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Abstract: We propose a modification of the homogenization method for computational model
of an axially symmetric cylindrical shell supported by rings having different stiffness properties
governed by arbitrary analytical functions. The mentioned functions serve as control for an
associated inverse problem. The latter is solved through a zero-order approximation correspond-
ing to the structurally orthotropic solution being formulated for the first-order approximation of
the location of discrete rings.

Keywords: asymptotic series, homogenization, optimality condition, singular problem, ring
stiffening

1 INTRODUCTION

There are a number of publications devoted to the

analysis of an optimal support of plates and shells,

since such type of problems play a key role in various

applications in civil engineering, ship industry,

design of aircrafts and rockets, etc. In general, the

mentioned problems have been reduced to an appro-

priate choice of the ratio of rings and shell stiffness

[1, 2], sizing, shape and topology [3], material prop-

erties, geometric size and different material coeffi-

cients [4], shells’ variable thickness [5], geometrical

forms of rings [6], as well as thickness of rings on a

torospherical head [7]. An open cylindrical shell rein-

forced with a quasi-regular set of discrete longitudi-

nal ribs was studied by Lugovoi [8]. Stability and

vibrations of cylindrical shells discretely reinforced

with quasi-regular rings were analysed by

Abramovich and Zarutskii [9]. However, the least

studied case is that of the investigation of increased

loading capacity of the reinforced shell rings having

different properties. The lack of progress in this field

is raised by limitations in getting results suitable for

optimization of solutions of direct problems for the so

far mentioned structures.

The widely used methods for modelling and com-

putations of reinforced plates and shells can be

divided into two directions. The first one is associated

with the discretization of constructions through, for

instance, the Finite Element Method [10, 11] or the

Finite Difference Method [12]. The second one relies

on the application of various homogenization proce-

dures to reinforced plates and shells governed by

PDEs [13]. Observe that efficiency of the latter

method increases essentially with an increase of the

number of rings N. Based on the homogenization

procedure [14] analysed, the deformable state of an

axially symmetric cylindrical shell is reinforced by

rings of different stiffness properties. They showed,

among the others, that this way of the shell’s support

improved its load-carrying ability.

A similar approach can also be applied to the

inverse problems together with the application of

mathematical programming. However, difficulties in

the numerical computations increase with the

increase of N. Further on, for a non-homogeneously
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reinforced shell, N corresponds to the number of

design parameters. Therefore, in many cases, it is

more suitable to apply various methods of optimal

control, which have been developed for the problems

of mechanical engineering [15, 16].

The main aim of this study is to propose a modifi-

cation of the averaging method [13] devoted to

computations of cylindrical shells non-uniformly

supported by stringers.

This article is organized as follows. In Section 1, we

describe the applied direct problem and the averaged

equation of axially symmetric deformation of a cylin-

drical shell non-uniformly supported by stringers. In

addition, a correction term describing the influence

of the stringers is derived.

The inverse problem for the averaged equation

is solved in Section 2. In Section 3, we present a

solution for the optimization of a singular problem. In

Section 4, the influence of ring positions is investigated,

and then also a numerical example is provided in

Section 5. Finally, in Section 6, we briefly discuss the

results.

2 DIRECT PROBLEM

A differential equation governing deflection of the

skin between the rings has the following form [17]

d4w

dx4
þ �w ¼ q ð1Þ

where � ¼ 12ð1� �2Þ=ðRhÞ2; q ¼ PðxÞ=D; D ¼ Eh3=

ð12ð1� �2ÞÞ; P(x) is the normal pressure, R the shell

radius, h the skin thickness, E ,� the Young and

Poisson coefficients, respectively.

We assume an ideal contact between the

shells and rings along lines. Hence, the compatibil-

ity conditions associated with the ith ring are as

follows

w�¼wþ

dw

dx

� ��
¼

dw

dx

� �þ
d2w

dx2

 !�
¼

d2w

dx2

 !þ
;

d3w

dx3

 !�
�

d3w

dx3

 !þ
¼Biwx¼is

ð2Þ

In the above notation � � �ð Þ� ¼ lim
x! is� 0

� � �ð Þ, s is the

distance between the successive rings;

Bi ¼ EiFi=ðR
2DÞ; Ei , Fi – Young modulus of ring mate-

rials and the transversal cross-section of the ith ring,

respectively, i¼ 1, . . . , N.

