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Abstract Chaotic vibrations of flexible non-linear Euler–
Bernoulli beams subjected to harmonic load and with vari-
ous boundary conditions (symmetric and non-symmetric) are
studied in this work. Reliability of the obtained results is
verified by the finite difference method (FDM) and the finite
element method (FEM) with the Bubnov–Galerkin approxi-
mation for various boundary conditions and various dynamic
regimes (regular and non-regular). The influence of bound-
ary conditions on the Euler–Bernoulli beams dynamics is
studied mainly, dynamic behavior vs. control parameters
{ωp, q0} is reported, and scenarios of the system transition
into chaos are illustrated.

Keywords Euler–Bernoulli beams · Chaos · Finite differ-
ence method · Finite element method

1 Introduction

Owing to remarkable development of aeronautics, astronau-
tics and ship building industry, the problem of an accurate
and engineering-accepted beam dynamics modeling (taking
into account various boundary conditions and periodic loads)
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is of high importance. It is well known that the problems
yielded by mechanical engineering require construction and
analysis of their mathematical models. Modeling of flexible
beam vibrations subjected to transversal and longitudinal pe-
riodic loads belongs to one of the most important problems
of today’s mechanics.

Maewal [1] studied the evolution equations of ampli-
tudes of a harmonically simply supported beam showing ex-
istence of its chaotic vibrations. Both the Lyapunov expo-
nents and the Lyapunov dimension of the chaotic attractors
are estimated.

Ravindra and Zhu [2] studied bifurcational and chaotic
behavior of axially accelerated beams in the super critical
regime.

Ramu and Sankar [3] applied the Galerkin method to
convert the partial differential equation governing dynamics
of a pre-buckled beam into a set of ordinary differential equa-
tions. Both existence of bifurcations and chaos are illustrated
and the occurred catastrophes are classified.

Wang et al. [4] analysed a flexible beam model with
a bounded piezo-patches. They applied a concept of semi-
active control to design a controller and the proposed control
is validated numerically.

Pellicano and Vestroni [5] analysed bifurcation and
chaos numerically in an axially moving beam with transverse
load claiming that a few number of degree-of-freedom is suf-
ficient to follow the beam dynamic behavior.

Taking into account the cited references (and beyond)
one may conclude that today’s key targets of modeling and
analysis of spatial objects including a beams, plates and
shells dynamics are detection and clarification of bifurca-
tions and transitions from regular to chaotic dynamics and
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dynamics control via external load action (a part of this re-
search direction has been already reported in Refs. [6-8]).

This work aims at the comparison of the results ob-
tained by two different methods of mathematical model-
ing, i.e. FDM and FEM, using the example of Euler–
Bernoulli type flexible beams. In addition, it is shown that
the rough approximation of the beam dynamics using only a
few degrees-of-freedom may yield the erroneous results.

2 Problem formulation

As it has been already mentioned, in this work the transversal
Euler–Bernoulli beam vibrations subjected to various bound-
ary conditions are studied. A physical beam model under
investigation is shown in Fig. 1. Since the general ap-
proach yielding a mathematical model of transversal Euler–
Bernoulli beam vibrations is widely described in classical
books devoted to spatial objects dynamics (see, for instance
monographs [9, 10]), here only the key steps of the beam
vibrations derivation are given.

The Cartesian coordinates system xoz (Fig. 1) is in-
troduced, and then in the space Ω = {x ∈ [0, a];−h ≤ z ≤
h;−b/2 ≤ y ≤ b/2} a thin elastic beam with its middle
surface deformation εx = ∂u/∂x + (∂w/∂x)2/2 is studied.
Here w(x, t) denotes beam deflection, and u(x, t) is the mid-
dle surface displacement along the ox axis. It is assumed
that owing to the Euler–Bernoulli hypothesis a normal to the
beam middle surface is still normal after the beam deforma-
tion: εxx = εx − z∂2w/∂x2, where εx is the middle surface
deformation, Nx =

∫ h

−h
σxxdz is the longitudinal force, and

Mx =
∫ h

−h
σxxzdz = − (2h)3

12E
· ∂

2w
∂x2

denotes the torque.

The dynamic governing equations have the following
forms
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Fig. 1 The investigated beam

where the following nonlinear operators are introduced

L1(u,w) =
∂2u
∂x2

∂w
∂x
+
∂u
∂x
∂2w
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,

L2(w,w) =
3
2
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(
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)2
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∂w
∂x
.

Furthermore, the following notation is applied: d1, d2 are
dissipation coefficients; q = q(x, t) is transversal load; E is
Young’s modulus; ρ, γ are density and weight density, re-
spectively, and g is acceleration of gravity. The following
non-dimensional variables are introduced

w =
w

(2h)
, u =

ua
(2h)2

, x =
x
a
,
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, q = q
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√
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a
c
, i = 1, 2,

(2)

where all introduced quantities with bars are non-
dimensional and correspond to those without bars and be-
ing earlier introduced (for instance, w and u are transver-
sal and longitudinal beam displacements, respectively; x is
beam non-dimensional length; t̄ is non-dimensional time; di

denote non-dimensional damping factors).
Taking into account Eq. (2), system (1) takes the form

∂2u
∂x2
+ L3(w,w) − ∂

2u
∂t2
− d2
∂u
∂t
= 0,

1
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[
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12
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]
− ∂

2w
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−d1
∂w
∂t
+ q = 0,

(3)

where overbars denoting dimensionless quantities are omit-
ted.

