0

= 1

4

1

|vs | , (14)

∂2Tsx

∂ω2
s

∣∣∣∣
ωs=0

= −1

4

1

vs |vs | ,
∂2 Ms

∂v2
s

∣∣∣∣
vs=0

= − 1

ωs |ωs | .
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Let as try to assume the following form of bivariate Padé approximant [24,25] of the f
component of the friction model

f (Pn) (vs, ωs) =
∑n

i=0 a fx ,iv
i
sω

n−i
s∑n

i=0 b fx ,ivi
sω

n−i
s

, f = Tsx , Ms, (15)

where b f,0 = 1, a f,i = a f,i (sgn(vs), sgn(ωs)) and b f,i = b f,i (sgn(vs), sgn(ωs)). The above
form of approximation can be understood as a generalization of all the approximate models
of friction for circular contact area with Hertz stress distribution presented in certain series
of works [7–9].

Assuming u = vs/ωs , we get the following form of (15)

f (Pn) (vs, ωs) =
∑n

i=0 a fx ,i ui
∑n

i=0 b fx ,i ui
, f = Tsx , Ms, (16)

which can be understood as a univariate two-point (since it fulfills certain derivatives of the
integral model at two points: u = 0 and

∣
∣u−1

∣
∣ = 0) and diagonal Padé approximation. The

expression (15) can be also written as follows

f (Pn) (θs) =
∑n

i=0 a fx ,i cosi θs sinn−i θs
∑n

i=0 b fx ,i cosi θs sinn−i θs
, f = Tsx , Ms, (17)

where the relations (9) have been used.
For n = 1 from (15) we get the following form of approximation

f (P1) (vs, ωs) = a f,0ωs + a f,1vs

ωs + b f,1vs
, f = Tsx , Ms . (18)

From the following conditions and making use of Eq. 14

Tsx |vs=0 = T (P1)
sx

∣∣∣
vs→0± , Tsx |ωs=0 = T (P1)

sx

∣∣∣
ωs→0± ,

∂Tsx

∂vs

∣∣∣∣
vs=0

= ∂T (P1)
sx

∂vs

∣∣∣∣∣
vs→0±

,

Ms |vs=0 = M (P1)
s

∣∣∣
vs→0± , Ms |ωs=0 = M (P1)

s

∣∣∣
ωs→0± ,

∂ Ms

∂ωs

∣∣∣∣
ωs=0

= ∂ M (P1)
s

∂ωs

∣∣∣∣∣
ωs→0±

,

(19)

we get the set of coefficients

aTsx ,0 = 0, aTsx ,1 = sgn (ωs) , bTsx ,1 = sgn (ωs) sgn (vs) , (20)

aMs ,0 = 2

3
sgn (ωs) , aMs ,1 = 0, bMs ,1 = 8

3
sgn (ωs) sgn (vs) .

Finally we obtain the following approximation

T (P1)
sx (vs, ωs) = vs

|vs | + |ωs | , M (P1)
s (vs, ωs) = 2ωs

3 |ωs | + 8 |vs | . (21)

In a similar way we find the Padé approximation for n = 2. Fulfilling all the (14) conditions
we get

T (P2)
sx (vs, ωs) = 8vs |vs | + vs |ωs |

8v2
s + |vsωs | + ω2

s
, M (P2)

s (vs, ωs) = 64ωs |ωs | + 18ωs |vs |
96ω2

s + 27 |vsωs | + 72v2
s
.(22)

The comparison of the developed above Padé’ approximants (21) and (22) to the corre-
sponding exact integral components (13) computed numerically is presented in Fig. 3, where
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the notations T (c)
sx = Tsx and M (c)

s = Ms have been used. Because all the plotted functions
T (a)

sx (θs) and M (a)
s (θs) (where a is a kind of approximation) possesse, the corresponding

properties of the functions sine and cosine correspondingly, allowing to compute the value
of the function for an arbitrary ϕs knowing its values for θs ∈ [0, π/2], the plots T (a)

sx (θs)

and M (a)
s (θs) are made for the first quarter only. Observing the plots one can find that 2nd

order approximation is more accurate than a 1st order one.
The similarity of the parametric plot of full integral model presented in Fig. 3 to the ellipse

