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In this paper, the theory of nonlinear interaction of two-layered beams and plates taking into
account design, geometric and physical nonlinearities is developed. The theory is mainly devel-
oped relying on the first approximation of the Euler—Bernoulli hypothesis. Winkler type relation
between clamping and contact pressure is applied allowing the contact pressure to be removed
from the quantities being sought. Strongly nonlinear partial differential equations are solved
using the finite difference method regarding space and time coordinates. On each time step the
iteration procedure, which improves the contact area between the beams is applied and also the
method of changeable stiffness parameters is used. A computational example regarding dynamic
interaction of two beams depending on a gap between the beams is given. Each beam is subjected
to transversal sign-changeable load, and the upper beam is hinged, whereas the bottom beam is
clamped. It has been shown that for some fixed system parameters and with an increase of the
external load amplitude, synchronization between two beams occurs with the upper beam vibra-
tion frequency. Qualitative analysis of the interaction of two noncoupled beams is also extended
to the study of noncoupled plates. Charts of beam vibration types versus control parameters
{qo,wp}, i.e. the frequency and amplitude of excitation are constructed. Similar and previously
described competitions have been reported in the case of two-layered plates.

Keywords: Nonlinearity; beam; plate; chaos; synchronization.

1. Introduction

The fundamental idea of the proposed approach is
associated with the analysis of chaotic vibrations
of contact problems of beams taking into account
design, geometric and physical nonlinearities. The
designed nonlinearity concerns the activation and
removal of one-sided constraints. Physical nonlin-
earity is associated with nonlinear relations between
strains and stresses, whereas geometric nonlinearity
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is connected with nonlinear relations between
deformations and displacements in the form pro-
posed by von Kédrmén for each of the beams. We
deal with the following system of equations

U+eU+L(U)=F — Mg (1)

with boundary conditions GU(A) = H(A), initial
conditions U(t = 0) = ®; and U(t = 0) = ®3, and
a stamp of no penetration condition f(R+U) > 0,



2838 J. Awrejcewicz et al.

A € w, where w is the contact zone, L is the matrix
differential operator, U and U are the vector func-
tion and the vector displacements of a point of sur-
face (Q, respectively; F' is the vector function of the
externally distributed load, f(w) = 1,¢%(A ¢ w) =
0; M denotes a column with the element responsible
for the projection of the equilibrium equation on the
normal of surface 2 equal to 1, and the rest of the
elements are equal to 0; fr = 0 represents the stamp
surface (outside stamp f > 0). The mentioned non-
penetration condition is given in the following linear
form

FR)+UVF(R) >0, Acw. 2)

In what follows we are going to find a solution
to problems (1) and (2). If space w is not defined,
then owing to the Lukash definition [Lukash et al.,
1981], a nonlinear design problem is obtained.
Observe that in many engineering cases the contact
reaction may consist of the transversal force and
torque concentrated on boundary w, represented by
a vector tangent to the boundary w.

On the other hand, in the case of static prob-
lems another approach is often applied. Namely, the
problem is reduced to that of integral Fredholm first
order equation of the form

/ G(A, B)gk(B)dw = g(4), Acw, (3)

where G(A,B) is the Green function (defining
deflection at points A and B), a force concentrated
normal to the beam surface acts; g(A) is the sum
composed of an expression which describes part of
the stamp surface in contact and a function defining
the stamp (rigid body) displacement.

If Eq. (3) is obtained within the Euler—Bernoulli
hypothesis, then it has only a general solution: the
contact reaction represents concentrated forces on
the contact zone boundaries (if the contact zone is
not given) and a torque for the known (given) space
w [Galina, 1976a; Popov & Tolkachev, 1980].

The contact problem of beams theory can be
improved via the regularization procedures, which
mainly deal with transition from Eq. (3) to the
Fredholm second type equation of the form

Kqi(4) + / G(A, B)k(B)dw = f(4).  (4)

Methods of mathematical regularization
require the use of the regular operator definition
[Popov & Tolkachev, 1980; Tikhonov & Arsenin,
1979]. It is evident that the mathematically

approved method of regular parameter choice is
that of a boundary layer minimum proposed by
Tikhonov [Tikhonov & Arsenin, 1979; Lavrentev
et al., 1980]. This method allows us to use only
minimum a priori information, but it also requires
a solution to the complimentary problem of the
functional minimum search.