Next, we introduce the following smooth function
~kðxÞ such that ~k ði sÞ ¼ Bi , ~kð0Þ ¼ ~kðLÞ ¼ 0. We use the

so far defined function while solving the inverse

problems and it is defined by the optimality condi-

tion. The simply supported shell will be further stud-

ied, and hence the boundary conditions on the shell

edges x ¼ 0, L are as follows

w ¼ 0,
d2w

dx2
¼ 0 ð3Þ

If the number of rings is large ðs=L ¼ "� 1Þ, then

one may apply an asymptotic procedure to solve the

problem governed by equations (1) to (3) [13]. We

introduce the following variable

� ¼ x=" ð4Þ

The differential operator applied further has the

following form

dw

dx
¼
@w

@x
þ "�1 @w

@�
ð5Þ

Deflection w is represented by the following expan-

sions [13]

w ¼ w0ðxÞ þ "w01ðx, �Þ þ "2w02ðx, �Þ þ "3w03ðx, �Þ

þ "4w1ðx, �Þ þ "5w2ðx, �Þ þ � � � , ð6Þ

where w0jðx, �Þ ð j ¼ 1, 2, 3Þ, wiði ¼ 1, 2, . . .Þ are the

periodic functions with respect to � having the

period L.

Substitution of relations (5), (6) into (1) to (4) and

applying asymptotic splitting regarding powers of

" yields the following relations (periodicity of func-

tions wi regarding � has been applied)

w01ðx, �Þ ¼ w02ðx, �Þ ¼ w03ðx, �Þ ¼ 0 ð7Þ

@4w1

@�4
þ

d4w0

d x4
þ �w0 ¼ q ð8Þ

w1;
@w1

@�
;
@2w1

@�2

� �
�¼0

¼ w1;
@w1

@�
;
@2w1

@�2

� �
�¼L

ð9Þ

@3w1

@�3

� �
�¼L

�
@3w1

@�3

� �
�¼0

¼ k ðxÞw0 ð10Þ

ðw0Þx¼0, L ¼ 0,
d2w0

dx2

 !
x¼ 0, L

¼ 0 ð11Þ

where k ðxÞ ¼ L ~k ðxÞ=s: Observe that when deriving

formula (10), the ratio of rings and shell stiffness

satisfies the condition R3LkðxÞ=s � 1.

Integration of equation (8) regarding � yields

w1 ¼
k ðxÞ

24L
w0ðxÞ�

4 þ C1�
3 þ C2�

2 þ C3� þ C4 ð12Þ

where Ci ¼ CiðxÞ:
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Below, we define C1 � C3 from conditions (9) and

we take C4 ¼ 0, and since this term refers to the aver-

aged equation, one gets

w1 ¼
kðxÞ

L
w0ðxÞ�

2ð� � LÞ2 ð13Þ

Substitution of (13) into (10) results in getting the

following homogenized equation defining w0

d4w0

dx4
þ

kðxÞ

L
þ �

� �
w0 ¼ q ð14Þ

Equation (14) governs the axially symmetric defor-

mation of structurally orthotropic shell having

rings located continuously over the shell’s length.

Correction term (13) takes into account the discrete-

ness of the location of rings.

3 INVERSE PROBLEM

In order to apply optimization, we use the shell com-

pliance to formulate the minimum functional of the

form

J ¼

Z L

0

qw dx ! mink ð15Þ

Here, the right-hand term of (15) means that we

study the problem of minimizing energy of the elastic

shell deformation through an appropriate choice of

k(x), i.e., through the appropriate choice of the strin-

gers stiffness distribution along the shell length.

