
1 23

Nonlinear Dynamics
An International Journal of Nonlinear
Dynamics and Chaos in Engineering
Systems
 
ISSN 0924-090X
 
Nonlinear Dyn
DOI 10.1007/s11071-011-0229-6

Asymptotic analysis of kinematically
excited dynamical systems near resonances

Roman Starosta, Grażyna Sypniewska-
Kamińska & Jan Awrejcewicz



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Nonlinear Dyn
DOI 10.1007/s11071-011-0229-6

O R I NA L PA P E R

Asymptotic analysis of kinematically excited dynamical
systems near resonances

Roman Starosta ·
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Abstract The dynamic response of a harmonically
and kinematically excited spring pendulum is studied.
This system is a multi-degree-of-freedom system and
is considered as a good example for several engineer-
ing applications. The multiple-scale (MS) method al-
lows us to analytically solve the equations of motion
and recognize resonances. Also stability of the steady-
state solutions can be verified. The transfer of energy
from one to another mode of vibrations is illustrated.

Keywords Kinematic excitation · Resonance ·
Asymptotic analysis · Multiple-scale method

1 Introduction

Kinematic excitation appears in many problems of ap-
plied mechanics and is crucial in some technical prob-
lems. It can be induced by contact forces in some
devices, mechanisms, vehicles or in civil engineering
constructions. Moreover, supports of machines can be
exposed to the kinematic excitation through vibrations

R. Starosta (�) · G. Sypniewska-Kamińska
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e-mail: roman.starosta@put.poznan.pl

J. Awrejcewicz
Department of Automation and Biomechanics, Technical
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of basement caused by road or railway traffic, seismic
vibration or another machine neighborhood.

There are many examples of problems with kine-
matic excitation in literature. The dynamic investiga-
tions of low structures subject to kinematic excita-
tion caused by transverse waves are described in [4].
Severe interaction between the bogie of a modern
railway passenger car and the track caused by kine-
matic and parametric excitation from the track and by
kinematic excitation due to wheel tread polygonaliza-
tion are studied in [6]. The dynamic behavior of a
self-propelled equipment due to kinematic excitation
caused by a bumpy road is examined in [2]. Such prob-
lems are also found in nano scale. In [3] the possibility
of the existence of undamped kinematic excitation in
one-dimensional molecular crystals is tested.

Many authors test the behavior of various kinds of
pendulum as a good and intuitive example of a non-
linear system [5, 7–9]. In the paper [1], the chaotic
response of a harmonically excited spring pendulum
that is moving in circular path is studied. This is a non-
linear multi-degree-of-freedom system and it is a good
example for several engineering applications such as
ship motion.

In this paper also a kind of a pendulum is tested.
This is a spring pendulum with suspension point mov-
ing in a prescribed path. Apart from this kinematic
excitation and assumed external forces, the inertial
coupling can lead to autoparametric excitation of vi-
brations. The two degree-of-freedom system inves-
tigated in the paper is a good example to develop
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and test the analytical methods due to its simplicity
and intuitive predictability. In this paper we focus on
detecting resonances conditions and then the chosen
case of resonances occurring simultaneously is stud-
ied. The applied multiple-scale method allows one to
find the number of all possible steady-state amplitudes
for the chosen parameters and predict their values. The
amplitude-frequency graphs are presented in the case
of two resonances occurring simultaneously.

The calculations were made with the use of com-
puter algebra and symbolic manipulation system Math-
ematica. Most operations are made automatically us-
ing special procedures created by the authors.

2 Formulation of the problem

We adopt the asymptotic method of multiple scale in
order to perform the analytical calculations. A spring
pendulum with a moving suspension point is the tested
model. The system studied is presented in Fig. 1. The
suspension point moves harmonically and indepen-
dently in two mutually perpendicular directions. Kine-
matic equations of its motion are

x = Rx cos(Ωxt), y = Ry sin(Ωyt), (1)

where Rx , Ry , Ωx , and Ωy are known parameters.

