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ul. Stefanowskiego 1/15, 90-924 �Lódź
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A weakly nonlinear 2-DOF system, parametrically and externally excited, is studied. An inten-
sive energy transfer between modes of vibrations is discovered. Multiple scales method is used
for recognizing resonances occurring in the system. The amplitude response functions for some
chosen cases of resonances are obtained and studied. Many of the engineering systems can be
investigated in the presented way.
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1. Introduction

The paper concerns nonlinear dynamics of a para-
metric two degree-of-freedom system. Nonlinear
dynamical systems are still of great interest and
widely discussed in literature. Autoparameric exci-
tation may occur in complex systems as a result
of inertial coupling occurring in the equations of
motion e.g. [Starosta & Awrejcewicz, 2009]. The
phenomenon of energy transfer in such systems
between modes of vibration is investigated by many
authors [Sado, 1997; Vakakis & Gendelman, 2001;
Vakakis et al., 2003; Gendelman et al., 2005]. The
analytical study of intensive energy exchange in
strongly nonlinear system of 1-DoF is presented
in [Manevich & Musienko, 2009]. The dynamics
of a highly nonlinear vibration absorber coupled
to a harmonically excited two-degree-of-freedom
system is investigated in [Starosvetsky & Gendel-
man, 2008].

The parametrical nonlinear systems are
described in [Bajaj et al., 1994]. The effect of
parametric excitation on a three mass system was
studied by [Tondl & Nabergoj, 2004].

In the last decades, asymptotic methods have
been intensively developed and applied to solving
nonlinear problems [Shivamoggi, 2002]. Some appli-
cations of these methods can be found in [Natsiavas,
1992; Awrejcewicz & Starosta, 2010]. Strong nonlin-
ear systems may also be considered in this manner
[Andrianov & Awrejcewicz, 2003].

Dynamical systems containing mathematical or
physical pendulum play a significant role in technol-
ogy. There are many papers investigating various
kinds of pendulum [Tondl & Nabergoj, 2000; Zhu
et al., 2004; Starosta & Awrejcewicz, 2009]. The
chaotic behavior of the spring pendulum is tested
in [Lee & Park, 1997]. Because of the complicated
motion of such systems, much attention is paid
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Fig. 1. Spring pendulum moving on circular path.

to the problems of control and stability [El-Serafi
et al., 2005]. In [Sieber & Krauskopf, 2005; Landry
et al., 2005] the control loop for the inverted pendu-
lum is applied. The control system for the rapidly
forced system of cart and pendulum is discussed in
[Weibel et al., 1997].

Our aim is also to obtain the dynamic analy-
sis of the system with pendulum. In particular, the
pendulum with changing length moving in a cir-
cular path is investigated (Fig. 1). The structure
investigated in the paper can be recognized as a
model of various engineering elements in machines
or can simulate the motion of a floating body. In this
paper, we focus on detecting the resonance condi-
tions and the analysis of the chosen resonance case.
The multiple scale method enables to recognize the
parameters of the system that are dangerous due to
the resonances and allows to illustrate frequency-
amplitude response functions. Resonances of var-
ious kinds i.e. primary, parametric and combined
are studied. All calculations were performed with
the help of the computer algebra system Mathemat-
ica, in which several procedures were elaborated in
order to automatize most of the operations.

2. Formulation of the Problem

We study the planar motion of a spring pendu-
lum whose point of suspension moves with angular
velocity Ω along a fixed circular path of radius R
(Fig. 1). X and ϕ are the generalized co-ordinates.
The moment M(t) = M0 cos(tΩ2) and the linear
viscous damping moment Mr = B2ϕ̇ act around
the point O. The force F (t) = F0 cos(tΩ1) and the
linear viscous damping Fr = B1Ẋ act on the mass

m along the pendulum length (B1 and B2 are the
viscous coefficients).

The kinetic energy of the system has the form

T =
m

2
(RΩ cos(tΩ) + Ẋ(t) sin(ϕ(t))

+ cos(ϕ(t))(L +X(t))ϕ̇(t))2

+
m

2
(RΩ sin(tΩ) − Ẋ(t) cos(ϕ(t))

+ sin(ϕ(t))(L +X(t))ϕ̇(t))2, (1)

whereas the potential energy reads

V =
k

2

(
X(t) +

mg

k

)2
−mg(R cos(tΩ)

+ cos(ϕ(t))(L +X(t))), (2)

where L = L0 + (mg/k) denotes the length of
the statically stretched pendulum at ϕ = 0 (L0

is length of nonstretched spring), m is its mass, k
denotes stiffness of the spring and g is the Earth’s
acceleration.