Further, we apply a condition of the summed ring

stiffness of the following form

XN

i¼1

kðisÞ ¼ c � const ð16Þ

Manevitch et al. [13] showed that the structurally

orthotropic approximation made it possible to define

accurately the deflection of reinforced plates and

shells. For this reason for problem (15), we only take

zero-order approximation for deflection (14). It is

convenient to present constraint (16) in the following

averaged form

1

L

Z L

0

kðxÞdx ¼ c ð17Þ

Since function k(x) defines the stringers stiffness

then owing to its physical interpretation, it should

satisfy the following inequality kðxÞ � 0. Observe

that the given inequality is satisfied if in optimization

performances (15) and (16), we take function ’ðxÞ

as the control one, which satisfies the following

condition

kðxÞ ¼ ’2ðxÞ ð18Þ

Owing to the known methods of optimal control

[15], we formulate an optimality condition of the

problem governed by (3), (14), (15), and (17) regard-

ing the chosen control function ’ðxÞ displayed by (18).

For this purpose, we apply the following variations of

integrals (15), (17), and equation (14)

�J ¼

Z L

0

q�w0 dx, �J1 ¼ 2

Z L

0

’ �’ dx ð19Þ

�
d4w0

dx4
þ

’2

L
þ �

� �
�w0 þ 2

’w0

L
�’ ¼ 0 ð20Þ

Note that equation (20) is obtained by substituting

w0 and ’ by w0 þ �w0 and ’þ �’, respectively, then

equation (14) is used, and only linear terms are kept.

Next, we take � ’ as the minimum function. We

introduce the conjugated variable vðxÞ defined

through the condition that the expressions for mini-

mizing functional should not contain variation �w0.

Multiplying equation (20) by v ðxÞ, and then integrat-

ing in the interval from 0 to L, we get

Z L

0

v �
d4w0

dx4
þ

’2

L
þ �

� �
�w0 þ 2

’w0

L
�’

" #
dx ¼ 0

ð21Þ

Now, the first term of (21) is integrated four times

by parts with inclusion of the boundary conditions

for w0 (3) and equation (14), and in the next step

integral (21) is cast to the following form

Z L

0

d4v

d x4
þ

’2

L
þ �

� �
v

� �
�w0 þ 2

’w0 v

L
�’

� �
dx ð22Þ

where the following boundary conditions are applied

ðvÞx¼0,L ¼ 0,
d2v

dx2

 !
x¼0,L

¼ 0 ð23Þ

We add variation �J1 to the variation of minimizing

functional � J through the Lagrange multiplier, and

hence formula (22) takes the following form

�J¼

Z L

0

d4v

d x4
þ

’2

L
þ�

� �
vþq

� �
�w0þ2

’

L
�þv w0ð Þ�’

� �
:

dx¼0

ð24Þ

In order to keep variation � J independent of �w0

of the conjugated variable v, the following equation

should be satisfied

d4v

dx4
þ

’2

L
þ �

� �
v ¼ �q ð25Þ
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Finally, we obtain the formula being sought for the

variation of the optimized functional expressed

through variation � ’ as

�J ¼
2

L

Z L

0

’ ð�þ v w0Þ�’dx ¼ 0 ð26Þ

Therefore, the following optimality condition is

obtained

’ ð�þ v w0Þ ¼ 0 ð27Þ

Observe that a comparison of the boundary value

problems for w0 (cf. (3), (14)) and for v (cf. (23), (25))

yields v ¼ �w0, and finally condition (27) takes the

form

’ ð��w2
0 Þ ¼ 0 ð28Þ

Observe that a trivial solution ’ ¼ 0 of this equation

does not have a physical interpretation for the prob-

lem considered by us, since for that case, the shell

support does not exist. On the other hand, the solu-

tion w0 ¼
ffiffiffi
�
p
� const does not satisfy boundary con-

ditions (3).

4 SOLUTION OF THE OPTIMIZATION

SINGULAR PROBLEM

One of the typical properties of the optimization of

numerous elements of structures is the occurrence of

singular points [15]. In these points, the highest order

derivatives of the differential equations are equal to

zero. In this case, in order to get a closed system of

stationary conditions, one should take into account

the Weierstrass–Erdmann relations in the singular

points. While optimizing bending variable stiffness,

Masur [18] reported that the Weierstrass–Erdmann

conditions were reduced to the continuity conditions

of the derivative of a bending function in singular

points. We observe the same behaviour in our case.