As result, the suspension point moves along a Lis-
sajous curve.

We assume that the motion of the whole system is
planar. The spring elongation Z and the angle φ were
chosen as generalized coordinates. Besides kinematic
excitation, the moment M(t) = M0 cos(tΩ2) and the
linear viscous damping moment Mr = C2ϕ̇ act around
the point O. Moreover, the force F(t) = F0 cos(tΩ1)

and the linear viscous damping Fr = C1Ẋ act on the
mass m along the pendulum length (C1 and C2 are
the viscous coefficients). The spring is assumed to be
massless and linear with stiffness k.

The equations of motion were derived from La-
grange equations of the second type:

d

dt

(
∂L

∂Ż

)
−

(
∂L

∂Z

)
= Qz,

d

dt

(
∂L

∂ϕ̇

)
−

(
∂L

∂ϕ

)
= Qϕ,

(2)

where L = T − V denotes the Lagrangian. The poten-
tial and kinetic energy of the system reads

V = 1

2
kZ2 − mg

(
Rx cos(Ωxt) + (L0 + Z) cos(ϕ)

)
,

(3)

Fig. 1 Spring pendulum
moving on a prescribed path

Author's personal copy



Asymptotic analysis of kinematically excited dynamical systems near resonances

T = m

2

(
R2

xΩ
2
x sin2(Ωxt) + R2

yΩ
2
y cos2(Ωxt)

)

+ mŻ
(
RyΩy sin(ϕ) cos(Ωyt)

− RxΩx cos(ϕ) sin(Ωxt)
)

+ m(L0 + Z)
(
RyΩy cos(ϕ) cos(Ωyt)

+ RxΩx sin(ϕ) sin(Ωxt)
)
ϕ̇

+ m

2
(L0 + Z)2ϕ̇2 + m

2
Ż2. (4)

L0 is the length of not stretched spring and g denotes
Earth’s acceleration.

Generalized forces from all nonconservative loads
are

Qz = F0 cos (Ω1t) − C1Ż,

Qϕ = M0 cos (Ω2t) − C2ϕ̇.
(5)

Introducing (3)–(5) into (2) we get

−m
(
g + RxΩ

2
x cos(Ωxt)

)
cosϕ

− mRyΩ
2
y sin(Ωyt) sinϕ

+ C1Ż − L0mϕ̇2 + Z
(
k − mϕ̇2) + mZ̈

= F0 cos(Ω1t), (6)

m(L0 + Z)
(−RyΩ

2
y sin(Ωyt) cosϕ

+ (
g + RxΩ

2
x cos(Ωxt)

)
sinϕ + 2Żϕ̇

)
+ C2Lϕ̇ + (L0 + Z)2mϕ̈ = M0 cos(Ω2t). (7)

Equations (6)–(7) should be supplemented by the ini-
tial conditions for generalized coordinates and their
first derivatives

Z(0) = Z0, Ż(0) = V0,

ϕ(0) = ϕ0, ϕ̇(0) = ω0,
(8)

where Z0,V0, ϕ0,ω0 are known values.
The problem is then transformed to the dimension-

less form. The dimensionless generalized coordinate

z = Z − δst

L
(9)

where L = L0 +δst is the length of the pendulum at the
static equilibrium position, and δst = mg

k
is the static

elongation. The dimensionless time τ is defined as

τ = ω1t, (10)

where ω2
1 = k

m
.

The dimensionless frequencies are assumed as fol-
lows:

w = ω2

ω1
, p1 = Ω1

ω1
, p2 = Ω2

ω1
,

px = Ωx

ω1
, py = Ωy

ω1
,

(11)

where ω2
2 = g

L
.

The other parameters are assumed in the form

rx = Rx

L
, ry = Ry

L
, c1 = C1

mω1
,

c2 = C2

mL2ω1
, f1 = F0

mLω2
1

, f2 = M0

mL2ω2
1

.