There are also approaches devoted to regular-
ization of the integral equations of the studied con-
tact problems. They are focused on an improvement
of physical modeling and are referred to as the phys-
ical regularization [Grigoluk & Tolmachev, 1975]. In
[Grigoluk & Tolmachev, 1975] an additional elastic
layer is introduced to the contact zone, governing
real properties of micro-geometry of the contact-
ing surfaces and having the following properties:
(i) deformation of the contact layer is local and does
not depend on the movement of contacting bodies;
(ii) a mutual influence of the contact deformations
is cancelled, i.e. the displacement of an arbitrary
part of the contact layer is not influenced by dis-
placements of other parts of the layer; (iii) defor-
mation of the contact layer is proportional to the
interaction of contact forces. Formulation of con-
tact conditions in the integral form leads to a second
order integral Fredholm type equation. Coefficient
K is also treated as the regularization parame-
ter which qualitatively characterizes properties of
the contacting surfaces and is defined experimen-
tally [Aleksandrov & Romalis, 1986; Demkin, 1970;
Levina & Reshetov, 1971].

One of the methods of K determination in
Eq. (4) relies on the identification of transver-
sal clamping with displacement of the half-space
boundary subjected to contact pressure [Kon-
veristov & Spirina, 1979]. In references [Alek-
sandrov, 1962; Aleksandrov & Mkhitarian, 1983;
Bogatyrenko et al., 1982] the formula which gov-
erns normal layer of low thickness displacement
is stiffly coupled with nondeformable foundation
[Vorovich et al., 1974], and it is shown that when the
layer thickness decreases then its mechanical prop-
erties approach the Winkler foundation properties
[Vorovich et al., 1974]. In [Kantor, 1983, 1990; Kan-
tor & Bogatyrenko, 1986] the approach devoted to
solutions of the contact problems of nonlinear shells
theory is proposed. It consists of removing the con-
tact pressure g from the unknown functions with
the help of the Winkler type coupling. The men-
tioned approach is equivalent to that of formula (4),
and it allows us to neglect the tedious task of con-
structing the Green function, and hence solutions



can be found directly through equilibrium equations
(1). On the other hand, a study of chaotic vibra-
tions of the contact problems of nonlinear mechan-
ics of thin-walled structures is rarely presented (see
for example [Awrejcewicz & Krysko, 2001, 2003a,
2003b, 2003c; Awrejcewicz et al., 2002; Awrejcewicz
et al., 2004; Krysko et al., 2003]).
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ing and analysis of chaotic vibrations of two-layered
beams with the mentioned three types of nonlinear-
ity belongs to pioneering research.

2. Coupling between Contact
Pressure and the Transversal
Clamping of a Thin Beam

We begin to study this problem with the solution

to the problem of a layer of thickness 2l;. Let in
zone of length 2, the layer be loaded by pressure g
|

\ 4

Fig. 1. Loading of the layer of length 2L

in time instant At symmetrically regarding axes x
and z (Fig. 1). We consider the plane case, and the
pressure is approximated by the following series

= Z Ay, cos m;ra: (5)

m=0

Using a solution for stresses [Vorovich et al.,
1974], one gets

Op =2 Z AnF, (2)cos Bz, o0,=2 Z A, FiF(2)cos Bz,
6
FE (Bt cosh Bl + sinh (1) cosh Bz — Bz sinh 3z smhﬂll @)
% sinh 28311 + 261

where 3 = mm/l. We take ¢(z, Vt) = —o.(z, 1, Vt),
and in the case of plain stress state we have

ou,(x,z,Vt 1
_ ;(82—) = 21 =P w1+ 1))
Integrating the given formula with respect to z and
taking into account that fél ozdz = 0, and with the
external load along z being not activated, one gets

s 1/2 /ll
o,dz
E Jo
=201-1%)) A,

" cosh 20l — 1
B(sinh 260 + 21,)
Developing the numerator and denominator of

the fraction into the power series regarding 3l; = ¢
one obtains

i, 1y VE) =

cosfBz. (7)

uz(:v, ll, Vt)

32 20t

2 1+E+E+K
llZA 02 34
m 1 —+ K
+ = 3 + 15 +

cos fx

—

= lle (1——+K)cosﬁac

.2
= 1 EV l1 [q(i,Vt) =

1 -
W'’ @ V) + L},

o~

.-
T

Ch=b
(8)
Denoting 2l; = h, one gets the formula

which couples transversal clamping V with function

q(z,Vt):

