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In this paper, for the first time, the complete set of Tangens hyperbolicus approximations of
model of dry friction coupled with rolling resistance for circular contact area between interact-
ing bodies is proposed. The developed approximations are compared with corresponding Padé
approximants of the first and second order well known from the literature and with the numeri-
cal solution of the exact integral model as well. It is shown that Tangens hyperbolicus approxi-
mants are closest to the exact solution. Then the approximated models are applied to the celtic
stone dynamics, however with the significant simplifying assumption of circular contact between
stone and the table, presenting differences between them again. Certain specific approximations
and regularizations of the friction and rolling resistance models enabling and facilitating their
application to the real problem are shown. The analysis of the response dependence on initial
conditions is performed by the use of a special kind of diagram.
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1. Introduction

In physics and technology there are many examples
of systems which can be described as working in
different modes with the transitions between corre-
sponding modes very short in time when compared
with the time duration of the modes. In mechan-
ics, mainly the systems with impacts and dry fric-
tion belong to this class. Very often the transitions
between modes are modeled as instantaneous and
the system can be described by the use of the piece-
wise smooth differential equations (PWS). Then the
PWS systems can be classified according to the
degree of nonsmoothness in the following manner
[Leine & Nijmeijer, 2004; Simpson, 2010]: (i) sys-
tems with a discontinuous Jacobian matrix but with
continuous and nonsmooth vector field; (ii) systems
with discontinuous vector field but with continuous
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and nonsmooth system state; (iii) systems with dis-
continuous system state (a combination of differ-
ential equations and maps, sometimes referred to
as hybrid systems). The mechanical example of the
system belonging to the first group is the system
with stiffness being a nonsmooth continuous func-
tion of the position. Mechanical systems with dry
friction are often modeled as systems possessing
discontinuous damping characteristics (the second
group) [Galvanetto, 2001]. The mechanical system
can also possess a discontinuous stiffness charac-
teristics. In particular, systems with impacts can
be modeled as systems with discontinuous stiffness
(the second group) if one assumes the model of com-
pliant impacting bodies [Brogliato, 1999; Ivanov,
1996; Shaw & Holmes, 1983]. But usually the
mechanical impacts are modeled assuming rigidity
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of the impacting bodies. In this case the model
belongs to the third group and impacts are often
modeled by the use of Newtons’ law based on the
restitution coefficient [Brogliato, 1999; Awrejcewicz
et al., 2004; Awrejcewicz & Kudra, 2005a, 2005b].
Impacts and dry friction can appear simultaneously
in mechanical systems as independent [Virgin &
Begley, 1999] or coupled phenomena [Leine et al.,
2001].

Some approaches in modeling of mechanical
systems with rigid limiters of motion can lead
to PWS system of the third group with some
state subspaces governed by the smooth differen-
tial equations supplemented by algebraic equations
ie. differential-algebraic equations (DAEs) [Awre-
Jeewicz et al., 2004; Awrejcewicz & Kudra, 2005a,
2005b]. It is related to the state of the system sliding
along the obstacle.

The PWS systems of the second group (the first
group also as the subclass) are called Fillipov’s sys-
tems and the special theory for them exists [Fil-
lipov, 1988] based on the convex analysis where
the PWS differential equations are treated as equa-
tions with set-valued (multivalued) right-hand sides
(differential inclusions) on the boundaries between
subspaces where the functions are smooth. The con-
vex analysis is also used to describe systems with
impacts and friction [Moreau, 1988; Glocker, 1999,
2001; Pfeiffer & Glocker, 1996]. In this case, the
PWS system of the third group (impulsive systems
with Dirac pulse at impact instance) is treated as
differential measure inclusion.

The problem of seeking the mode of the sys-
tem in the next time instance (especially impor-
tant when the system is on switching boundary)
can be formulated by the use of algebraic inclu-
sion leading to the nonlinear complementarity prob-
lem (NCP) in general or linear complementarity
problem (LCP) for some special cases [Glocker,
1999; Pfeiffer, 2003; Pfeiffer & Glocker, 1996]. For
the solution of algebraic inclusion in frictional con-
tact problems the augmented Lagrangian method
(ALM) can also be used [Leine & Nijmeijer, 2004].