(12)

According to the above introduced definitions, the
governing equations of motion in dimensionless form
are

z̈(τ ) + c1ż(τ ) − (
1 + z(τ )

)(
ϕ̇(t)

)2 + z(τ )

+ w2(1 − cos
(
ϕ(τ)

)) − rxp
2
x cos(τpx) cos

(
ϕ(τ)

)
− ryp

2
y sin(τpy) sin

(
ϕ(τ)

)
= f1 cos(p1τ), (13)(

1 + z(τ )
)2

ϕ̈(τ ) + (
c2 + 2

(
1 + z(τ )

)
ż(τ )

)
ϕ̇(τ )

+ w2 sin
(
ϕ(τ)

)(
1 + z(τ )

)
− ryp

2
y

(
1 + z(τ )

)
sin(τpy) cos

(
ϕ(τ)

)
+ rxp

2
x

(
1 + z(τ )

)
cos(τpx) sin

(
ϕ(τ)

)
= f2 cos(p2τ), (14)

with initial conditions for nondimensional generalized
coordinates and their first derivatives

z(0) = z0, ż(0) = v0,

ϕ(0) = ϕ0, ϕ̇(0) = ω0,
(15)

where z0 = Z0−δst
L

, v0 = V0
Lω1

.

3 Asymptotic solution

The multiple-scale method is applied to solve the gov-
erning equations and to obtain the resonance condi-
tions. Trigonometric functions of ϕ in (13)–(14) are
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approximated by some first terms of Taylor series in
the following way:

sinϕ ∼= ϕ − 1

3!ϕ
3, cosϕ ∼= 1 − 1

2
ϕ2. (16)

The approximation (16) is valid in a small neighbor-
hood of the static equilibrium position.

The dumping coefficient and the amplitudes of ex-
ternal loading are estimated as relatively small and
then they are assumed as

ci = ε2c̃i , fi = ε3f̃i , i = 1,2, (17)

where ε is the so-called small parameter and 0 <

ε � 1. Moreover, we postulate

rx = ε2r̃x , ry = ε2r̃y . (18)

The parameters f̃i , c̃i , r̃ are of the order 1.
The amplitudes of vibrations are assumed to be of

the order of a small parameter ε. Let us introduce some
new variables ζ and φ

z(τ) = εζ(τ ; ε), ϕ(τ) = εφ(τ ; ε). (19)

The functions ζ and φ are sought in the form

ζ(τ ; ε) =
k=3∑
k=1

εkζk(τ0, τ1, τ2) + O
(
ε4),

φ(τ ; ε) =
k=3∑
k=1

εkφk(τ0, τ1, τ2) + O
(
ε4),

(20)

where τ0 = τ , τ1 = ετ and τ2 = ε2τ are various time
scales.

The derivatives with respect to time τ are calculated
in terms of the new time scales as follows:

d

dτ
= ∂

∂τ0
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
,

d2

dτ 2
= ∂2

∂τ 2
0

+ 2ε
∂2

∂τ0∂τ1

+ ε2
(

∂2

∂τ 2
1

+ 2
∂2

∂τ0∂τ2

)
+ o

(
ε3).

(21)

Introducing (16)–(18) and (19)–(20) into (13)–(14)
and next replacing the ordinary derivatives by the dif-
ferential operators (21) we obtain two equations in
which the small parameter ε appears. These equations

should be satisfied for any value of the small parame-
ter, so after ordering the equations due to the powers
of ε we get

– the equations of order ε1

∂2ζ1

∂τ 2
0

+ ζ1 = 0, (22)

∂2φ1

∂τ 2
0

+ w2φ1 = 0, (23)

– the equations of order ε2

∂2ζ2

∂τ 2
0

+ ζ2 = rxp
2
x cos(pxτ0) − 1

2
w2φ2

1

− 2
∂2ζ1

∂τ0∂τ1
+

(
∂φ1

∂τ0

)2

, (24)