1 E _ 1 (\* v _
T2 EV = q(Z, Vt) — 720 (7) gz (Z,Vt) + L.
(9)

Let us study the clamping of the layer by
two symmetrical smooth stamps without corners
(Fig. 2). The solution of the contact problem, where
U.(z,ly) is the function given on interval —/ <z <
[, satisfies equation [Galina, 1976b]

/ h q(&)K(‘"” - “)d& = mSous(z,l1), (10)

—00
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Fig. 2. Clamping by two symmetrical smooth stamps.

if in outside interval |z| < [ for |z| = [; the following
conditions hold o, = 7 = 0, where

> 2u—1
K(p) :/O ch2u cosupdu

sh2u+2u u
o0
L
E/ (w) cos up du,
0 u
= E
So= ———-.
07 2112

A solution to Eq. (10) in the form

a(z, Vi) = ﬁ/m uz(h,zl)K*<”” : ll)ds,

2
Tl J—oo

* u cos pu
K*(p) = / du

is given in [Korn & Korn, 1968], where with the help
of the series

= 2 'B; (27)
Lu) A i e w™(p)

we get

o0
* m 7 )
K*(p) = 200(p) + 7Y _ (=1)'Bis®(p),
i=1
and 6821) denotes the second order derivative. Let us

find an explicit solution using the formulas [Korn &
Korn, 1968|:

do(p) =6o(”’l:5) = lido(z — €),
So(z — &) = —o(€ — ),

l

l f(&)do(x — §)d¢ = f(x),

1 , _
/—z F©0 (@ — e)de = F® (@), |z <.

Owing to the evenness of function K*(p), we
get K*((€ —z)/l1) = K*((x — £)/l1). Substituting
the series for u/L(u) into the solution of Eq. (10),
integrating it in the interval (—[,[) and taking into
account relations for the general functions, one gets

1 E
q(a:, Vt) = WE[UZ(:E, 11, Vt)

— B1l2u, + Bylju!V — L.

Development of u/L(u) into a series regarding
u gives

u u(sinh u + 2u) 1 4
= =214+ — L.
L(u) coshu — 1 ( * 45" * )

Therefore, owing to the introduced formulas
one gets 1/A =2, B; =0, By = 2/45, and finally

_ 1 E 1 BN e

(11)

One may check that relations (9) and (11) are
mutually invertible. It means that a lack of deflec-
tion and extension deformations of the middle beam
surfaces leads to the coupling between clamping and
contact pressure to differ from that of the Win-
kler type by the fourth and higher derivative multi-
plied by small coefficients. Even for h/l = 1, which
is the characteristic contact zone dimension, the
first of the mentioned coefficients is equal to 1/720,
whereas usually for contacting beams the following
estimation holds h < [. This observation allows us
to conclude that the Winkler model (11) possesses
sufficiently high accuracy. A similar conclusion was
obtained by the authors in [Aleksandrov & Roma-
lis, 1986], who carried out the asymptotic analysis
of an exact solution for a layer, as well as by Kan-
tor [1990], who solved a wide class of problems for
axially symmetric shells.

In the case of tangential deformations occur-
ring during deflection and extension of the contact-
ing beams, the coefficient by V is changed, and
small additional terms appear. From the formula for
clamping [Pelekh & Sukhorolskiy, 1980] for plates,
one gets

% =10 i(i)ay—) 2) %[V +O(R*Vow))

whereas for beams one obtains

3E
@ = T 71V + O(h?Vow)).
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The clamping formula yields also [Grigoluk &
Tolmachev, 1975]:

16 E
3 h

Analogous formulas are obtained in reference
[Bloch, 1975], whereas similar relations are com-
pared in [Bloch, 1977]. They differ only by the value
of coefficient F/h, which in all cases is close to one.
Taking into account the estimations and applica-
tion of the Winkler type relation between clamping
and contact pressure during solutions to the con-
tact problems of the shells with the Kirchhoff the-
ory, we express further a contact pressure between
beam and stamp by the difference V = w —a, where
w denotes the normal displacement of the beam
middle surface (see [Grigoluk & Tolmachev, 1975;
Galina, 1976a; Pelekh & Sukhorolskiy, 1980; Alek-
sandrov & Mkhitarian, 1983]), and

a = [V + O(h*Vow)).