[23], can suggest the another approximation of the following form

T (I )
sx (θs) = cos θs, M (I )

s (θs) = 2

3
sin θs, (23)

or

T (I )
sx (vs, ωs) = vs√

v2
s + ω2

s

, M (I )
s (vs, ωs) = 2ωs

3
√

v2
s + ω2

s

. (24)

The comparison of the approximants (23) to the exact integral model and the corresponding
absolute errors are presented in Fig. 3. One can observe that the model (23) is approximately
of the same accuracy (in the sense of absolute errors) as the Padé approximation for n = 2
(22). Note, that simultaneously the model (23) is much more simple than the approximants
(22). Moreover, the parametric plot exhibited by Fig. 3a indicates the greater suitability of
the approximations T (I )

sx and M (I )
s . One can also notice (see Fig. 3b, c) that the corresponding

first derivatives of the M (I )
s (θs) component are not satisfied at the points θs = kπ , where

k ∈ C.
One can try to generalize the approximation (24) in the following way

f (In) (vs, ωs) =
∑n

i=0 a f,iv
i
sω

n−i
s√∑2n

i=0 b f,ivi
sω

2n−i
s

, f = Tsx , Ms, (25)

or using the equivalent form

f (In) (θs) =
∑n

i=0 a f,i cosi θs sinn−i θs√∑2n
i=0 b f,i cosi θs sin2n−i θs

, f = Tsx , Ms, (26)

where b f x,0 = 1.
In order to obtain the approximation (24) we take n = 1, then assume b f,1 = 0 and

b f,2 = 1. The remaining coefficients of the approximation f (I1) are found from the condi-
tions f |vs=0 = f (I1)

∣∣
vs=0 and f |ωs=0 = f (I1)

∣∣
ωs=0 (where f = Tsx , Ms). Then we obtain

the special case f (I ) of the approximation f (I1).
The coefficients of the full f (I1) model can be found from the following conditions

f |vs=0 = f (I )
∣∣∣
vs=0

, f |ωs=0 = f (I )
∣∣∣
ωs=0

,

∂ f

∂vs

∣∣∣∣
vs=0

= ∂ f (I )

∂vs

∣∣∣∣∣
vs=0

,
∂ f

∂ωs

∣∣∣∣
ωs=0

= ∂ f (I )

∂ωs

∣∣∣∣∣
ωs=0

, f = Tsx , Ms, (27)

leading to the following form of approximation

T (I1)
sx (vs, ωs) = vs√

v2
s + ω2

s

, M (I1)
s (vs, ωs) = 2ωs√

64v2
s + 9ω2

s

. (28)
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(a)

(b) (c)

(d) (e)

Fig. 3 The comparison of the corresponding approximants to the exact integral model of the friction. The
grey dashed line in (b) and (d) is covered by the continuous one

The comparison of the model (28) to the exact integral model and the corresponding abso-
lute errors exhibited by Fig. 3, show that model T (I1)

sx and M (I1)
s is approximately of the same

accuracy (in the sense of absolute errors) as the simpler model T (I )
sx and M (I )

s . Moreover
the approximation T (I )

sx and M (I )
s presents itself more advantageously in the parametric plot

shown in Fig. 3a.
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On the other hand one can easily find the following property of the integral model (10)

dTsx

dθs
= −d Ms

dθs
tan θs, (29)

which means that d Ms/dTsx = − cot θs and the direction of the generalized velocity of the
contact patch λs = vsex + ωsez is normal to the curve described parametrically by Tsx (θs)

and Ms (θs). In order to make a use of the above relation while developing the corresponding
approximate models, one can try to assume certain form of one of the components (T (a)

sx

or M (a)
s ) and then calculate the second component by integration of Eq. 29. But in general,

it may occur difficult to find relatively simple forms of both components T (a)
sx and M (a)

s

satisfying the relation (29).
As a second way to fulfil the property (29), one can try to assume initially the approximate

model as two independent components T (a)
sx

(
θ ′

s

)
and M (a)

s
(
θ ′

s

)
and then to find the corre-

sponding coefficients assuming θ ′
s = θs and satisfying, for example, some of the conditions

(14). In the next stage one can re-parameterize the model by the use of suitable function
θ ′

s = θ ′
s (θs) in order to meet the relation (29), however simultaneously loosing the initial

fulfillment of the certain conditions. Applying the new parameterization, we get the model

T (a′)
sx (θs) = T (a)

sx
(
θ ′

s (θs)
)

and M (a′)
s (θs) = M (a)

s
(
θ ′

s (θs)
)
. Differentiating the functions

T (a)
sx

(
θ ′

s (θs)
)

and M (a)
s

(
θ ′

s (θs)
)

with respect to θs and making a use of the relation (28) we
get

dT (a)
sx

(
θ ′

s

)

dθ ′
s

= −d M (a)
s

(
θ ′

s

)

dθ ′
s

tan θs . (30)

From the above equation we can find θ ′
s = θ ′

s (θs) at least numerically for general case.