The numerical methods for the simulation
of the mechanical systems with frictional con-
tacts can be divided into the following groups
[Leine & Nijmeijer, 2004]: (a) regularization meth-
ods; (b) event driven integration methods; (c) time
stepping methods. The regularization methods
[Awrejcewicz et al., 2008] based on the smooth-
ing of the PWS or differential inclusions systems,
results in smooth differential equations allowing for

the use of classical integration methods. One of the
serious disadvantages of this method is stiffness of
the obtained problem. Another is that of possible
loss of some original physical properties of the sys-
tem. The event driven integration methods [Awre-
jeewicz & Kudra, 2005a; Glocker, 1999; Pfeiffer &
Glocker, 1996] uses classical integration methods
between switches (transition between modes) and
LCP, NCP or ALM to determine the next mode at
each event (the instance of crossing the switching
boundary). Time-stepping methods [Awrejcewicz &
Lamarque, 2003; Moreau, 1988; Stewart & Trinkle,
1996] are especially developed methods which do
not require the determination (in contrast to event-
driven methods) of the instances of crossing the
switching boundary. In this case, the LCP, NCP
or ALM methods are used to determine the mode
of the system at each time step.

If the contact between two bodies is very
small (the point contact) then sliding friction force
opposes the sliding relative velocity and can be
successfully modeled by the use of classical one-
dimensional Coulomb friction law. In this case, the
friction torque (drilling friction) and its influence
on sliding friction force can be neglected (since the
contact point cannot transmit a torque). But there
are many cases of dynamical behavior of mechan-
ical systems (billiard ball, Thompson top, wobble-
stone, electric polishing machine) which cannot be
mathematically modeled (in order to obtain correct
numerical simulation) or explained by the use of
assumption of one-dimensional dry friction model.

Contensou [1962] noticed that relative nor-
mal angular velocity (spin) is important for the
dynamics of some mechanical systems, where con-
tact between two bodies or spin is relatively large.
Based on the Coulomb friction law, he presented
friction force as a function of two variables: relative
sliding velocity of the center of the nonpoint cir-
cular contact area between two interacting bodies
and relative normal angular velocity. He presented
results in the integral and numerical forms for
the contact stress distribution according to Hertz
theory. Then the results of Contensou were essen-
tially developed by Zhuravlev [1998, 2003] by giv-
ing exact analytical expressions for friction force
and torque as well as corresponding linear Padé
approximations that are more convenient to use
in practical problems of modeling and simulation.
We will refer to coupled model of friction force and
torque as Coulomb—Contensou fritction model. This
direction of research led to the second-order Padé
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approximants [Zhuravlev & Kireenkov, 2005], more
accurate and suitable for qualitative analysis. By
the use of the same methodology, one can approach
the problem of friction modeling in the case of axial
symmetry of the contact stress distribution over the
contact area [Kireenkov, 2005] (the elliptic contact
patch with hertzian stress distribution is such a
case). The integral forms of coefficients of the cor-
responding Padé approximants were given, however
without any concrete, even numerical example. A
three-dimensional friction model for circular areas
but with the coupling between friction and rolling
resistance, where rolling resistance is a result of dis-
tortion of contact stress distribution was developed
in the work [Kireenkov, 2008]. Similar distortion of
the normal stress distribution was used earlier in the
modeling of the rolling resistance of the mobile tire
[Svedenius, 2003]. One can notice that the proposed
model of rolling resistance is compatible and logi-
cally coherent with the mechanism of rolling friction
caused by elastic hysteresis losses (the main com-
ponent of rolling resistance in many real systems)
[Greenwood & Tabor, 1958; Greenwood et al., 1961;
Johnson, 1985; Tabor, 1955].