E
qk:Kﬁ(w—a), a > 0. (12)

In the solution to the contact problem between
two beams, one gets

FE
qszﬁ(wl —a— ws). (13)

Beams numeration is introduced with respect
to the positive direction of a normal to beam sur-
face. If the contact takes place then ¢ > 0. If
between beams there is a thin washer, it may be
included into considerations by changing K. For-
mula (13) is written for the case of the contact
between beams with the same values of E and h.
If this is not the case, then we take

h 1—v2?hy
’U]f (5) —W; = Elv 51%, 1= 152

Let us transform the given formulas for condi-

tion w3(—h/2) = w3(h/2). One obtains
E1hy Ey

=2(14—=—— | K— —a— . (14

qk ( +E2h1) 7 (w1 —a—ws). (14)

In real problems, the fraction on the right-hand

side is of order one, therefore further for the sake

of simplification we apply (13), considering E and

h as the characteristic quantities.

3. Fundamental Relations of the
Nonlinear Beams Theory

The validity of theoretical investigations of beams
with hybrid type contacts of layers has already been

discussed. We consider now two types of problems.
The first one deals with the analysis of stress state
and the dynamics of layered beams with the occur-
rence of separated zones including nonideal ones of
layers appearing due to technical defects and pecu-
liarities in the exploitation of a construction. This
problem is discussed in numerous works, for exam-
ple in [Pelekh & Sukhorolskiy, 1980]. The second
type of problems occur during the computation of
beams composed of equidistant layers coupled with
each other on the beam ends and interacting in
on one-sided manner. The structures which include
these beams as elements are widely applied in tech-
nology, and they are characterized by a large num-
ber of layers. Sometimes external layers differ from
internal ones by thickness and mechanical proper-
ties, and gaps between them are allowed. The layers
may slide with and without friction. The occur-
rence of stick-slip zones is rather less probable, since
the pressure between layers is small. We deal with
the mentioned beams. Contact conditions between
zones may depend on the coordinates and may
include various beam imperfections. Conditions of
the layers welding (a break in the vertical direction
and a rotation in a tangent direction) are not con-
sidered. The behavior of the layers obeys the theory
of deformation and plasticity and geometric non-
linear theory of averaged von Kérmén deflection.
As it has been previously described, the function
of contact pressure is excluded from the number of
unknowns.

Next, we study a two-layered package com-
posed of two beams of thickness h; (I = 1,2).
The following notation is applied: h; — beam
thickness; hg; — beam thickness in its center;
wy(z,t) — beam deflection; wu;(x,t) — deflections
in the averaged surface; E; — material elasticity
modulus; b — beam width; by — beam width
in its center; t — time; & — damping coeffi-
cient; a — beam length; p; — material density;
Go — shear modulus; v; — Poisson’s coefficient;
e;q and o; — deformation and stress intensity,
respectively; e and oy deformation and stress flow
intensity, respectively; K; — volume modulus of
elasticity, €y — volume modulus of deformation;
K — the Winkler coefficient. Let beams occupy
a space ) = {(z,2)|0<z<a,0q <2< [}, (1 =
1,2) in R?, where oy = —h1/2,a2 = (h1/2 +9),
B1 = h1/2,B82 = (hi/2 + 6 + hg) and the intro-
duced notation holds for the first and second beams,
respectively. The origin of coordinates is shifted to
the left-hand side of the upper beam on its middle
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Fig. 3. Two beams with a gap.

surface, and the distance between beams is §. Axis
oz is directed downwards, and the package length
is a (Fig. 3). Although the beams are made from an
isotropic material, a nonhomogeneous material is
applied such that the extension E; and shear mod-
ules G, volume deformation Kj, transversal defor-
mation coefficient 7;, and flow zone coefficient oy
are functions of z and 2.

It is further assumed that the physical parame-
ters of material Ej, Gi, K, v, i.e. Young modulus,
shear modulus, volume deformation, and Pois-
son’s coefficient are one-valued functions of a point
and associated with its deformable state. The
deformable point state is characterized by volume
deformation type ¢; and deformation intensity e;;.
As it has been already mentioned, in solutions of
contact problems of the theory of beams satisfy-
ing the Euler-Bernoulli hypothesis, the Winkler
coupling between clamping and contact pressure
is applied between beams of the same thickness
h1 = hy = h and material properties £} = E; = E
(see [Aleksandrov & Romalis, 1986)).