The governing equations of the system are as
follows:

ẍ(t) + c1ẋ(t) − (1 + x(t))(ϕ̇(t))2 + ω2
1x(t)

+ω2
2(1 − cos(ϕ(t))) − rΩ2 cos(tΩ − ϕ(t))

= f1 cos(tΩ1), (3)

(1 + x(t))2ϕ̈(t) + (c2 + 2(1 + x(t))ẋ(t))ϕ̇(t)

+ω2
2 sin(ϕ(t))(1 + x(t)) − rΩ2(1 + x(t))

× sin(tΩ − ϕ(t)) = f2 cos(tΩ2), (4)

where x=X/L, r=R/L, ω2
1 = k/m, ω2

2 = g/L, c1 =
B1/m, c2 = B2/mL

2, f1 = F0/mL, f2 = M0/mL
2.

Equations (3) and (4) should be supplemented
by adequate initial conditions.

3. Solution Method

To solve the governing equations and to obtain the
resonance conditions, the multiple scale method is
applied. Trigonometric functions in Eqs. (3) and (4)
can be approximated in the following way

sinϕ ∼= ϕ− 1
3!
ϕ3,

cosϕ ∼= 1 − 1
2
ϕ2,
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sin(tΩ − ϕ) ∼= sin(tΩ) − cos(tΩ) − 1
2
ϕ2 sin(tΩ),

cos(tΩ − ϕ) ∼= cos(tΩ) + sin(tΩ) − 1
2
ϕ2 cos(tΩ),

since the motion in a small neighborhood of the
static equilibrium position is considered. The ampli-
tudes of vibrations are assumed to be of order of a
small parameter ε, where 0 < ε � 1, and hence
x = εx̃, ϕ = εϕ̃.

The generalized forces, damping coefficients
and radius of the path are assumed in the form:
ci = ε2c̃i, fi = ε3f̃i, r = ε2r̃, i = 1, 2. The parame-
ters f̃i, c̃i, r̃ are of the order of 1.

The functions x̃ and ϕ̃, are sought in the form

x̃(t; ε) =
k=3∑
k=1

εkx̃k(T0, T1, T2) +O(ε4),

ϕ̃(t; ε) =
k=3∑
k=1

εkϕ̃k(T0, T1, T2) +O(ε4),

(5)

where T0 = t, T1 = εt and T2 = ε2t are various time
scales.

The derivatives with respect to time t are cal-
culated in terms of the new time scales as follows

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
,

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1

+ ε2
(
∂2

∂T 2
1

+ 2
∂2

∂T0∂T2

)
O(ε3).

(6)

The definitions in Eqs. (5) and (6) transform the
original equations to the set of following ordinary
linear differential equations

(order ε1)

∂2x̃1

∂T 2
0

+ ω2
1x̃1 = 0,

∂2ϕ̃1

∂T 2
0

+ ω2
2ϕ̃1 = 0; (7)

(order ε2)

∂2x̃2

∂T 2
0

+ ω2
1x̃2 = r̃Ω2 cos(T0Ω) − 1

2
ω2

2ϕ̃
2
1

− 2
∂2x̃1

∂T0∂T1
+

(
∂ϕ̃1

∂T0

)2

,

∂2ϕ̃2

∂T 2
0

+ ω2
2ϕ̃2 = r̃Ω2 sin(T0Ω) − ω2

2x̃1ϕ̃1 − 2
∂x̃1

∂T0

∂ϕ̃1

∂T0

− 2x̃1
∂2ϕ̃1

∂T 2
0

− 2
∂2ϕ̃1

∂T0∂T1
.