Since problems (3), (14), (17), and (28) have no solu-

tion in the class of continuous functions, solution

’ xð Þ is sought in the class of piece-wise functions

having first-order discontinuities. The so far defined

problem will have a solution if in intervals 0, x1ð Þ and

x2, lð Þ, we have ’ ¼ 0, whereas in interval x1, x2ð Þ, one

gets w0 ¼
ffiffiffi
�
p

. In this case, equilibrium equation (13)

yields the following result being valid in interval

x1, x2ð Þ

’2 ¼ �
qffiffiffi
�
p � � ð29Þ

The discontinuity points x1, x2 are deduced from

conditions of both deflection function w as well as

their derivatives dw
dx , d2w

dx2 continuity

w ð�Þ ¼ w ðþÞ,
dw

dx

� � �ð Þ
¼

dw

dx

� � þð Þ
,

d2w

dx2

 ! �ð Þ
¼

d2w

dx2

 ! þð Þ
ð30Þ

In the above notation . . .ð Þ �ð Þ ¼ limx!xj� 0

. . .ð Þ , j ¼ 1, 2: The choice of conditions (30) is moti-

vated by physical observations, since they keep

smooth shell deformations. However, derivative d3w
dx3

may have a jump in singular points; therefore, those

points may be reinforced by stringers. Note that rela-

tions (30) also ensure satisfaction of the Weierstrass–

Erdmann conditions [18].
In the considered case, conditions (30) may be writ-

ten as follows

w 1ð Þ
� �

x¼x1
¼ w 2ð Þ
� �

x¼x2
¼

ffiffiffi
�
p

,

dw 1ð Þ

dx

� �
x¼x1

¼
dw 2ð Þ

dx

� �
x¼x2

¼0;

d2w 1ð Þ

dx2

 !
x¼x1

¼
d2w 2ð Þ

d x2

 !
x¼x2

¼0: ð31Þ

Expressions for w 1ð Þ and w 2ð Þ are derived from solu-

tions of the corresponding boundary value problems

in intervals 0, x1ð Þ and x2, Lð Þ for equation (14) for

’2 � 0 and for boundary conditions (3), and by

taking into account the adjunct condition (31). The

ten mentioned conditions (3) and (31) allow us to find

eight constants of integration (four for each interval),

and then describe coordinates of discontinuity points

x1, x2 by �.

The Lagrange constant � is defined via isoperi-

metric condition (17), which in this case takes the

following form

1

L

Z L�x2

x1

’2 dx ¼ c ð32Þ

Coordinates t1, t2 correspond to the first and last

ring positions, respectively.

5 THE INFLUENCE OF RING POSITIONS

First of all, let us emphasize that taking into account

discreteness of the ring positions (13) yields an essen-

tial problem in getting a solution to the stated prob-

lem. In this case, taking into account (4) and (6), a

function governing the shell deflection has the form

w ¼ ð1þ ’2pÞw0, where p ¼ x2ðx � LÞ2s=L2: Then,

the minimizing functional (15) takes the following
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form

J ¼

Z L

0

ð1þ ’2pÞw0q dx ! min
’

ð33Þ

and the corresponding variation of functional (33) is

as follows

�J ¼

Z L

0

½ð1þ ’2pÞ�w0 þ 2’pw0�’	q dx ð34Þ

Equations of equilibrium (20) and integral for the

conjugated variable v defined by (22) do not change.

Therefore, the expression for extended variation � J

governed by (24) takes the following form

�J ¼

Z L

0

d4v

dx4
þ

’2

L
þ �

� �
v þ ð1þ ’2pÞq

 !"

�w0 þ 2
’

L
ð�þ ð v þ pÞw0Þ �’	dx ¼ 0 ð35Þ

As a result, we get the following equation for the

conjugated variable v

d4v

dx4
þ

’2

L
þ �

� �
v þ ð1þ ’2pÞq ¼ 0 ð36Þ

and the optimality conditions take the form

’ ð�þ ð v þ p Þw0 Þ ¼ 0 ð37Þ

Optimality condition (37) together with equilib-

rium equation (14), and with the equation for conju-

gated variable (36) and boundary conditions (3) and

(23) creates a closed boundary value problem for the

determination of an optimal distribution of ring stiff-

ness kðxÞ (cf. (18)) and deflection wðxÞ taking into

account discreteness of the ring positions. The

Lagrange multiplier � is defined via constraint condi-

tion (32).