Function g (w), defined by formula (13), is lin-
ear in relation to transversal beam measure in the
contact zone. The application of nonlinear cou-
pling g, with deflection w does not complicate the
construction of the further developed method of
solution of contact problems, i.e. in the equilibrium
equation ¢ is substituted by explicit expression
qr(w). Furthermore, this substitution holds also in
equations of nonlinear beams theory. We assume
also during the derivation of the beam motion
governing equations that relation E = E(z, z, &9, ;)
is given, and the so-called Hencky’s theory of
elastic-plastic deformations is applied [Iliushin,
1948; Birger, 1951; Budiansky, 1959; Rabotnov,
1966].

The following nondimensional parameters are
introduced:

r=12Za, z=2zhy, h =Mhho, w =whoy,

_ - N hab
Ey = EGu, b=b, p=phy, K= K 0
L o .
hoy Goz boz h, \ Goboy
Taking into account the Euler-Bernoulli

hypothesis, the nonlinear stress-strain relation, and
the theory of small elastic-plastic deformations, one
gets the following nondimensional equations gov-
erning beam dynamics (bars over nondimensional
quantities are omitted):

o h 0 1 '
blhl 6“1 8:[? [E()l (uf + 5(11);)2) — Euw;} ”

(15)
82wl 8wl
blhl—atz +6ZW
% > AV I /"
—ql+a2Ell ul—f- ( ) Eyw
0 1
+ 8—:1:{102 [E()l (uf + 5(11);)2) — Euwf’}},
1=0,1,2,
(16)
where

Bi )
Fg=b Eiz'dz, ¢ =q+qu, i=0,1,2.

(17)

Force ¢, acting on the beam, is defined by the
sum of external periodic load ¢ and contact forces
gri- Observe that the analysis of beams interaction
includes a study of jumps (lack of beam contact).
Contact stresses are defined similarly to formula
(13) in the following way:

E

qkl=(—1)lK—(w1—5—w2 >¢, l:1a27

(18)

where K is the proportionality coefficient between
contact pressure and clamping. Function v defines
the dimensions of the contact zone and is defined as

l:]. + sgn (wl 0— wo— h02 )]
- ho1
Y= ) :

Note that the occurrence of multiplier 1 in the
equations of motion leads to the problem being
transferred to that of design nonlinearity. By design

(19)
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nonlinearity we mean such nonlinearity, when the
computation scheme is changed during the defor-
mation process. Although boundary conditions can
be arbitrary, we study two variants, namely:

hinged nonmovable support at the ends

a2wl(01t) a2wl(17t)
Or2 = wl(oat) - 8x2
= wl(l,t) e 0, (20)
u(O) = u(l) =Y
and clamping at the ends
ow(0,t) _ Ow(1,t)
or wi(0,) = Ox
=wi(1,t) = 0; (21)
u(0) = u(1) = 0.
The initial conditions follow
w(x,0) = Fi(z), w(z,0)= fi(x),
(2,0) = Fi(z), wy(z,0)= fi(z) (22)

w(z,0) =0, wu(z,0)=0,

where F; and f; are the functions governing veloc-
ity and deflection distributions at an initial time
instant. In order to include material beams physi-
cal nonlinearity, the plastic deformation theory and
the method of changeable elasticity parameters are
used [Birger, 1951]. Therefore, the elasticity modu-
lus and Poisson’s coefficient are coupled with shear
and deformation modules by the relation

. IK,G;
- 3K 1+ Gy )
Modulus K is assumed constant and equal to

1.94Gy;. In the theory of plastic deformations, the
shear modulus is defined as follows

3 ey

E, (23)

Diagrams of beam material deformation can be
arbitrary, but in this work, we take an ideal elastic-
plastic material:

oi = 3Goiesr for e; < ey, (25)
Oil = O for e;; > eq.

The deformation intensity is defined by the
formula

V2

€il = 3 (ezax — eyy)2 + (eyy — 622)2

1
3.1z
+ (exe — €22)2 + 563:1/} : (26)

Component e,, can be found from the plane
stress-strain condition o,, = 0, and hence

€yy = (Con + Eyy)-

i—V

If one neglects components e..,e,, for the
beam, then
Bu; n 1 % . ZBQ'LU[
Ox 2\ Oz ox2 |

Finally, external load variations along beam
axis and in time can be taken in an arbitrary way.