(8)

(order ε3)

∂2x̃3

∂T 2
0

+ω2
1x̃3 = f̃1 cos(T0Ω1)+ r̃Ω2ϕ̃1 sin(ΩT0)

−ω2
2ϕ̃1ϕ̃2 − ∂x̃2

1

∂T 2
1

− c̃1
∂x̃1

∂T0

+ 2
∂ϕ̃1

∂T1

∂ϕ̃1

∂T0
+ x̃1

(
∂ϕ̃1

∂T0

)2

+ 2
∂ϕ̃1

∂T0

∂ϕ̃2

∂T0
− 2

∂2x̃1

∂T0∂T2
− 2

∂2x̃2

∂T0∂T1
,

∂2ϕ̃3

∂T 2
0

+ ω2
2ϕ̃3 = f̃2 cos(T0Ω2) + r̃Ω2x̃1 sin(T0Ω)

− r̃Ω2ϕ̃1 cos(T0Ω) − ω2
2x̃2ϕ̃1

−ω2
2x̃1ϕ̃2 − ∂2ϕ̃1

∂T 2
1

− 2
∂x̃1

∂T0

∂ϕ̃1

∂T1

− c̃2
∂ϕ̃1

∂T0
−2

∂x̃1

∂T1

∂ϕ̃1

∂T0
−2x̃1

∂x̃1

∂T0

∂ϕ̃1

∂T0

− 2
∂x̃2

∂T0

∂ϕ̃1

∂T0
−2

∂x̃1

∂T0

∂ϕ̃2

∂T0
−2

∂2ϕ̃1

∂T0∂T2

− 4x̃1
∂2ϕ̃1

∂T0∂T1
−2

∂2ϕ̃2

∂T0∂T1
− x̃2

1

∂2ϕ̃1

∂T 2
0

− 2x̃2
∂2ϕ̃1

∂T 2
0

− 2x̃1
∂2ϕ̃2

∂T 2
0

.

(9)

Solutions of Eqs. (7) are as follows:

x̃1 = A1eiT0ω1 +A1e−iT0ω1 , (10)

ϕ̃1 = A2eiT0ω2 +A2e−iT0ω2 , (11)

where A1 and A2 are unknown complex functions
of slow time scales.

After eliminating secular terms, we obtain the
following second and third order solutions:
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x̃2 =
ω2

2A2A2

ω2
1

− eiT0Ωr̃Ω2

2(Ω2 − ω2
1)

+
3ei2T0ω2ω2

2A
2
2

2(4ω2
2 − ω2

1)
+ CC

(12)

ϕ̃2 =
ieiT0Ωr̃Ω2

2(Ω2 − ω2
2)

− eiT0(ω1+ω2)ω2(2ω1 + ω2)A1A2

ω1(ω1 + 2ω2)

+
eiT0(ω1−ω2)ω2(2ω1 − ω2)A1A2

ω1(ω1 − 2ω2)
+ CC , (13)

where CC stands for the complex conjugates of the
preceding terms.

The third order approximation is given by

x̃3 =
ieiT0(Ω+ω2)r̃Ω4A2

2(Ω2 − ω2
2)((Ω + ω2)2 − ω2

1)

+
ieiT0(Ω−ω2)r̃Ω4A2

2(Ω2 − ω2
2)((Ω − ω2)2 − ω2

1)

+
eiT0(ω1+2ω2)(ω1 − ω2)ω2A1A

2
2

4ω1(2ω2 + ω1)

+
eiT0(ω1−2ω2)(ω1 + ω2)ω2A1A

2
2

4ω1(2ω2 − ω1)

− eiT0Ω1 f̃1

2(Ω2
1 − ω2

1) + CC
(14)

ϕ̃3 = +
ieiT0(Ω+ω1)r̃Ω4A1

2(Ω2 − ω2
2)((Ω + ω1)2 − ω2

2)

+
ieiT0(Ω−ω1)r̃Ω4A1

2(Ω2 − ω2
2)((Ω − ω1)2 − ω2

2)

+
eiT0(Ω+ω2)r̃Ω(Ω2 − ω2

1 + ω2
2)A2

2(Ω2 − ω2
1)(Ω + 2ω2)

+
eiT0(Ω−ω2)r̃Ω(Ω2 − ω2

1 + ω2
2)A2

2(Ω2 − ω2
1)(Ω − 2ω2)

− eiT0(2ω1+ω2)ω2(2ω2
1 + 3ω1ω2 + ω2

2)A2A
2
1

4ω2
1(2ω2 + ω1)

+
3e3iT0ω2ω2

2A
3
2

16(ω2
1 − 4ω2

2)

−eiT0(2ω1−ω2)ω2(2ω2
1 − 3ω1ω2 + ω2

2)A2A
2
1

4ω2
1(2ω2 − ω1)

− eiT0Ω2 f̃2

2(Ω2
2 − ω2

2)
+ CC (15)

The functions A1 and A2 can be calculated from
secular terms and initial conditions due to Eqs. (3)
and (4).