6 NUMERICAL EXAMPLE

Let us consider a particular case of shell loading of

q ¼ const . Below, we take into account only the struc-

tural orthotropic properties. In this case due to

symmetry x ¼ L=2 and so x1 ¼ x2, and for their deter-

mination, one gets a boundary value problem for

equilibrium equation (14) for k¼ 0 with boundary

conditions (3) and adjunct conditions (31) in the

interval of (0, t1). A solution to equilibrium equation

(14) is defined via the Krylov functions Ki, i¼ 1,2,3,4

in the following way [19]

w1 ¼ D1K1 þ D2K2 þ D3K3 þ D4K4 þ q=� ð38Þ

where D1�D4 are the arbitrary constants, and

K1¼ cosh � cos �, K2¼ (cosh � sin�þ sinh � cos �)/2

K3(x)¼ (sinh � sin �)/2, K4(x)¼ (cosh � sin �� sinh �

cos �)/4, � ¼
ffiffi
�
4

4

q
x1

Boundary conditions (3) yield

D1 ¼ �q=�, D3 ¼ 0 ð39Þ

Substituting (38) into adjunct condition (31), and

taking into account (39) yields a system of equations

to determine D2, D4, and t1. Next, taking expressions

for D2, D4 from the second and third equations of (31)

and substituting them into the first equation, one

obtains the following equation to determine t1

sinhð�Þcoshð�Þ þ cosð�Þsinð�Þ � coshð�Þsinð�Þ

�sinhð�Þcosð�Þ

� �
sinhð�Þcoshð�Þ þ cosð�Þsinð�Þ

¼
�

ffiffiffi
�
p

q
ð40Þ

Developing the left-hand side of equation (40) into

a series regarding � yields

0:167�4� 0:021�8 þ Oð�9Þ ¼
�

ffiffiffi
�
p

q
ð41Þ

Now, taking into account that 0
t1
L/2, we keep

in equation (41) only the first term and we get

x4
1 ¼ 24

ffiffiffi
�
p
=q. Then, taking into account (29) and

condition (31), the following equation is obtained to

determine x1

2�x5
1 � ð�L þ cÞx4

1 � 48x1 þ 24L ¼ 0 ð42Þ

Numerical solutions to equation (42) are found by

Maple, for the following fixed parameters: L¼ 100,

�¼ 0.1, c¼ 0.1, . . . ,1, and they are shown in Fig. 1.

Observe that for all considered values of p, the

problem of determination of t1 has been solved

uniquely, since for all five roots of (42), only one

was less than L/2.

Note that the relation illustrated in Fig. 1 completely

represents a physical meaning of the problem. Increase

of the rings total stiffness causes a decrease of the shell

deflection within interval x1, x2ð Þ. This uniform deflec-

tion is achieved faster on the boundary shell parts free

from rings, that is in intervals ð0, x1Þ, ðx2, LÞ.

The uniform deflection of the optimally supported

shell in interval x1, x2ð Þ is defined by formula

w ¼
ffiffiffi
�
p
¼ q x4

1 =24. We compare this deflection with

shell deflection �w, uniformly supported by rings with

the same stiffness. In this case in the frame of the struc-

turally orthotropic theory, we get ’2=L ¼ c: As it is

known, in the case of a sufficiently long shell, its

middle surface deflection can be defined via the solu-

tion to equation (1) of the form �w ¼ q=ð’2=L þ �Þ . The

computational results are given in Fig. 2.

Next, we consider a second (often met in applica-

tions) shell loaded by a hydrostatic pressure q¼px,

p¼ const. In the case of boundary conditions keeping

the upper shell edge free, while its bottom edge is

clamped, the following relations hold

Optimal design of ring-stiffened cylindrical shells 2461

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science

 at Bibliotheek TU Delft on October 5, 2011pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


d2w

dx2

 !
x¼0

¼ 0,
d3w

dx3

 !
x¼0

¼ 0;

ðwÞx¼L ¼ 0,
dw

dx

� �
x¼L

¼ 0: ð43Þ

This approach makes it possible to validate the effi-

ciency of both optimal support of the shell being non-

uniformly loaded as well as the chosen boundary

conditions, which may differ from these considered

so far. Needless to say, a proper solution to the so far

formulated problem plays a key role while analysing

numerous engineering problems, because shells con-

sidered by us may be used to carry large volumes of

fluids.