In the work [Leine & Glocker, 2003] the coupled
friction model for circular contact area with cen-
tral symmetry of contact stress distribution (with-
out rolling resistance) was approximated by the use
of Taylor expansion of the velocity pseudo poten-
tial and then used in the Thompson top modeling
and simulation. The piecewise linear approxima-
tion of the three-dimensional friction model for
elliptic contact area and the Hertz stress distribu-
tion (without rolling resistance) was presented in
[Kosenko & Aleksandrov, 2009], where it was shown
that the proposed model is more accurate than lin-
ear Padé approximants. Friedl [1997] in his work
on the Thompson top modeling used the Tangens
hyperbolicus approximation of the coupled integral
friction model but only for the friction force com-
ponent (the friction torque was neglected).

As mentioned above, there were some
approaches to model rolling resistance along with
the friction modeling. However here appears a ques-
tion of the nature of rolling friction. Classically,
it is understood as a resistance against a relative
angular velocity of the contacting bodies tangen-
tial to the tangent plane of contact. But this model
leads often to cumbersome and questionable results.
Some authors introduced the concept of contour
friction as resistance against the movement of con-
tact point along the body [Leine, 2009; Leine et al.,

2005; Leine & van de Wouw, 2008]. These two mod-
els give the same results in some special cases (for
example, when there is no slip between contacting
bodies), but in general, are essentially different.
However the proposed models of contour friction
do not take into account the shape of the contact
patch. Moreover, the coupling with the contact
stress distribution and components of the dry fric-
tion model is also neglected.

One of the dynamical systems when the spatial
Coulomb—Contensou friction as well as the rolling
resistance is essential in dynamical behavior is the
Celtic stone also known as wobblestone or rat-
tleback. It is usually a semi-ellipsoidal solid (or
another kind of body with smoothly curved oblong
lower surface) with the special mass distribution.
Most celts lie on a flat horizontal surface and are set
in rotational motion about the vertical axis rotating
in only one direction. The imposition of an initial
spin in the opposite direction leads to transverse
wobbling and then to spinning in the “preferred”
direction. The Celtic stone with its special dynami-
cal properties was an object of investigation of many
researchers and the first scientific publication on
this subject appeared towards the end of the 19th
century [Walker, 1896].

One of the widely used assumptions in mod-
eling of the celt is that of dissipation-free rolling
without slip [Walker, 1896; Bondi, 1986; Lindberg &
Longman, 1983; Borisov & Mamaev, 2003; Borisov
et al., 2006]. In the work of Walker [1986] the non-
coincidence of the principal axes of inertia and the
principal directions of curvature at the equilibrium
contact point were pointed out as essential in the
explanation of the wobblestone properties. Borisov
and Mamaev [2003], and Borisov et al. [2006]
presented transitions between regular and chaotic
dynamics by the use of three-dimensional Poincaré
maps and investigated stability of permanent verti-
cal rotations of the nonholonomic dynamical system
of the Celtic stone.

In work of Magnus [1974] an attempt of analy-
sis of the linearized equations of the model assuming
continuous slipping (quasi-viscous relation between
the friction force and the velocity of the contact
point) was performed. Another model taking into
account dissipation but being far from reality is ana-
lyzed by the use of asymptotic perturbation the-
ory [Caughey, 1980]. The model assuming rolling
without slip and viscous damping (torque about all
three axes) was proposed by Kane and Levinson
[1982]. More realistic modeling with aerodynamic
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dissipation and slip with dry friction force, with the
addition of experimental validation of the model
were presented by Garcia and Hubbard [1988]. In
the work by Markeev [2002] the perturbation anal-
ysis of local dynamics around the equilibrium points
of the model assuming the absence of friction as well
as the experimental verification was performed. The
closest to reality modeling of the celt was proposed
by Zhuravlev and Klimov [2008], where the possibil-
ity of the slip was assumed, but in contrast to all the
earlier works, the spatial Coulomb—Contensou fric-
tion model with linear Padé approximations for cir-
cular contact patch [Zhuravlev, 1998] was applied.
However, since the friction force was the only way of
dissipation in the proposed model, the time of the
wobblestone motion (until rest) was unrealistically
long.