26
3 T

2

€l = :g

(27)

4. Method of Solution

Integration of Egs. (15) and (16) with initial and
boundary conditions is carried out numerically. For
this purpose space D = {(z,t)|0 < z < 1,0 <
t < T} is covered by rectangular grids z; = ih,,
L= dhd s 0,1,2,....0:4 = 0,1,2,...), where
T; = Tiy1 — T = hy = 1/ny (n, integer) and
ht = tjy1 —tj, h, = 1.0/n,. In grid =z;,t; differ-
ential equations (15) and (16) are approximately
substituted by the corresponding finite difference
relations. In order to increase the accuracy, the sym-
metric formulas for derivatives are applied. After
some transformations, one gets

1

Elht h?
X {211)11',]' + (Q—hz = 1) wii -1+ %Ali,j ;

h? [OEy 1
Uijp1 = b_;L [—Bw (u' - §(w/)2> + Eg (v 4+ w'w")
E
L1 O0Eq w’ — Ellw”/} ' 2Uij — ugj_1,
ox i
(28)
where
0? 1
Ay = 922 [Eu (u; + —2—(wf)2) - Eglwf’]
0 1
T oz [w;Eoz (uf =+ i(wf)2> = Euw"} y

Applying the grid method, boundary conditions
(20) and (21) regarding a layer with number j are
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as follows:
(i) hinge
wy—1,; — 2wyo; +win; =0, wyp; =0,
Win-1,j — 2Win j + Winy1,; =0, (29)

Winj =0, wpj = U, =0,

(ii) clamping

wi—15 —wn; =0, wp,; =0;

Wi—n—-15 — Wint1,; =0, wip; =0, (30)

ujj = Upp; = 0.
The following boundary conditions are applied
Wi, 541 — Wi4 5

= Fy,
hy !

wi = fii, W = woi,

(31)

where 1 =1,2,...,n.

In this case, the governing equations obey a
three-layered scheme. In the beginning we compute
wy(z,t) and w(x,t) on layer (j + 1) using the val-
ues of wy(x,t) and w;(z,t) at two previous layers
jth and (5 — 1)th, respectively. In order to begin
computations, the values of w;(x,t) and w(z,t) on
a fictitious layer are introduced. In order to apply
the method of changeable stiffness [Birger, 1951] the
beam is partitioned along its thickness to n., lay-
ers. Furthermore, at each time step for node z; and
layer by layer one finds deformation intensity (27),
and using formulas (23)—(25) the elasticity mod-
ulus is estimated, whereas integrals are computed
using the Simpson method (17). We apply a peri-
odic transversal of the form gy cos(wyt).

The described algorithm of solution of the beam
vibration equations are studied from the point of
view of convergence along spatial and time grids
regarding a stationary problem. For this purpose,
using the set up method [Feodosev, 1963], we
find deflection in centrally hinged supported beam
uniquely loaded along its length (the load does
not depend on time and € = &, is the critical
value for an efficient damping of vibrations). Anal-
ysis of the results shows that the beam deflection
does not depend on time step within the interval
2-107° < hy < 1073, Change of partition num-
ber along the spatial coordinate from n, = 28 to
n, = 10 gives the error of only 1%. For h; = 2-107°
and n, = 28 in the beam center, one achieves
the deflection of 0.02346 versus 0.02343 obtained in
the analytical way, i.e. by solving a static problem
[Bernstein, 1961]. For the values of h; and n,, i.e.

the same as in the static case, the dynamic problem
is solved. Namely, the hinge supported beam sub-
jected to transverse load has been studied, where
g0 = 1.5 and w; = 0.5. Analysis of the computa-
tional results showed that the number of partitions
along the beam length from n, = 30 to n, = 10
gives a computation error of the fundamental beam
frequency of only 1.6%. Taking into account the
obtained data, the number of partitions along axis
Oz has been taken as n, = 30, whereas time step
t = 2-107°. Change of the number of layers along
thickness is from 12 to 20 and gives the error of
0.2%, and hence n, is equal to 12. Computations
are carried out for 0 < t < 120. We take pure alu-
minum as the beam material (e;s = 0.98 - 1073).
The intensity of deformation flow e; = 2.45, which
corresponds to the ratio of beam length to its thick-
ness, is equal to 50. Excitation frequency acting on
the upper (bottom) beam is w; = 0.5 (wp = 1).
Observe that we have solved further not an elastic—
plastic problem, but rather a nonlinear elastic—
plastic problem, where relief occurs on the same
curve as loading.

5. Examples of Beam Computation

5.1. Geometric and design
nonlinear system composed

of two uncoupled beams

The problem is solved in a physically linear frame,
i.e. we take E = const. The upper beam is hinged,
whereas the bottom beam is clamped on both
sides. We take wi; = 0.5,ws = 1.0, and the ratios
qo1/qo2 = 1/4, § = 0.1. Analysis of the computa-
tional results is carried out using the methods of
nonlinear dynamics and qualitative theory of differ-
ential equations. Signals w;(0.5,t), FFT (Frequency
Fast Fourier Transforms), Poincaré sections, and
the dependencies w;(x,t), gx(z,t) are studied.