∂2φ2

∂τ 2
0

+ w2φ2

= r̃yp
2
y sin(pyτ0) − w2ζ1φ1

− 2
∂ζ1

∂τ0

∂φ1

∂τ0
− 2ζ1

∂2φ1

∂τ 2
0

− 2
∂2φ1

∂τ0∂τ1
, (25)

– the equations of order ε3

∂2ζ3

∂T 2
0

+ ζ3

= f̃1 cos τ0p1 + r̃yp
2
yφ1 sinpyτ0 − w2φ1φ2

− ∂ζ 2
1

∂τ 2
1

− c̃1
∂ζ1

∂τ0
+ 2

∂φ1

∂τ1

∂φ1

∂τ0
+ ζ1

(
∂φ1

∂τ0

)2

+ 2
∂φ1

∂τ0

∂φ2

∂τ0
− 2

∂2ζ1

∂τ0∂τ2
− 2

∂2ζ2

∂τ0∂τ1
, (26)

∂2φ3

∂τ 2
0

+ w2φ3

= f̃2 cos τ0p2 + r̃yp
2
yζ1 sin τ0py

− r̃xp
2
xφ1 cos τ0px − w2ζ2φ1 − +1

6
w2φ3

1

− w2ζ1φ2 − ∂2φ1

∂τ 2
1

− 2
∂ζ1

∂τ0

∂φ1

∂τ1
− c̃2

∂φ1

∂τ0

− 2
∂ζ1

∂τ1

∂φ1

∂τ0
− 2ζ1

∂ζ1

∂τ0

∂φ1

∂τ0
− 2

∂ζ2

∂τ0

∂φ1

∂τ0
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− 2
∂ζ1

∂τ0

∂φ2

∂τ0
− 2

∂2φ1

∂τ0∂τ2
− 4ζ1

∂2φ1

∂τ0∂τ1

− 2
∂2φ2

∂τ0∂τ1
− ζ 2

1
∂2φ1

∂τ 2
0

− 2ζ2
∂2φ1

∂τ 2
0

− 2ζ1
∂2φ2

∂τ 2
0

. (27)

Thus, in accordance with (20), the original equations
of motion have been approximated by the set of partial
linear differential equations.

The solutions of (22)–(23) are

ζ1 = A1(τ1, τ2)e
iτ0 + Ā1(τ1, τ2)e

−iτ0, (28)

φ1 = A2(τ1, τ2)e
iwτ0 + Ā2(τ1, τ2)e

−iwτ0, (29)

where A1 and A2 are unknown complex functions of
slow time scales.

Introducing the first order solutions (28)–(29) into
(24)–(25) and then eliminating the secular terms from
them, leads to the equations whose solutions have the
following form:

ζ2 = w2A2Ā2 − eiτ0px r̃xp
2
x

2(p2
x − 1)

+ 3eiτ0wA2
2

2(4w2 − 1)
+ CC,

(30)

φ2 = ieipyτ0 r̃yp
2
y

2(p2
y − w2)

− eiτ0(1+w)w(2 + w)A1A2

1 + 2w

+ eiτ0(1−w)w(2 − w)A1Ā2

1 − 2w
+ CC, (31)

where CC stands for the complex conjugates of the
preceding terms.

After introducing (28)–(31) into (26)–(27) and
omitting secular terms, the third order approximations
read

ζ3 = − ei(1+2w)τ0w(w − 1)A1A
2
2

4(1 + 2w)

+ ei(1−2w)τ0w(w + 1)A1Ā
2
2

4(2w − 1)
+ eip1τ0 f̃1

2(1 − p2
1)

+ ir̃yp
4
ye

i(py+w)τ0A2

2(p2
y − w2)((py + w)2 − 1)

+ ir̃yp
4
ye

i(py−w)τ0Ā2

2(p2
y − w2)((py − w)2 − 1)

+ CC, (32)

φ3 = − ei(2+w)τ0w(2 + 3w + w2)A2
1A2

4(2w + 1)

− ei(2−w)τ0w(2 − 3w + w2)A2
1Ā2

4(2w − 1)