In the present work, we propose for the first
time the complete set of Tangens hyperbolicus
approximations of the coupled model of dry friction
and rolling resistance for circular contact area and
compare them to the corresponding Padé approx-
imants. Then the developed model is applied to
the analysis of Celtic stone dynamics. The paper is
organized as follows. In Sec. 2 the integral model of
friction force and torque for circular shape of con-
tact with hertzian normal stress distribution with
special distortion modeling a coupling between dry
friction and rolling resistance is introduced. Then
the corresponding approximations of the integral
model are presented. In Sec. 3, the mathematical
model of the wobblestone as well as the implementa-
tion of the approximated models of dry friction and
rolling resistance are given. Section 4 is devoted to
some numerical examples comparing the response
of the rattleback for different approximations of the
integral friction model. The analysis of the response
dependence on initial conditions is also performed
by the use of a special kind of diagram. Section 5
gives some final remarks.

2. Model of Friction and Its
Approximations

In Fig. 1, is presented a nondimensional circular
contact area (of radius equal to one) with the cen-
ter at point A, with relative translational nondi-
mensional velocity of length u = v4/p (where v4
is the length of real sliding velocity of point A and
p is the real radius of contact surface) and rela-
tive angular velocity w. Without loss of generality,
we assume that the velocity u is directed along the

Fig. 1. The contact patch and co-ordinate systems.

x axis of the introduced co-ordinate system Azy.
We assume that in the contact pressure distribu-
tion initially possessing central symmetry appears
distortion due to the rolling resistance and the final
stress distribution is symmetric with respect to the
n axis of the An€ co-ordinate system. The resul-
tant normal force is applied at the point S and the
rolling resistance vector is opposite to the £ axis.

The resultant nondimensional friction force
components and friction torque can be expressed
as follows

T:l:(u7w1/6) = TOI 1= T’r‘.’L‘a
Ty(u,w, B) = Toy + Ty, (1)
M(u,w,ﬁ) = ]\/[0 =+ M’r‘a

where Tp,, Ty, and My are the corresponding fric-
tion force components along z and y axes and
friction torque in the absence of rolling resistance
while T;;,T;, and M, are the corresponding com-
ponents of friction force and torque related to
rolling resistance. Assuming that Coulomb’s law
holds on an arbitrary surface element dF, the corre-
sponding nondimensional elements of friction model
(with nondimensional friction coefficient equal to
one) have the following integral form in the polar
co-ordinate system

2 p1
Toz(u,w) = / / ootzdrdp,
0 0

27 pl
Tre(u,w, B) = / / ortedrdy,
0 0

2m pl
Toy(u,w) = / / ootydrdye,
0o Jo
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2m pl
Try(u,w, B) = /0 /0 ortydrdyp,
27 pl
My(u,w) = r/ / oo(ty cos p — t sin@)drdy,
0 0

27 pl
M, (u,w,B) = r/ / or(ty cos ¢ — tgsinp)drdep,
o Jo

(2)
where
r(u — wrsin @)
ta(r, ) = ’
a1%) Vu? — 2wursin ¢ + w2r?

wr? cos ¢

A )
u? — 2wur sin ¢ + w2r?

ty (T1 (P) = \/

while o9 and o, are components of the non-
dimensional contact stress distribution o(r, ¢, 3) =
oo(r) + or(r, ¢, 3). It should be noted that o has
central symmetry 7p, = 0.

The distortion in stress distribution related to
the rolling resistance is assumed to be linear func-
tion with one parameter 0 < k, < 1 [Kireenkov,
2008]

ar(r, ¢, B) = oo(r)krr cos(¢ — B), (3)

where o is nondimensional (for the nondimensional
surface element dF and additionally related to the
real resultant normal reaction) contact stress distri-
bution for the case without rolling resistance, which
for the Hertz law takes the form

3 2

oo(r) = o 1-—r2 (4)
The integral models (1) and (2) is not conve-
nient in direct application to real problems of mod-
eling and simulation. Moving the origin of the
polar co-ordinate system to the instantaneous cen-
ter of velocities, one can obtain exact analyti-
cal expressions of the components (2) in elemen-
tary functions [Kireenkov, 2008|. But they are still
inconvenient to use because of their complexity. A
way to avoid this problem is to construct suitable
approximations.