In order to illustrate dynamic processes we take
w;(0.5,t), FFT for each beam (i = 1,2), and func-
tions w;(z,t), qx(z,t), where 0 < z < 1.5 < t < 15.
Already for relatively small vibration amplitudes
(Fig. 4) one may observe in the frequency spectrum
of the second beam that the frequency of the first
beam is less than wy. Beam contact is realized in
a central point, which is well illustrated by graphs
of contacting pressure, and the occurred vibrations
are almost harmonic ones.

Additionally, in both beams frequency power
spectra a component of independent frequency w =
0.225 occurs. An increase of load intensity ¢; = 1.0,
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Fig. 4. Time and frequency characteristics of two beams.
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Fig. 5. Time and frequency characteristics of two beams (q19 = 1.0, g20 = —4.0).
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Fig. 6. Time and frequency characteristics of two beams (q19 = 1.2, g0 = —4.8).
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Fig. 7. Time and frequency characteristics of two beams (q19 = 1.6, g0 = —6.4).
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Fig. 8. Time and frequency characteristics of two beams (q19 = 3.5, g20 = —14.0).

g2 = —4.0 on both beams (Fig. 5) does not change
qualitatively beams interaction, but the frequency
component w; in the second beam frequency power
spectrum increases and exceeds the excitation fre-
quency component ws. Synchronization behavior
is observed in the second beam vibrations and
the amplitude associated with the first beam fre-
quency increases. The synchronization behavior is
well observed in the dependencies w;(z,t) and
wy(z,t). New vibration components accompanied
by frequencies w = 0.1;0.4;0.6 occur. The vibra-
tion form is modified, although the mutual contact
is still realized in the vicinity of the beams center.
An increase of the excitation amplitude regarding
first g190 = 1.2 and second g2 = —4.8 beams causes
that in the first beam frequency spectrum a compo-
nent of the second beam frequency occurs, however
with a small amplitude. The frequency spectrum
becomes more complex and new frequency compo-
nents appear (w = 0.275;0.9). The contact pressure
intensity is changed slightly in time (Fig. 6). An
increase of the excitation amplitude on first (up to
qio = 1.6) and second (ga0 = —6.4) beams causes
the synchronization to be more evident, which is
reported in Fig. 7.

In the frequency spectra new and independent
frequencies appear, but their amplitudes are rather
small, however the contact zone area and pressure
increase substantially. Further increase of the exci-
tation amplitude q19 = 3.5,q20 = —14.0 (Fig. 8)
causes the occurrence of a chaotic dynamics mani-
fested by a broad band frequency spectrum. Almost
full synchronization of two beams occurs. Contact
pressure has a stochastic character and maximum
vibrations appear in the neighborhood of the beam
quarter.

It should be emphasized that the analogous
behavior appears also for other gap parameters.

6. Chaotic Vibrations of Two
Uncoupled Plates

Let us derive a system of differential equations
of two-layered uncoupled plates, when each of the
layers satisfies the kinematic Kirchhoff hypothe-
sis. The relative position of plates in space with
the given coordinates O,. is defined in the fol-
lowing way: a middle surface of the first plate lies
in z = 0, whereas of the second one in the z =
—1/2(81 — 62) — hy, plane, where 9; is the thickness
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of “/"th plate, and hy denotes the distance between
two plates in a nondeformable state. The system of
governing equations is

(
v 0%wy Owq
h——— — 4+ A t
g o +e1 5 + A(wi(z,y,t))
E
= Q1(-Tay,t) - K’h_(wl — w2 — hk)‘ll('rvy’t)v
Y 8211)2 811)2
-——= — 4+ A
g 6t2 + &3 ot + (w2(x,y,t))
E
= q2(1', Y, t) a Kﬁ(wl — w2 — hk)\I/(l', Y, t)a
\
(32)
with the following attached initial conditions
wt(t’ Z, y)lt:O = fl(xv y)a
7 = F
o |, i(z,y),

System (32) and (33) is supplemented by one of the
following boundary conditions

Bwi
iloq, = =0, 34
w;|a0; B |, (34)
ow
wilan, = 8_1 =0,
"1 a0,
(35)
wo| Oy 0
21002 — (& o =V,
: on3 P
0w,
wilaq, = 3—21 =0, (36)
o0,
9w
’wllaﬂl = 8—21 = O,
1 oo,
(37)
Ows
wa|on, = e =0,
N2 190,
where ¢i(t,z,y) = qosin(wpt) is the function of

external load acting on the first plate, go = 0.