− e3iwτ0(13w2 − 1)A3
2

48(4w2 − 1)
+ eip2τ0 f̃2

2(w2 − p2
2)

+ ir̃yp
4
ye

i(1+py)τ0A1

2(p2
y − w2)((p2 + 1)2 − w2)

− ir̃yp
4
ye

i(1−py)τ0A1

2(p2
y − w2)((py − 1)2 − w2)

+ r̃xpx(p
2
x + w2 − 1)ei(px−w)τ0A2

2(p2
x − 1)(px − 2w)

+ r̃xpx(p
2
x + w2 − 1)ei(px+w)τ0A2

2(p2
x − 1)(px + 2w)

+ CC. (33)

The functions A1 and A2 can be calculated from con-
ditions of elimination of secular terms and from the
conditions which are consistent with (15).

4 Modulation problem near resonances

The solutions (30)–(33) break down when any of
their denominators comes to zero. It is caused by the
new secular terms occurring on the right-hand sides
of (24)–(27) when some frequency conditions are ful-
filled. All resonances till the third order can be recog-
nized in this way. They can be classified as follows:

– main (primary) external resonances when px ≈ 1,
p2 ≈ w,

– resonance of the spring caused by kinematic excita-
tion when px = 1,

– resonance of the pendulum caused by kinematic ex-
citation when py = w or px = 2w,

– internal resonance when 1 = 2w,
– combined resonances when py = ±(1 − w),py =

±(1 + w).

If the natural frequencies satisfy the above reso-
nance conditions, the system behavior is very com-
plex. Let us examine parametric and primary reso-
nances appearing simultaneously, i.e.

px ≈ 1, p2 ≈ w. (34)
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In order to study the resonances, we introduce the new
so-called detuning parameters σ1 and σ2 as a measure
of the distance from the strict resonance:

px = 1 + σ1 = 1 + εσ̃1 and

p2 = w + σ2 = w + εσ̃2.
(35)

Using the resonance conditions (35) in (24)–(27)
leads to appearance of secular terms.

Their removal requires now:

– for the second order equations

−1

2
eiτ1σ̃1 r̃xp

2
x + 2i

∂A1

∂τ1
= 0, (36)

2iw
∂A2

∂τ1
= 0, (37)

– for the third order equations

ic̃1A1 + 2A1A2Ā2w
2(7w − 1)

1 − 4w2
+ 2i

∂A1

∂τ2
= 0, (38)

−1

2
eiσ̃2τ1 f̃2 + ic̃2wA2 − A1Ā1A2w

2(7w2 − 2)

−1 + 4w2

− A2
2Ā2w

4(1 + 8w2)

−2 + 8w2
+ 2iw

∂A2

∂τ2
= 0. (39)

The above formulas are so-called solvability condi-
tions. From the system of (36)–(39) the unknown func-
tions A1(τ1, τ2), Ā1(τ1, τ2), A2(τ1, τ2), Ā2(τ1, τ2) can
be found.

For further calculations they are presented in the
polar representation

A1(τ1, τ2) → ã1(τ1, τ2)

2
eiψ1(τ1,τ2),

A2(τ1, τ2) → ã2(τ1, τ2)

2
eiψ2(τ1,τ2),

(40)

where ã1, ã2 and ψ1,ψ2 are real functions and denote
the amplitudes and the phases, respectively, of the so-
lutions ζ,φ.

After introducing modified phases

θ1(τ1, τ2) = τ1σ̃1 − ψ1(τ1, τ2),

θ2(τ1, τ2) = τ1σ̃2 − ψ2(τ1, τ2),
(41)

and using definition (21), the partial differential equa-
tions (36)–(39) are transformed to the ordinary differ-

ential equations

i
da1

dτ
+ a1

(
−σ1 + dθ1

dτ

)

= −1

2
ia1c1 + 1 − 7w2

4(1 − 4w2)
w2a1a

2
2

+ rxp
2
x

2
(cos θ1 + i sin θ1), (42)

i
da2

dτ
+ a2

(
−σ2 + dθ2

dτ

)