One of the simplest approximations is the first-
order Padé proposed by Kireenkov [2008] for the
complete combined model of sliding and rolling
resistance in the following form

u

T =il ..

wk, sin 3
Trapr) = O21—— ol

wk, cos 3
Tryp1) = b01m,

w

Mopr) = COIW,

uk, sin (3
Mr(Pl) =21 |w|+—cuu

()

The coefficients of the model (5) are determined by
the following conditions

aTO.vc(Pl) 0Tz
 ou = 5u ’ Trac u=0 = Tr.r u=0>
ou |, 0u |, (P1) lu=0 lu=0
aTT (P1) oT,
Tryehimo = Troluso, - —5. = | = 50|
w= =
OMo(p1 oM,
Mopoh—o = Moo, —50= = 52|
w=0 w=0

M’I‘(Pl) 'sz = Mrlsza

and for the Hertz case (4) we have a3 = 8/(3m),
az = —1/4,b01 = 371’/32,1)11 = 1571'/32, Col1 =
3m/16,c11 = 157/16, ca1 = —37/16. The approx-
imations (5) preserve the values but do not com-
pletely satisfy all first partial derivatives of the
functions (2) at w = 0 or w = 0.

To satisfy all first partial derivatives, it is
necessary to use second-order Padé approximation
[Kireenkov, 2008]

u? + ajau|w|

ik = :
0z(P2) = 2 1 ajpu|w| + w?
w )
Trp(p2) = G22 ﬁwkr sin 3,
|w| + brau

Try(pg) = b02 u)kr COs ﬁ, (6)

u? + bygu|w| + w?

lw| + ciou
u? + crou|w| + w? 7’

Mop2) = coz

u?

M, (pay = c22 mkr sin 3.

Coefficients of the model (6) are determined ana-
logically to the model (5) constants. For the Hertz
case (4) we have ajs = 87/8,a2s = —37/32,
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b()g = 371’/32, b12 = 32/(1571’), Co2 = 371'/16, C12 =
16/(157), cog = —1/5. The approximations (6) com-
pletely satisfy the values and all first partial deriva-
tives of the functions (2) at u =0 or w = 0.

In this paper for the first time, the complete set
of Tangens hyperbolicus approximations of the cou-
pled model of dry friction and rolling resistance for
circular contact area between interacting bodies is
proposed (similar approximation was used by Friedl
[1997] in the Thompson top modeling, but only for
Toz component — the case with rolling resistance
and friction torque is neglected) in the following
form

Toz(tn) = tanh(hyulw|™1),

Trz(th) = fikrsin S,

Try(th) = fokr cos B, (7)
Myny = f2 — f1,

M, (1ny = hs(1 — tanh(sou™%|w|%))k;, sin 3,

where

f1 = hao(1 — tanh(s1u? |w| ™)) sign(w),
fo=nhs tanh(h4u_1w).

The coefficients of the model (7) are determined
analogically to the models (5) and (6) case. The
number of constants is smaller because of the use
of certain relation between functions T7., 7T, and
My (the same relation can also be used for mod-
els (5) and (6), but we present them in the form pro-
posed by Kireenkov [2008]). For the Hertz case (4)
we have h;y = 3n/8,hg = —3m/32,hg = 3m/32,
hs = 32/(157), hs = —1/5. The approximations (7)
completely satisfy the values and all first partial
derivatives of the functions (2) at u = 0 or w = 0.
Coefficients q1, q2, s1, 2 do not influence values and
first partial derivatives at u = 0 or w = 0 but they
are chosen to be g1 = 1.75, g0 = 2.5,81 = 1.25,59 =
0.275 for the best fitting of the integral model (2)
for different values of u and w.

Figure 2 presents the comparison of three
approximated models (5)—(7) and exact integral
model (2). It can be noted that the Tangens hyper-
bolicus approximation is closest to exact integral
model. It is significantly more accurate than the
second-order Padé approximation.

3. Celt Modeling

The wobblestone as a semi-ellipsoid rigid body with
the mass center at the point C, touching a rigid, flat

Fig. 3. The wobblestone on a horizontal plane 7.

and immovable horizontal surface 7 (parallel to the
XY plane of the global immovable co-ordinate sys-
tem X;X5X3) at point A is presented in Fig. 3.