4. Parametric and External
Resonances

From Eqs. (12)–(15), many various resonance cases
can be detected from Eqs. (12)–(15). They are
classified into resonances: primary external Ω1 =
ω1,Ω2 = ω2, parametric Ω = ω1,Ω = ω2, inter-
nal: ω1 = 2ω2, combined: Ω = ±(ω1 − ω2),Ω =
±(ω1 + ω2).

It should be noticed that the system behavior is
very complex, especially when the natural frequen-
cies satisfy certain resonance conditions. The para-
metric Ω ≈ ω1 and external ω2 ≈ Ω2 resonances
appearing simultaneously are discussed below. In
order to study the resonances, we introduce detun-
ing parameters σ1 and σ2 in the following way

Ω = ω1 + εσ̃1, Ω2 = ω2 + εσ̃2. (16)

Introducing the resonance conditions [Eq. (16)] into
Eqs. (12)–(15) and zeroing secular terms we can
determine the solvability conditions for the tested
case

−1
2
eiT1σ̃1 r̃Ω2 + 2iω1

∂A1

∂T1
= 0, (17)

2iω2
∂A2

∂T1
= 0, (18)

ic̃1ω1A1 +
2A1A2A2ω

2
2(7ω

2
2 − ω2

1)
ω2

1 − 4ω2
2

+ 2iω1
∂A1

∂T2
+
∂2A1

∂T 2
1

= 0, (19)

−1
2
eiσ̃2T1 f̃2 + ic̃2ω2A2 − A1A2A2ω

2
2(7ω

2
2 − 2ω2

1)
−ω2

1 + 4ω2
2

− A2
2A2ω

4
2(ω

2
1 + 8ω2

2)
−2ω4

1 + 8ω2
1ω

2
2

+ 2iω2
∂A2

∂T2
+
∂2A2

∂T 2
1

= 0

(20)

Solvability conditions of Eqs. (17)–(20) yield
the system of four partial equations from which
we can get the unknown functions A1(T1, T2),
A2(T1, T2) or, in particular, obtain the frequency
responses for the mentioned resonance cases.

We introduce polar representation for the
complex amplitudes in the following way
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A1(T1, T2) =
ã1(T1, T2)

2
eiψ1(T1,T2),

A2(T1, T2) =
ã2(T1, T2)

2
eiψ2(T1,T2),

and the modified phase variables

θ1(T1, T2) = T1σ̃1 − ψ1(T1, T2),

θ2(T1, T2) = T1σ̃2 − ψ2(T1, T2).

Taking advantage of Eq. (6)1 we get an autonomous
modulation system of the form

i
da1

dt
+ a1

(
−σ1 +

dθ1
dt

)

= − 1
2
ia1c1 +

ω2
1 − 7ω2

2

4ω1(ω2
1 − 4ω2

2)
ω2

2a1a
2
2

+
rΩ2

2ω1

(
1 − σ1

2ω1

)
(cos θ1 + i sin θ1), (21)

i
da2

dt
+ a2

(
−σ2 +

dθ2
dt

)

= − 1
2
ia2c2 +

ω2
1 − 7ω2

2

4(ω2
1 − 4ω2

2)
ω2a2a

2
1

− a3
2ω

3
2

16
ω2

1 + 8ω2
2

ω2
1(ω

2
1 − 4ω2

2)

+
f2

2ω2
(cos θ2 + i sin θ2). (22)

Steady state solution corresponds to zero values
of the derivatives in Eqs. (21) and (22). Compari-
son of real and imaginary parts on both sides of
the equations leads to the following set of algebraic
equations

− σ1a1 =
ω2

1 − 7ω2
2

4ω1(ω2
1 − 4ω2

2)
ω2

2a1a
2
2

+
rΩ2

2ω1

(
1 − σ1

2ω1

)
cos θ1, (23)

0 = 2a1c1ω
2
1 + (σ1 − 2ω1)rΩ2 sin θ1, (24)