Let the plates occupy in R? the space ; =
{l(z,y),0 <z < a,0 <y <b}i=1,2 and 9
be the associated space boundary in R?, K is the
known constant, and ¥(z,y,t) is the contact space
2* indicator:
¥(z,9,2) = 1+ sgn(wi(z,y,t) — wa(z,y,t) — hl).

2

Although the differential operator A(w;(z,y,t))

is in general a nonlinear one, but in this work each

q,=q, sin(wl,t)

nn

Fig. 9.

Two plates with a gap.

plate is treated as plastic and geometrically linear,
and therefore
tw; *w; w;
Tt 29,2 T A
or 0x20y oy
System (32)—(37) is transformed into a nondi-
mensional form through the following parameters
- T — Wy
T==, W=

a R’

A(wz(x’ yat)) = V4wi .

a1=2(1+ V)A%%,

AL =

S| e

_ Yy T d;
== hz = ==
) y b ) ’

_ h{ E g\Y?
= — L g
ab(l—u2 7)

Finally, system (32) is given in the following
nondimensional form
i 82101 811)1

W +61W +V4w1

K = 12(1 — XK,

E
= Q1(x7yat) - Kﬁ(wl — w2 — hk)\I’(.T,y,t),

9%wo Ows 4
W + EQW + VZws

FE
= Q2(xvyat) - Kﬁ(wl — w2 — h,k)\I/(.’L', y’t)v

(38)

where bars are already omitted. The obtained PDEs
are reduced to the second order ODEs via the finite
difference method with approximation O(h?). Fur-
ther, the system is transformed to the first order
ODEs and then solved via the fourth order Runge—
Kutta method. Space and time steps are chosen via
the Runge principle and At = 0.001, whereas grid
step is 23 x 23 of space 2.
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Next, we study vibrations of two nonwelded
plates of constant thickness (h1 = hs), made from
an isotropic material with the Poisson’s coefficient

= 0.3 subjected to uniformly distributed sign-
changeable load. System behavior is investigated
for two types of boundary conditions [clamping—
clamping (34) and clamping-hinge (35)] and for var-
ious values of the gap between plates (hy = 0.01
and hry = 0.1). In order to investigate the two-
layered beams behavior, charts of vibration char-
acter are constructed (Table 1). Three vertical lines

Table 1.
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are introduced: w, = wy frequency of linear vibra-
tion, left and right lines correspond to frequencies
wp— (wp/2) and wp+(wp/2), respectively. The intro-
duced charts illustrate nonlinear dynamics of two-
layered nonwelded beams.

The analysis of the system dynamics for various
gap parameters and boundary conditions showed
an increase of the gap between plates [Tables 1(a)
and 1(b)] and decreases of the chaotic vibrations
zones, whereas zones of periodic and quasi-periodic
vibrations are increased. In the case of boundary

Schemes of two-layered nonwelded plates and dynamics indicator charts.

(a)
q,= q(,sin(a),t)

¢¢¢¢¢¢¢l#

| n

.
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g

(b)

a,=q,sin(@,1)
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q, =q,sin (a)pt)
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Notation

Periodic vibrations

[l Period doubling bifurcation

B Quasi-periodic vibrations [ | Chaos
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conditions [Tables 1(a) and 1(c)] one may observe
that the boundary condition change of the second
beam (from clamping to hinge) causes an essen-
tial increase of chaotic zones, and the periodic and
quasi-periodic zones decrease.

7. Concluding Remarks

Theory of nonlinear interaction of two-layered
beams have been introduced. Then a series of
computational examples regarding regular, bifur-
cational and chaotic dynamics of the investigated
objects have been reported. The general theory
of the problem has been formulated, and a cou-
pling between contact pressure and the transver-
sal clamping of a thin beam has been modeled.
Time and frequency characteristics of two beams
have been reported, and the problems of chaotiza-
tion and synchronization of two beams interaction
have been illustrated and discussed. In addition, the
theory of nonlinear interaction of two-layered plates
have been introduced. Then a series of computa-
tional examples regarding regular, bifurcational and
chaotic dynamics of the investigated objects have
been reported.
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