The equations of motion in the movable co-
ordinate system 0zizoxs (with axes parallel to the
central principal axes of inertia — we assume that
geometrical axis zge of the ellipsoid is parallel to
one of them) are as follows

d
md—:—kwx (mv) = —mgn+ Nn+ T,
d_w

B
dt

+wx (Bv)=(r—k)x (Nn+T) ®)

+Mt +M'l"a

n—H‘an—O
dt o

where m is the mass of the celt, B = diag(B,
By, B3) is the tensor of inertia of the solid, v is
the absolute velocity of the mass center C,w is the
absolute angular velocity of the body, IV is the value
of the normal reaction of the horizontal plane, n is
the unit vector normal to the plane XY, T (ignored
in Fig. 3) is the sliding friction force at the points
of contact A,M; and M, (ignored in Fig. 3) are
the dry friction and the rolling resistance torques
applied to the body, respectively. Vector r indicates
the actual contact point position and the vector k
determines the mass center position.

The combined models of sliding friction and
rolling resistance cannot be directly used in the
form presented in Sec. 2 for celt modeling and simu-
lations with the use of standard numerical methods
of integration. One reason is that the expressions
for friction forces and torques have singularity for
u = 0 and w = 0. Another problem arises from the
fact that for u = 0, the directions of the compo-
nents T,; and T;, are indefinite. For that reason,
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we will express them in the Ané coordinate system.
But the angle (8 will still be indefinite for lack of slid-
ing velocity. Similar problems appear in the absence
of rolling. In order to avoid the mentioned prob-
lems, we propose the following specific approxima-
tions and regularizations of the friction and rolling
resistance models

T = —uNTyq,)
— BN (Trz()Cs + Try(a) Sﬂ)nwsﬁ
— UN(Trp(a)Sp — Try<a)cﬂ)#§’
M; = —upNMyqn, M, = _Hf:\lr%’

9)

where (a) in the end of index stands for some kind
of approximation.
For linear Padé approximation, we have

u
lul| + a11|wn| + €’

Torpie) =

wrkrsg
[[lul| + a11|wn| + €’

T’ra:(Ple) = a2
10
wrnkrca (10)

T ;
|wal + bui|[ul| + &

ry(Ple) = bo1

co1wn + ca1||ul|krsg
]wnl + 011||u|| + €

Myp1e) =
and the second-order Padé approximation model
takes the form

[ull + aiz|w,|
u? + apg||uf||wn| + w2 + ¢

To(p2e) =

|wn |wnkrsp

Trap2e) = a2 u?+w2+¢’
n

|wn| + bia|[ul|
u? + byg||uf||wn| + w2 + ¢

Try(P2e) = bo2 wnkrcﬁ»,

|wa| + crz|jul|
u? + cyo||uf||wn| + w2 + ¢

Mypoey =

n

(11)

while the Tangens hyperbolicus model will be as
follows

TO(ths) = tanh (hl

[[u] ) u
jwn| +¢/ [lalfl +&’

Tra:(the) = flek:'rsﬁy
T’ry(the) = f26krcﬁ7

Mt(tha) = foe — fie

q2
+ hs (1 — tanh (32 <—|wﬁ1|17[ E) >>krsf;,

(12)

where

¢
f1e = ho (1 — tanh (51 (WL%) )) sign(wp,)

Wn
and f25 h3 tanh (h4”u” -f—E)’
where p is the dry friction coefficient, p is the radius
of the contact patch (we assume circular contact
patch between bodies with constant radius indepen-
dent from normal force), f, = p f027r fol orr? cos(p —
o)drdy is the rolling resistance coefficient and for
the Hertz case f, = pk,/5, u is the normalized
velocity v4 of the body point when in contact with
the horizontal surface, w,, is the projection of angu-
lar velocity on the X3 axis, w, is the component
of angular velocity lying in the 7 plane, wg is the
vector lying in the 7 plane of the same length as
w, but perpendicular to wy,cg and sg are approx-
imated sine and cosine functions of the angle 3
(angle between the sliding and rolling directions):
A2\
u=—,
p
Wwg =Wy X 1N,

Un / 2
= —1 1 —
cs ||u” +€1, Sg Sgnl(uf) €3 (]_3)

VA =Vv+wx(r—k),

Wp =w- N, W;=w— Wy,

Up =U-wg, U= —U-wWg,
1 for ug >0
sgny (ug) = {—1 for ue <0

The M, vector is constructed with assumption
that the rolling resistance torque opposes the
angular velocity component lying in the 7w plane
(it is equivalent to assumption of rigid m plane
and deformable wobblestone). The parameters &
and e; are introduced in order to smooth the
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equations and avoid numerical problems around
some singularities.