Trying to parameterize once again the model (23) we assume T (I )
sx

(
θ ′

s

) = cos θ ′
s and

M (I )
s

(
θ ′

s

) = 2/3 sin θ ′
s and then from relation (30) for a = I we obtain

tan
(
θ ′

s

) = 2

3
tan (θs) , (31)

which finally (assuming sgn(cos θ ′
s) = sgn(cos θs)) leads to the following form of the approx-

imate model [23]

T (I ′)
sx (θs) = cos θs√

cos2 θs + 4
9 sin2 θs

, M (I ′)
s (θs) =

4
9 sin θs

√
cos2 θs + 4

9 sin2 θs

, (32)

or

T (I ′)
sx (vs, ωs) = vs√

v2
s + 4

9ω2
s

, M (I ′)
s (vs, ωs) =

4
9ωs

√
v2

s + 4
9ω2

s

. (33)

The above assumption of sgn(cos θ ′
s) = sgn(cos θs) is motivated by the fact that the repa-

rameterization θ ′
s = θ ′

s (θs) should not change the model of friction too much (in order
words the function θ ′

s = θ ′
s (θs) should not differ too much from the function θ ′

s = θs). Let

us also note, that the assumption of sgn(cos θ ′
s) = −sgn(cos θs) leads to T (I ′)

sx (vs, ωs) =
−vs/

√
v2

s + 4
9ω2

s , which has no sense (for ωs = 0 the friction force do not oppose the relative
velocity).
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Comparing the model (32) to the other approximations and exact integral model presented

in Fig. 3 (the parametric plot of
(

T (I ′)
sx , M (I ′)

s

)
as the same plot as

(
T (I )

sx , M (I )
s

)
is not shown)

we can find that it is the most accurate approximation to the exact integral model, assuming
Coulomb friction law and uniform contact pressure distribution. However, in the case of real
system modelling, we should expect some uncertainties in both contact pressure distribution
and friction law. So it is not obvious which of the approximate models would be most effec-
tive in the modelling of real system. One should especially consider the usage of relatively
simple model (24).

Now we will try to apply the above developed approximate models to the presented in the
previous section mechanical system in the non-dimensional form. Taking into account that
vs = α−1r̂−1v̂s and ωs = α−1ω̂s we get

vs = ẋ − vb, ωs = ϕ̇, (34)

where ẋ and ϕ̇ are the dimensionless velocities of the disk presented in Fig. 1 while vb is
non-dimensional velocity of the belt.

Assuming that the mechanical system modeled by Eq. 3 is in the sliding phase of motion
and taking into account the relations (4) and T̂ = T̂ (a)

sx = μN̂ T (a)
sx together with M̂ =

M̂ (a)
s = μN̂ r̂ M (a)

s , we get the following non-dimensional components of the friction model

T = μT (a)
sx , M = μM (a)

s , (35)

where

μ = μ
m̂g

r̂(k̂1 + k̂2)
(36)

is non-dimensional parameter playing a role of friction coefficient μ and a indicates the
kind of approximation used. We assume that a = c denotes the exact integral model, i.e.
T (c)

sx = Tsx and M (c)
s = Ms .

Event-Driven Model and Integration Scheme

Let as introduce the discrete variable is(t) taking a value of is = 1 for slip phase of disk
motion and a value of is = 0 during stick phase. Then the friction model can be developed
as follows

{
T (x, ẋ, ϕ, ϕ̇, is, t)
M (x, ẋ, ϕ, ϕ̇, is, t)

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ

{
T (a)

sx (ẋ − vb, ϕ̇)

M (a)
s (ẋ − vb, ϕ̇)

}

for is = 1

μ0

{
Ts′x (x, ẋ, ϕ, ϕ̇, t)
Ms′ (x, ẋ, ϕ, ϕ̇, t)