In the considered case, formula (29) is used to con-

clude that stringers stiffness on the shell part (t1, t2)

is governed by the following equation

’2 ¼
pxffiffiffi
�
p � �

� �
L ð44Þ

in order to keep the stringer-type shell support

optimal.

Graphs displaying dependencies of dimensions of

free and supported shell parts versus entire stringers

stiffness p for the upper (0,t1) and bottom (t2, L)

shell edges are shown in Figs 3 and 4, respectively.

Our computations show that length of the upper

non-stretched shell part is practically equal to zero.

Length of the lower shell part decreases with an

increase of summed up stiffness p of all stringers.

The latter observation is in full agreement with a

physical meaning of the problem. Namely, the

upper part is free and not loaded, whereas the lower

part is forced by clamping and therefore an increase

of the entire stringers stiffness yields a decrease of

uniform deflection
ffiffiffi
�
p

, and this value is achieved on

the free (not reinforced) shell part.

It is evident that the uniformly and optimally sup-

ported shell deflection w ¼
ffiffiffi
�
p

is achieved in the

interval x1, x2ð Þ. Then, we compare this deflection

with shell deflection �w. The latter one corresponds

to the shell being uniformly supported by stringers

of the same stiffness (the orthotropic design oriented

theory yields ’2 ¼ c � L in this case).

As it is well known, in the case of a sufficiently long

shell, its middle surface part deflection can be esti-

mated by a particular solution of equation (1), which

in this case yields �w ¼ px=ð’2=L þ �Þ. Results of com-

putations are presented in the form of function �ðcÞ,

where �¼ ( �w�w)/ �w per cent. They refer to the point

t¼ 1�t2 and are shown in Fig. 5. In other words, this

function presents the dependence of the deflection

decrease of the optimally supported shell versus the

summed up stiffness of all applied stringers.

Let us emphasize that the shell deflection in its point

t¼ 1�t2 is computed through the design-oriented

anisotropic theory and becomes close to the maximal

value achieved by the shell uniformly supported by

stringers of the same stiffness. As i.e., shown in Fig. 5,

the decrease of the maximum deflection achieves more

than 50 per cent and practically does not depend on

the entire stiffness p of the applied stringers.
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Fig. 1 Free shell parts ð0, x1Þ ¼ ðx2, LÞ (in % of shell
length L) versus sum of the stiffness p of the
rings for q ¼ const
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Δ
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c

Fig. 2 Dependence of the shell deflection decrease in
its middle surface for optimal support
(�¼ ( �w�w)/ �w%) vs. the sum of ring stiffness
for q ¼ const

Fig. 4 Function of t2 x2 ¼
x2

L

� �
versus p

C

Fig. 3 Function of t1 x1 ¼
x1

L � 10�4
� �

versus p
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7 CONCLUSIONS

We propose an optimization procedure of a cylindri-

cal shell reinforced by rings carried out in two steps,

that is through isolation of free (without rings) shell

parts on its edges and then through reorganization of

the stiffness of rings with a rule corresponding to the

changes of acting load. We applied only the first step

for the case of q ¼ const , since k ¼ const is already

optimal. For other shapes of loading distribution

two steps were applied, and the obtained results

improved essentially the carrying shell load ability.

It should be emphasized that for an optimal support

the shell deflection will be uniform regardless the

applied loading and boundary conditions. Finally,

the effects of loading, boundary conditions and the

ratio of shell and rings stiffness are expressed by the

rings stiffness variations and by dimensions of edge

shell parts (free of rings) as well as by the magnitude

of uniform middle shell surface deflection.

The so far proposed method can be applied also to

solve direct and inverse problems of other functional

gradient constructions, that is those having character-

istics smoothly changed along either one or two co-

ordinates. The mentioned structural members may

include shells reinforced by ribs of non-constant stiff-

ness, gopher-like plates and shells with variable heights

of the gopher wave, and others. Another field of appli-

cation of the introduced method includes the compu-

tation of physical fields of the functionally gradient

composites reinforced by threads made from various

materials and having variable thickness and stiffness.
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