The differential equations of motion (1) are sup-
plemented by the following algebraic equation

(Vv+wx(r—k))-n=0, (14)

which follows the fact that the velocity v4 lies
in the plane 7. Equations (8) and (14) form now
the differential-algebraic equation set. One way to
solve them is to differentiate the condition (14) with
respect to time
[dv dw

d
x(r—k)+w><—r+w

@@ dt

X(v+wx(r—k))| -n=0, (15)
and then treat it as an additional equation when
solving the governing equations algebraically with
respect to the corresponding derivatives and the
normal reaction N.

To complete the model the relation between the
vectors r and n should be given. Taking the ellipsoid

equation
|

¢(r)——+b—2+ - —1=0, (16)

(where a,b and ¢ are the semi-axes of the ellipsoid
along the axes x1,, x2e and 3. respectively) and the
condition of tangent contact between the ellipsoid
and the horizontal plane

do

n= .U‘Ev (17)

where p < 0 is a certain scalar multiplier, we can
find the following relation between the components
of the vectors r and n in the 0x1.22.23. coordinate
system

2 2 2
a“nie b*noe CN3e
— = , = . (18
Tle 2 ;o T2e ZH 3e 2 ( )
where
1
= —5\/a2n%e + b2n3, + ?nd,. (19)

Because we use the differentiated form (15) of the
algebraic condition (14), the differentiated rela-
tions (18) will be needed

a? [hle(b2n%e + c2n§6) — N1e(b®NgeNoe + CN3enae))

Tie =

b2[n2e(a®n?, + c?nd,)

8u3 ’

— N2e (a2nleh1e W c2n3eh38)]

T9e =

2[n2€(a nle

8u3 ’

(20)

b2n26) — n3e(a®n1eM1e + b*NoeNoe)]

T“36 -

Since the Ozjzox3 co-ordinate system is obtained
by rotation of the 0zj.z2.z3. system around the
x3. axis by the angle a, the corresponding rela-
tion in the Ozizox3 co-ordinate system can be
found easily.

4. Numerical Simulations

All the results presented in the paper have been
obtained for the following parameters and initial
conditions: m = 0.25kg, g = 10m/s?, a = —0.3rad,
B; = 107*kg - m?, By = 8-107%kg - m?, B3 =
103kg-m?, a = 0.08 m, b = 0.016 m, ¢ = 0.012m,
kl = k‘z = 0, k3 = —0.002m, n = 0.5,p =
6-107%m, k, =1, = 10~*rad/s, 1 = 102 rad/s,
V10 = V20 = v39 = 0m/s, njg = nz9 = 0, nzo = 1.
Figure 4 show the results of simulation of the
celt initially spinning with wszy = 20rad/s but
also wobbling with wyy = 1lrad/s (wjo = 0) for
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l
three different approximations: the first-order Padé,

the second-order Padé and Tangens hyperbolicus
approximations. The celt exhibits typical kind of
solid behavior, that is, we can observe after some
time the spin changes sign and then the motion van-
ishes. The differences between three solutions are
seen, especially between the solution with the use
of the first-order Padé approximation and the oth-
ers. To answer the question of significance of that
difference depends on the kind of application of the
developed model and simulation. The rest of the
presented results have been obtained by using Tan-
gens hyperbolicus approximation.