}
for is = 0

, (37)

where

μ0 = μ0
m̂g

r̂(k̂1 + k̂2)

is non-dimensional parameter playing a role of static friction coefficient μ0. The variables
Ts′x and Ms′ are the forces balancing external forces in such a way that the disk move perma-
nently with the belt. Assuming that the disk has acceleration of the belt (ẍ = 0 and ϕ̈ = 0)
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we get
{

Ts′x (x, ẋ, ϕ, ϕ̇, t)
Ms′ (x, ẋ, ϕ, ϕ̇, t)

}
= 1

μ0

({
F (t)

0

}
−

[
c c12

c12 c

]{
ẋ
ϕ̇

}
−

[
1 k12

k12 1

]{
x
ϕ

})
. (38)

The model should be now supplemented with the rules of transitions between states is = 0
and is = 1. The end of the sliding phase is determined by decay of the relative motion of the
disk and belt. Since the point vs = 0 and ωs = 0 for all models developed in the previous
section is a singular point, we assume certain threshold value ελs > 0 such that the sliding
phase lasts as long as

hs (ẋ, ϕ̇) = λs (ẋ, ϕ̇) − ελs =
√

(ẋ − vb)
2 + ϕ̇2 − ελs ≥ 0, (39)

where λs = √
v2

s + ω2
s for vs and ωs defined by Eq. 28. After detection of the earliest time

instance tr such that hs (t) < 0 on the time interval t ∈ (tr , tr + ε) for certain ε > 0 (usually
falling zero crossing of the hs (t) function detection), we perform the small jump of the
velocities (in order to improve the accuracy of the simulation) by the use of the following
map

{
ẋ

(
t+r

)

ϕ̇
(
t+r

)
}

=
{

vb

0

}
, (40)

where ẋ
(
t+r

)
and ϕ̇

(
t+r

)
are the initial velocities of the next stick phase. Moreover the dis-

crete variable is undergoes a change taking a value of 0. The remaining phase variables
(displacements) do not change at the time instance tr .

In order to construct the condition of remaining of the system in the stick phase, we con-
sider the set  presented in Fig. 4, whose boundary is defined by the values of friction force
and torque in the case of virtual sliding with the static friction coefficient. We say “virtual”
since it is a theoretical situation of sliding with friction coefficient equal to its static counter-
part. One can also understand it as a limiting state of the sticking phase, when sliding mode
begins and its beginning is just understood as “virtual sliding”. The boundary of the set  is
defined parametrically by the suitable models of friction force and torque in the same way
as we have plotted the corresponding curves in Fig. 3a (remembering only that the friction
coefficient is static even if its non-dimensional value is still equal to one). Trying to generalize
one-dimensional case, where the set of admissible values of friction force during the sticking
mode is the interval [−1,1] (for non-dimensional case with static friction coefficient equal to
one), we conclude that the set  is the sticking region (the set of admissible values of friction
force Ts′x and torque Ms′ during the sticking mode).

Let us assume the existence of a certain ξ
(a)

s′ � 0 such, that O S′ = ξ
(a)

s′ O S where O, S
and S′ are the points interpreted in Fig. 4. The boundary of the set  is determined paramet-

rically by the use of functions Ts′x = T (a)
sx

(
θ

(a)

s′
)

and Ms′ = M (a)
s

(
θ

(a)

s′
)

, where a indicates

a kind of the approximation used and where we have introduced a new notation θ
(a)

s′ , because

now, since we have the sticking phase of motion, the argument of the functions T (a)
sx and

M (a)
s is not determined from the velocities vs and ωs . Then the condition of the lasting of the

stick mode is the point S′ remaining in the  zone, that is ξ
(a)

s′ ≤ 1. Projecting the equation

O S′ = ξ
(a)

s′ O S onto the directions Ts′x and Ms′ correspondingly we get the following scalar
equations

Ts′x = ξ
(a)

s′ T (a)
sx

(
θ

(a)

s′
)

, Ms′ = ξ
(a)

s′ M (a)
s

(
θ

(a)

s′
)

, (41)
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Fig. 4 The geometric interpretation of the point S′ in the set of admissible values of the friction model
components during the stick phase

from which we can determine ξ
(a)

s′ and θ
(a)

s′ as functions of Ts′x and Ms′ variables and kind
of approximation a. Assuming that the set  is convex, the above set of equations (assum-
ing ξ

(a)

s′ � 0) has always only one solution. For the zones limited by the approximations
presented in Fig. 3, there exists also only one solution, although some of that sets are not
convex.