−σ2a2 =
ω2

1 − 7ω2
2

4(ω2
1 − 4ω2

2)
ω2a2a

2
1

− a3
2ω

3
2

16
ω2

1 + 8ω2
2

ω2
1(ω

2
1 − 4ω2

2)
+

f2

2ω2
cos θ2, (25)

0 = −ω2a2c2 + f2 sin θ2. (26)

Eliminating from Eqs. (23)–(26) θ1 and θ2 we
obtain frequency response functions:

(i) for parametric resonance

(
−σ1a1 +

ω2
2(7ω

2
2 − ω2

1)a1a
2
2

4ω1(ω2
1 − 4ω2

2)

)2

+
c21
4
a2

1 =
R2Ω4

4ω2
1

; (27)

(ii) for external resonance
(
−σ2a2 − ω2(ω2

1 − 7ω2
2)a2a

2
1

4(ω2
1 − 4ω2

2)

+
ω3

2(ω
2
1 + 8ω2

2)a
3
2

16ω2
1(ω

2
1 − 4ω2

2)

)2

+
c22
4
a2

2 =
f2
2

4ω2
2

, (28)

where a1 and a2 are amplitudes of the longitu-
dinal and swing vibrations, respectively.

5. Numerical Results

To illustrate the parametric resonance, we have cho-
sen the following values of the system parameters:
ω1 = 10, ω2 = 2, r = 0.1.

Resonance curves in form amplitude a1 versus
detuning parameter σ1 for some values of the damp-
ing coefficient c1 are presented in Fig. 2. The influ-
ence of radius r on the resonance curves is given in
Fig. 3.

In the case of external resonance, the follow-
ing values of the system parameters are chosen:
ω1 = 15, ω2 = 6, r = 0.1.

Amplitudes a2 versus detuning parameter σ2

for chosen values of damping coefficient c2 and
amplitude f2 are presented in Figs. 4 and 5.

It can be seen in Figs. 2 and 3 that the ampli-
tude a1 is a function monotonically increasing with
r and decreasing with c1. Similarly, the amplitude
a2 monotonically increases with the excitation f2

and decreases with c2. The curves are bent to the
right, giving rise to the jump phenomenon.

The influence of ω1 on frequency response for
the external resonance is presented in Fig. 6. For
ω1> 2ω2, a soft spring effect is observed (curves
are bent to the right). For ω1< 2ω2 a hard spring
effect is observed (curves are bent to the left).
An interesting phenomenon here occurs namely
at critical value of ω1 =ω1c, the plot slope is
minimal.
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Fig. 2. Amplitude a1 versus detuning parameter for different c1 (for a2 = 0.06).

Fig. 3. Amplitude a1 versus detuning parameter for different radius r (for a2 = 0.06 and c1 = 0.2).
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Fig. 4. Amplitude a2 versus detuning parameter for different c2 (for a1 = 0.08, f2 = 1).

Fig. 5. Amplitude a2 versus detuning parameter for different f2 (for a1 = 0.08, c2 = 0.1).
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Fig. 6. Amplitude a2 against detuning parameter (effects of natural frequency ω1 variation).

Fig. 7. The plot of the coefficient W, multiplied by a3
2

in (16), versus ω1.

The behavior of the system is associated with
the change of sign of the coefficient

W =
ω3

2(ω
2
1 + 8ω2

2)
16ω2

1(ω
2
1 − 4ω2

2)
, (29)

which is multiplied by a3
2 in Eq. (28). The variation

of coefficient at a3
2 versus ω1 is shown in Fig. 7.

6. Conclusions

The equations of motion for the studied system were
effectively solved using the Multiple Scale Method

adopting three time scales. The general solution, till
third order, was achieved. We succeeded in present-
ing them in very concise form. The functions A1 and
A2 can be calculated from the initial and solvability
conditions.

The frequency response functions, regarding
the stability of the system, are of special interest
in the paper. All resonance cases for the third order
expansion were detected.

Two chosen resonance cases, which occur simul-
taneously, have been discussed, namely: external
(Ω2 ≈ ω2) and parametric (Ω ≈ ω1). The fre-
quency response functions are presented in graphi-
cal form. The nonlinear character of resonance for
swings results from geometrical nonlinearity of the
system. The shape of the resonance curve depends
on the coefficient W [see Eq. (29)]. When W is neg-
ative, then we can observe the resonance suitable
to the “soft” characteristics. Positive value of W
makes the characteristics “hard”.
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