Figure 5 presents similar results for the initial
spin w3g = 4rad/s and wobbling with wyy = 1rad/s
(w10 = 0). We can also see the corresponding behav-
ior of the system with friction torque M; switched
off, where the motion ends with the celt spinning
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20 I T T E
Pade 1st order
15 | T — Pade 2nd order 1
— tangens hyperbolicus |
i) | 1
= sE ]
§ :
of
=5 ]
0

w3 [rad/s]

0.0 0.5 1.0 1.5
t[s]

Fig. 4. The wobblestone response with initial conditions
w10 = 0, weo = 1,w3g = 20(rad/s) for different approxi-
mations of the friction model.

with constant velocity without wobbling, but the
initial portion of motion do not differ significantly
from the motion of the celt with the friction torque.
The corresponding normal force history is also pre-
sented in Fig. 5.

In Fig. 6 the final w3 angular velocity for the
celt without dry friction torque M; for different ini-
tial conditions is presented in the form of contour
plots. One observes that for one direction of the
spin [w3p = 2rad/s in Fig. 6(a)] there is some area
around the point (0,0) on the plane of initial con-
ditions wjgp—wsg for which there are no reversals.
The change of sign of spin takes place for initial
conditions outside that area, that is, for the ini-
tial wobbling strong enough. For the opposite sign
of the initial spin [w3g = —3rad/s in Fig. 6(b)] it
is difficult to observe the spin reversal. It is most
interesting to see the plot from Fig. 6(c), where the
section along the wsy axis in the initial conditions
space is shown. It is seen that the ws axis is sta-
ble in that sense, the perturbation of the wobble-
stone spinning with any value is small enough and
any sign will decay after a while, and the stone will
continue spinning with (almost) the same velocity.

FT T T v T LG
6— wy with M,
2 “n wy with M, ]
T 4 wywith M,
& a2t 0 = ———- w;without M, ]
3 o i j
3 4l e e e L ]
3 [
-6 ,,,,,,,, ]
- Il I |
0 2 4 6 8 10
t[s]
T T T
— . ]
Z
=, ]
i I I
4 6 8 10
t[s]

Fig. 5. The wobblestone response and normal force history
with initial conditions wig = 0,w20 = 1,w30 = 4 (rad/s) for
Tangens hyperobolicus approximation.

To observe the reversals, the initial wobbling must
be large enough and only for the proper sign of
the spin.

5. Concluding Remarks

For the first time the complete set of Tangens hyper-
bolicus approximations of the spatial friction model
coupled with the rolling resistance for circular con-
tact area between interacting bodies has been devel-
oped and then compared with the corresponding
Padé approximants of the first- and second-order
well known from the literature and with the numer-
ical solution of the exact integral model as well. It
has been shown that Tangens hyperbolicus approx-
imants are closest to the exact solution. Applying
three different approximations to the celtic stone
model the differences in simulation results have
been shown. In applications when high accuracy
of simulation is required, the model with second-
order Padé or Tangens hyperbolicus approximations
should be used. Taking into account that complex-
ity of both approximations are comparable and that
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wyq [rad/s]

wp [rad/s]

(a)

w3 [rad/s]

|
(]
(=}
(]
IS

wyo [rad/s]
(c)

Fig. 6.
(a) w3p = 2rad/s, (b) wgp = —3rad/s, (c) wigp = Orad/s.

the Tangens hyperbolicus approximation is actu-
ally closer to the exact integral model of friction,
it seems to be reasonable to use the second one.
Both presented model of the celt and its simula-
tions are very realistic, when compared with most
earlier works on the celt, since the correct spatial
friction model coupled with the rolling resistance
torque have been applied, however with the sig-
nificant simplifying assumption of circular contact

4

wy [rad/s]

w1 [rad/s]
(b)

w3 [rad/s]

The wobblestone final w3 angular velocity (rad/s) (without dry friction torque M;) for different initial conditions:

area between stone and the table with constant
radius independent from the normal force. In the
next step, we are going to extend the model of
friction and its approximations to the elliptic con-
tacts. The presented results of the celt simulations
are selective and more systematic research of that
object is required as well as careful experimen-
tal validation should be performed. The proposed
smoothing of the governing equations should be
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treated as temporary and a substitute method of
avoiding numerical problems and certain exten-
sion of the model should be made in order to
join different modes of dynamics (for example stick
and slip).
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