In general, the symbolic solution to the Eq. 41 for the developed in the previous section
approximate models may be difficult to find, but one can easily solve them numerically in
parallel while integrating numerically the governing equations of motion. In some cases,
however, the analytical solution is simple. For example for the approximate model T (I )

sx and
M (I )

s defined by Eq. 23 we obtain

ξ
(I )
s′ =

√

T 2
s′x + 9

4
M2

s′ , cos θ
(I )
s′ = Ts′x

ξ
(I )
s′

, sin θ
(I )
s′ = 3

2

Ms′

ξ
(I )
s′

(42)

For the approximate model T (I ′)
sx and M (I ′)

s defined by Eq. 31 we get

ξ
(I ′)
s′ =

√

T 2
s′x + 9

4
M2

s′ , (43)

cos θ
(I ′)
s′ = Ts′x√

T 2
s′x + 81

16 M2
s′

, sin θ
(I ′)
s′ = 9

4

Ms′
√

T 2
s′x + 81

16 M2
s′

,

where we have assumed, that signs of cos θ
(I ′)
s′ and T (I ′)

sx as well as signs of sin θ
(I ′)
s′ and M (I ′)

s

are the same.
The condition of the stick phase lasting can be described by the following function

hs′ (x, ẋ, ϕ, ϕ̇, t) = 1 − ξ
(a)

s′ (x, ẋ, ϕ, ϕ̇, t) ≥ 0. (44)

The function θ
(a)

s′ (x, ẋ, ϕ, ϕ̇, t) during the stick mode specifies the relation between the linear
velocity vs of the point A and angular velocity ωs of the contact area during the virtual slip,
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which would take place, if the friction coefficient were sufficiently small. Detecting the ear-
liest time instance tp such that hs′ ≥ 0 on the time interval t ∈ (

tp, tp + ε
)

for certain ε > 0

(usually falling zero crossing of the hs′ (t) function), we know the direction θ
(a)

s′
(

t−p
)

(the

value of the θ
(a)

s′ variable at the end instance tp of the stick phase) of the sliding which would
take place, if the friction coefficient were μ0. Assuming that the beginning of the sliding
takes place with the friction coefficient μ0, in order to avoid singularities of the approximate
models as well as to fulfill the condition hs (ẋ, ϕ̇) ≥ 0 necessary for the sliding mode, we
perform the small jump of the velocities by the use of the following map

⎧
⎨

⎩

ẋ
(

t+p
)

ϕ̇
(

t+p
)

⎫
⎬

⎭
= ελs

⎧
⎨

⎩

cos θ
(a)

s′
(

t−p
)

sin θ
(a)

s′
(

t−p
)

⎫
⎬

⎭
+

{
vb

0

}
, (45)

where ẋ
(

t+p
)

and ϕ̇
(

t+p
)

are initial velocities of the next sliding mode. The above equation

after taking into account the Eq. 34 fulfills the conditions vs

(
t+p

)
/λs

(
t+p

)
= cos θs′

(
t−p

)
,

ωs

(
t+p

)
/λs

(
t+p

)
= sin θs′

(
t−p

)
and hs

(
t+p

)
= 0, where λs

(
t+p

)
= ελs and where

vs

(
t+p

)
, ωs

(
t+p

)
, hs

(
t+p

)
and λs

(
t+p

)
are initial values of the functions vs, ωs, hs and

λs = √
v2

s + ω2
s for the sliding mode at the time instance tp . In the next step, after the jump

of the velocities, the discrete variable is takes a value of 0 and the friction coefficient jumps
to a new value. The remaining state variables (displacements) are continuous at the time
instance tp .

The above described algorithm is presented in the form of flowchart in Fig. 5. The dis-
placements are continuous at the time instances of transitions between the successive modes.
For the integration over the sliding or sticking phases one can use a standard ODEs integra-
tion routine, additionally equipped with the corresponding event detection procedure. One of
the simplest ones is for example the method of halving the integration step (after detection
of the event over a certain time step) until obtaining the required accuracy.