= −1

2
ia2c2 + 7w2 − 1

4(4w2 − 1)
wa2a

2
1

+ 8w4 + 5w2 − 1

16(4w2 − 1)
wa3

2

+ f2

2w
(cos θ2 + i sin θ2). (43)

Thanks to the definitions (41), the above modula-
tion system is autonomous. The original denotations of
the system parameters are used again in (42)–(43) ac-
cording to (17), (18), and (35). The quantities ai = εãi

are amplitudes of the original functions z,φ. However,
both phases ψi and the modified phases θi are the same
for the original functions z,ϕ and for ζ,φ.

Comparison of the real and imaginary parts of both
sides of the above equations leads to four equations
with respect to amplitudes a1, a2 and modified phases
θ1, θ2:

a1
dθ1

dτ
= a1σ1 + 7w2 − 1

4(4w2 − 1)
w2a1a

2
2

+ rx(1 + σ1)
2

2
cos θ1, (44)

da1

dτ
= −1

2
a1c1 + rx(1 + σ1)

2

2
sin θ1, (45)

a2
dθ2

dτ
= σ2a2 + 7w2 − 1

4(4w2 − 1)
wa2a

2
1

+ 8w4 + 5w2 − 1

16(4w2 − 1)
wa3

2 + f2

2w
cos θ2, (46)

da2

dτ
= −1

2
a2c2 + f2

2w
sin θ2. (47)

The above set of equations describes modulation of
the amplitudes and the modified phases for the tested
case of two resonances occurring simultaneously. The
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Fig. 2 Time history
together with curves of
amplitude modulation

solutions of (44)–(47) for chosen values of the sys-
tem parameters are presented graphically in Fig. 2.
The dashed lines show the modulation of the ampli-
tudes for generalized coordinates z and ϕ. However,
the continuous lines represent the time history of vi-
brations which were obtained numerically as solutions
of the original problem (13)–(15). The solutions pre-
sented in the graphs were obtained by adopting the fol-
lowing values of parameters: σ1 = −0.02, σ2 = 0.02,
w = 0.23, px = 1+σ1, p2 = w+σ2, p1 = 1.76, py =
7.3, f1 = 0.001, f2 = 0.0005, c1 = 0.002, c2 = 0.004,
rx = 0.001, ry = 0.001.

The mean square error relative to the norm of the
function extreme values is applied in order to evalu-
ate the accuracy of the obtained results. The error is
calculated as follows:

Ej =

√√√√√
1
nj

∑nj

i=1(aj (τi) − �
aj (τi))2

1
nj

∑nj

i=1(
�
aj (τi))2

, j = 1,2

where
�
aj (ti) are extrema of the functions z(t) for

j = 1 and ϕ(t) for j = 2, ti are the instants at which

these extrema occur, τi ∈ (0, τmax), τmax is time of the
simulation, nj is the total number of the extrema in
(0, τmax).

The errors for longitudinal and swing vibrations
were calculated in the interval (0,5000). Their values
are

E1 = 0.0128, E2 = 0.0471.

The intensive energy exchange between modes of vi-
brations and energy transfer between the system and
the source of external loading including kinematic ex-
citation are observable.

5 Steady-state solution

Steady-state vibrations establish when transient pro-
cesses disappear due to the damping of the system.
The amplitudes and modified phases of steady-state
solution correspond to zero values of the derivatives
in (44)–(47).
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After the elimination of the modified phases θ1 and
θ2 from steady-state solution, the frequency response
functions are derived:

– for parametric resonance

a2
1

(
w2(7w2 − 1)a2

2

4(1 − 4w2)
− σ1

)2

+ c2
1

4
a2

1

− r2
x (1 + σ1)

4

4
= 0, (48)

– for external resonance

a2
2

(
−σ2 + (7w2 − 1)wa2

1

4(1 − 4w2)

+ (1 − 5w2 + 8w4)wa2
2

16(1 − 4w2)

)2

+ c2
2

4
a2

2 − f 2
2

4w2
= 0, (49)

where a1 and a2 are amplitudes of the longitudinal and
swing vibrations, respectively.