Let us note for a one possible scenario when before beginning of the integration over the
stick mode, the value of the function hs′ (t) for t = tr is negative. In such a situation we omit
the integration process assuming the final state of the stick phase equal to its initial one. The
corresponding jump of velocities following the stick mode can be then understood as the
beginning of the sliding process with the friction coefficient large enough (the friction forces
are assumed to be on boundary of the set of their admissible values). In the next instance
the corresponding change of the friction coefficient takes place before the next integration
process. Such an infinitesimal sticking mode can be related to the finite size of the assumed
threshold ελs determining the transition to the sticking. Taking the smaller value of the ελs

can cause disappearing of that phenomenon. One can understand it in such a way, that the
solution of the sliding mode passes close to singularity vs = 0 and ωs = 0 but avoids the
sticking mode.

Numerical Examples

In the present section we show some examples of numerical simulation and analysis of the
above introduced event-driven mechanical system. In all the exhibited examples the follow-
ing non-dimensional parameters are assumed: m = 90, k12 = 0.85, c = 10−4, c12 = 0,

μ = 5, vb = 5 and F (t) = 0 (the system without external forcing) while the parameter
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Fig. 5 The flowchart of the numerical integration algorithm

μ0 is varied as a bifurcational one. The threshold of the detection of the singularity is taken
as ελs = 10−7. For the approximation of the exact integral model one of the simplest but
effective approximation with components T (I )

sx and M (I )
s defined by Eq. 23 is used. For the

integration of the differential equations over the slip or stick phases we use the Dormand–
Prince method with a relative tolerance of 10−10 and an absolute tolerance of 10−10. The
presented Poincaré sections and bifurcational diagrams base on the Poincaré map defined as
mapping of any initial state of the stick phase to the next initial point of the stick mode.

In Fig. 6 there is shown a bifurcational diagram of the system with the static friction
coefficient μ0 varied in the interval [11.2, 25.2]. In Fig. 7 one can see enlargements of two
subintervals of the bifurcational diagram from Fig. 6. The first one with μ0 ∈ [11.2, 13.5]
exhibits the beginning (left-hand side) while the second one with μ0 ∈ [22.5, 25] shows the
zoom of the end (right-hand side) of the first bifurcational diagram. Although the first look
at the fractal-like diagrams may suggest a possibility of existence of irregular attractors, a
more deep numerical insight do not prove that. Rather typical for the investigated system is
existence of multi-periodic orbits, sometimes of very long periods.

In Figs. 8, 9, 10 one can observe phase plots of three periodic orbits for μ0 = 24.9, μ0 =
23.06 and μ0 = 13.5, respectively. Figure 10 contains also time histories of the correspond-
ing behaviors. The first solution exhibits one point, the second one 3 points while the third
one 11 points in the bifurcational diagram and the corresponding Poincaré sections. In Fig. 10
one can notice typical for this system behavior, when from one stick phase to the next one
the angular coordinate value decreases until the 11th stick mode after which the angular
positions of the disk returns to its initial value.

The corresponding Poincaré sections of the multi-periodic orbits observed in bifurcational
diagrams for μ0 = 23.0580008 and μ0 = 24.819906 respectively are shown in Fig. 11. It has
been checked the number of points are large but finite. The corresponding phase trajectories
are presented in Figs. 12 and 13.
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Fig. 6 Bifurcation diagram with static friction coefficient as a control parameter

Fig. 7 Enlargements of the bifurcational diagram presented in Fig. 6 on two subintervals of the control
parameter

Figure 14 exhibits error � of the solution (obtained by the use of Dormand–Prince method
with both relative and absolute tolerances of 10−10) as a function of the parameter ελs . The
quantity � is defined as maximal deviation between the corresponding solution and the base
solution obtained by the use of the same method but with smaller parameter ελs = 10−10

and smaller relative and absolute tolerances equal to 10−13. The base orbit is a certain
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(a) (b)

Fig. 8 Periodic orbit for μ0 = 24.9

(a) (b)