When two resonances appear simultaneously then
the implicit relations (48) and (49) should be treated
as a set of non-linear algebraic equations with respect
to variables: a1, a2. It can have up to seven pairs of
real solutions. All possible steady-state solutions near
resonance can be illustrated on the plane of coordi-
nates a1, a2. In Fig. 3 the dashed lines are the geomet-
ric place of the roots of (48), and the continuous one
indicates solutions of (49). The intersection points of
both curves represent the solution of the set (48)–(49).
Therefore the coordinates a1 and a2 of the intersection
points of both curves in Fig. 3 show the steady-state
amplitudes of longitudinal and swing vibrations, re-
spectively. The steady states of vibration determined
in this way may be stable or not.

The graphical solution of the set (48)–(49) which
is presented in Fig. 3 was obtained for the following
parameters: w = 0.23, f2 = 0.001, c1 = 0.002, c2 =
0.003, rx = 0.002.

The number of possible solutions (amplitudes),
strongly depends on parameters of the vibrating sys-
tem. The minimum number of the possible amplitudes
is 1 and the maximum number equals 7, which is ob-
servable in Fig. 3.

The amplitude-frequency responses are presented
in Figs. 4, 5 for the same values of parameters as
above. The amplitudes indicated in Fig. 3 are marked
also in Figs. 4 and 5.

Fig. 3 Graphical presentation of all possible steady-state am-
plitudes for chosen parameters

The number of possible steady-state amplitudes de-
pends among others on the value of damping. In Fig. 6,
it is clearly shown how their number changes with c2.
The other parameters are as follows: σ1 = −0.01, σ2 =
−0.04, w = 0.23, f2 = 0.004, c1 = 0.004, rx = 0.004.
Reducing damping can increase the number of possi-
ble steady-state amplitudes in the area of resonance.
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Fig. 3 (Continued)

6 Stability

The separate and important aspect of the problem of

the steady-state vibrations is their stability. In order to

study this problem we can analyze the behavior of the

system in close neighborhood of the fixed points.

Fig. 4 Amplitude curves versus σ1 for σ2 = −0.03

To analyze the stability of the particular steady-
state solution, the following substitutions are intro-
duced into the set (44)–(47):

a1 = a10 + a11, θ1 = θ10 + θ11,

a2 = a20 + a21, θ2 = θ20 + θ21,
(50)

where a10, θ10, a20, θ20 are steady-state solutions of
(44)–(47), and a11, θ11, a21, θ21 are perturbations
which are assumed to be small compared to a10, θ10,

a20, θ20. After linearization and using the fact that
steady-state solutions are a fixed point of (44)–(47),
we get

a10
dθ11

dτ
= − rx(1 + σ1)

2

2
sin θ10θ11

+
(

σ1 + 7w2 − 1

4(4w2 − 1)
w2a2

20

)
a11

+ 7w2 − 1

2(4w2 − 1)
w2a10a20a21, (51)

da11

dτ
= rx(1 + σ1)

2

2
cos θ10θ11 − 1

2
c1a11, (52)
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Fig. 5 Amplitude curves versus σ2 for σ1 = −0.005

a20
dθ21

dτ
= 7w2 − 1

2(4w2 − 1)
wa20a10a11

+
(

7w2 − 1

4(4w2 − 1)
wa2

10 + σ2

+ 8w4 + 5w2 − 1

16(4w2 − 1)
3wa2

20

)

− f2

2w
sin θ20θ21, (53)

da21

dτ
= −1

2
c2a21 + f2

2w
cos θ20θ21. (54)

The perturbations a11, θ11, a21, θ21 are unknown func-
tions in the above linear system. Each solution is a lin-
ear superposition of the exponential functions Cie

λτ

where Ci are constants and i = 1, . . . ,4.
If the steady-state solution a10, θ10, a20, θ20 is

asymptotically stable, then the real parts of the roots
of the characteristic equation of the set (51)–(54),