Fig. 9 Periodic orbit for μ0 = 23.06

stable periodic solution while the investigated trajectory starts from a certain point of the base
solution. The solutions are then compared on the time interval of the length of 3,000 dimen-
sionless units. Figure 14 exhibits five examples for five different periodic orbits observed for
different values of the static friction coefficient μ0 and presented above in Figs. 8, 9, 10, 11,
12, 13, respectively. Initially linear relation between − log � and − log ελs (for small ελs )
encounters certain threshold and then the investigated solution starts to differ significantly
from the base one. That threshold appears, dependently of the case, for relatively high (the
solution 1) or small values of the parameter ελs (the solutions 4 and 5). In the cases 4 and 5 it
is even smaller (case 5) or approximately equal (case 4) to the value (10−7) of the parameter
ελs taken in the regular simulations presented in this paper. It can be explained taking into
account possible sensitivity of the system dynamics on parameter changes near different
bifurcational phenomena. In order to test the influence of the parameter ελs on the global
dynamics of the system, we have additionally computed the bifurcational diagram presented
in Fig. 7b for ελs = 10−5. The results are exhibited by Fig. 7b, where firstly the bifurcational
diagram for ελs = 10−5 has been plotted by the use of gray color and then covered by the
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(a) (b)

(c) (d)

Fig. 10 Periodic orbit for μ0 = 13.5

(a) (b)

Fig. 11 Poincaré sections of two multi-periodic orbits for μ0 = 23.0580008 (a) and μ0 = 24.819906 (b)

black diagram for ελs = 10−7. Since one cannot observe gray color, we can conclude that
diagrams are almost identical and the values of the parameter ελs used in the simulations are
sufficiently small.
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(a) (b)

Fig. 12 Multi-periodic orbit for μ0 = 23.0580008

(a) (b)

Fig. 13 Multi-periodic orbit for μ0 = 24.819906

Fig. 14 Error of the solution
� as a function of the parameter
ελs for the following values of
the static friction coefficient:
μ0 = 24.9 (1), μ0 = 23.06 (2),
μ0 = 13.5 (3), μ0 = 23.0580008
(4), μ0 = 24.819906 (5)
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Let us note that the concept of small region around the sticking state defined by the small
parameter ελs is rather a part of the dynamical system than a property of numerical method.
Similarly, the solution concept presented in the previous section defines completely new
dynamical system rather than a solution method to a certain differential equations with set-
valued functions. The well known problems with the solution uniqueness in the mechanical
systems with the so-called stiction friction model (the static friction coefficient is greater than
the dynamic one) not necessary take a place in our case. The developed system can be, in
certain sense, understood as some kind of switching system with approximation of sticking
region [13]. The best test for the method would be the real experiment.

Concluding Remarks

In the paper an original problem of modeling and numerical analysis of system with two-
dimensional stick-slip phenomenon has been undertaken. The developed hybrid event-driven
model along with the corresponding numerical simulation algorithm allows for effective
numerical analysis of the system by the use of standard ODEs integrators.

Few original generalizations of the functions approximating the exact integral model have
been proposed. One of them, i.e. Padé approximant lead to special cases presented in other
works [7–9]. The extension of the Padé functions to irrational ones of the form [24,25] can
improve the approximation, since the elliptic curve is described by the functions of this
class and the boundary of the set of admissible values of the friction components is of the
elliptic-like shape. Making use of the property (29) of the integral model can lead to further
improvement of the approximation. However it is not obvious which of the approximants is
most effective since the real normal stress distribution as well as real friction phenomenon
are burden with uncertainties. Then the coefficients of the approximate models can be esti-
mated from experimental data instead of fulfilling certain properties of the integral models.
From the above reasons we have assumed the simplest approximation (23) of the full integral
model in the presented numerical simulations.

As shown in the previous section, the investigated system for some parameter sets can
exhibit very rich bifurcational dynamics with self-excited stick-slip motions of very long
periods. On the fractal-like bifurcational diagram we can observe many repeating period-
adding scenarios and each of them seems to contain the same scenarios of the period-adding
phenomenon. Non-periodic behavior has not been proven numerically on this stage of inves-
tigations. However in the same system but with external periodic excitation F (t) = q cos ωt
we expect both quasi-periodic and chaotic attractors.

While designing the mechanical system, we have tried to exclude lateral forces and dis-
placements of the disk, in order to obtain relatively simple model for the preliminary investi-
gations. There exist however an evident and natural way of further developing of the system.
First of all we can add one lateral degree of freedom. Then the lateral forces can be added by
special modifications of the elasto-damping connections or by adequate modifications of the
normal stress distribution over the contact area. The second one can be obtained taking into
account the finite height of the disk or changing the shape of contact (for example elliptic or
rectangular). As a result we will deal with a three dimensional friction model (two friction
components and friction torque).

Acknowledgments The work has been supported by the Ministry of Science and Higher Education under
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