λ4 + Γ1λ
3 + Γ2λ

2 + Γ3λ + Γ4 = 0, (55)

should be negative. The coefficients Γ1,Γ2,Γ3,Γ4

depend on the parameters a10, θ10, a20, θ20,w, c1, c2,

Fig. 6 Graphical solution of the set (45)–(46) for various values
of c2

rx, f2, and have the form

Γ1 = c1

2
+ c2

2
+ D2 sin θ10 + D5 sin θ20,

Γ2 = c1c2

4
− a2

20D1D2w cos θ10 − D2σ1 cos θ10

− D5
(
a2

10D1 + 3a2
20D4 + σ2

)
cos θ20

+ 1

2
c1D2 sin θ10 + 1

2
c2D2 sin θ10

+ 1

2
c1D5 sin θ20 + 1

2
c2D5 sin θ20

+ D2D5 sin θ10 sin θ20,

Γ3 = −1

2
a2

20c2D1D2w cos θ10 − 1

2
c2D2σ1 cos θ10

− 1

2
c1D5

(
a2

10D1 + 3a2
20D4 + σ2

)
cos θ20

+ 1

4
c1c2D2 sin θ10 + 1

4
c1c2D5 sin θ20

+ 1

2
D2D5(c1 + c2) sin θ10 sin θ20

+ D2D5
(
a2

20D1w + σ1
)

cos θ10 sin θ20,

Γ4 = −4a2
10a

2
20D

2
1D2D5w cos θ10 cos θ20

+ D2D5
(
a2

10D1 + 3a2
20D4 + σ2

)
× (

a2
20D1w + σ1

)
cos θ10 cos θ20
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− 1

2
c1D2D5

(
a2

10D1 + 3a2
20D4 + σ2

)
× cos θ20 sin θ10

− 1

2
c2D2D5

(
a2

20D1w + σ1
)

cos θ10 sin θ20

− 1

4
c1c2D2D5 sin θ10 sin θ20,

where

D1 = 7w2 − 1

4(4w2 − 1)
w, D2 = rx(1 + σ1)

2

2
,

D4 = 8w4 + 5w2 − 1

16(4w2 − 1)
w, D5 = f2

2w
.

According to the Routh–Hurwitz criterion the neces-
sary and sufficient conditions of stability of the partic-
ular steady-state solution are

Γ1 > 0, Γ3(Γ1Γ2 − Γ3) − Γ4Γ
2

1 > 0,

Γ1Γ2 − Γ3 > 0, Γ4 > 0.
(56)

The procedure was used to test stability of the solu-
tions presented in Figs. 3 and 4. The points marked
by black dots in Fig. 3 are recognized in this way as
stable solutions, and those marked by circles are not
stable ones.

7 Conclusions

The non-linear two degree-of-freedom system has
been examined. The problem has been transformed
to the dimensionless form and the analytical approxi-
mate solution has been obtained using multiple-scale
method in time domain. The solution till the third or-
der has been achieved. It allows one to detect all pos-
sible resonances which can occur in the system. The
detailed analysis of the case when parametric and pri-
mary resonances appeared simultaneously has been
carried out, i.e. when px ≈ 1, p2 ≈ w.

For this case the modulation equations have been
derived. Their solution is compatible with numerical
one. The possible amplitudes of steady-state vibra-
tions have been analytically derived and presented in

Figs. 3 and 4. Up to 7 real solutions (amplitudes) have
been observed in near neighborhood of simultane-
ously appearing resonances. The frequency response
functions have been obtained from the modulation
equations. They are presented in Fig. 5. For possible
steady-state solutions of the system the stability anal-
ysis was made introducing small perturbations into the
modulation equations and taking advantage of Routh–
Hurvitz criterion.

The transformations within the multiple-scale-
method were carried out automatically with the use
of the procedures elaborated and implemented by the
authors in software for technical and scientific com-
puting Mathematica®.
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