The following boundary conditions at the beam ends
are attached to Eq. (3).

Problem 1: “clamping–clamping”

w(0, t) = w(a, t) = u(0, t) = u(a, t)

=
∂w(0, t)
∂x

=
∂w(a, t)
∂x

= 0. (4)

Problem 2: “hinge–hinge”

w(0, t) = w(a, t) = u(0, t) = u(a, t) = 0,

Mx(0, t) = Mx(a, t) = 0.
(5)

Problem 3: “hinge–clamping”

w(0, t) = w(a, t) = u(0, t) = u(a, t) = 0,

Mx(0, t) = 0,
∂w(a, t)
∂x

= 0.
(6)

Problem 4: “hinge–free”
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w(0, t) = Mx(0, t) = u(0, t) = 0,

Mx(a, t) = Nx(a, t) = Qx(a, t) = 0.
(7)

In the case of clamping–clamping conditions, both
beams defection and beam longitudinal displacements on its
ends are equal to zero, as well as tangents to the beam slope
at its ends are equal to zero.

In the case of hinge–hinge boundary conditions, the
transversal and longitudinal beam end displacements as well
as the bending moments Mx on the beam ends are equal to
zero.

In the case of hinge–clamping conditions, both
transversal and longitudinal beam end defections are equal
to zero. In addition, the bending moment on the beam left
edge is equal to zero, whereas the beam slope at its right
edge is equal to zero.

Finally, in the case of hinge–free conditions, both
transversal and longitudinal left beam end displacements are
equal to zero. In addition, the bending moment Mx is equal
to zero at both beam ends, whereas the longitudinal force Nx

and transversal force Qx are equal to zero at the right beam
end.

Additionally, the following initial conditions are at-
tached to Eq. (3) through Eq. (7)

w(x, t)
∣∣∣
t=0
=
∂w(x, t)
∂t

∣∣∣∣∣
t=0
= u(x, t)

∣∣∣
t=0
=
∂u(x, t)
∂t

∣∣∣∣∣
t=0
= 0. (8)

3 Numerical solution and beam stability

Investigation on nonlinear vibrations of constructions with
various dynamic states (regular and/or chaotic) requires
highly accurate computational algorithms and implementa-
tion of numerical methods. Since analytical methods devoted
to the analysis of non-linear models in general do not exist
at all, the only way is to apply various numerical approaches
for verification of reliability of the results obtained. In this
work, various numerical approaches are applied, namely di-
rect one (FDM) and variation one (FEM) in the Bubnov-
Galerkin form. A comparison is made for various boundary
conditions and for various dynamic regimes. In all investi-
gated cases the beam geometric and physical parameters are
taken the same.

4 FDM with approximation O(c2)

The infinite dimensional problem Eq. (3) to Eq. (8) can be
reduced to the finite dimensional one via the finite difference
method with second order approximation O(c2). Namely, at
each mesh node the following system of ordinary differential
equations is obtained

L1,c(wi, ui) = d1ẇi + ẅi,

L2,c(wi, ui) = d2u̇i + üi,
i = 0, 1, · · · , n, (9)

where n denotes the partition numbers regarding spatial co-
ordinates, and the left hand sides of operators of Eq. (9)
follow
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1
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L2,c(wi, ui) =
1
c2

(
ui+1 − 2ui + ui−1

)
+

1
2c

(wi−1 − wi+1)

× 1
c2

(wi+1 − 2wi + wi−1). (11)

For i = 1, i = n − 1 in Eq. (9) one has to take into
consideration the so-called out of contour points, which are
defined by the following boundary conditions: for problem
1, w−i = wi, whereas for problem 2, w−i = −wi . The fol-
lowing additional equations are supplemented to Eqs. (9) for
problems 1–3

w0 = 0, wn = 0, u0 = 0, un = 0, (12)

and for problem 4

w0 = 0, u0 = 0, Mx = 0, Nx = 0, Qx = 0. (13)

The initial conditions as Eq. (8) for the considered cases
have the following form

w(xi)|t=0 = 0, u(xi)|t=0 = 0,

ẇ(xi)|t=0 = 0, u̇(xi)|t=0 = 0,
i = 1, 2, · · · , n. (14)

5 FEM with the Bubnov–Galerkin approximation

The defined problem by Eq. (3) to Eq. (8) is solved now
via FEM. Owing to the FEM theory, in order to construct
a beam element, the testing functions need to be introduced.
The following four degrees of freedom (w1,w2, θ1, θ2) are as-
sociated with the element and the following approximation
polynomial is applied

w(x) = a1 + a2x + a3x2 + a4x3,

θ(x) = −dw
dx
= −(a2 + 2a3x + 3a4x2).

(15)

After defining the constant values, an approximation
function has the following form

w = N wW , (16)
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where N w = [1−3ξ2+2ξ3, −lξ(ξ−1)2, 3ξ2−2ξ3, −lξ(ξ2−ξ)];
W = (w1 θ1 w2 θ2)T is node displacement vector; ξ = x/l is
non-dimensional quantity (local coordinate).

Displacement approximation u(x) has the following
form

u = N uU , (17)

where N u = [1 − ξ, ξ] and U = (u1 u2)T. Applying the
Bubnov–Galerkin procedure and taking into account the in-
troduced approximations, the following equations of FEM
are obtained

M 1Ẅ + C1 Ẇ + K 1W = F 1(q ,U ),
M 2Ü + C 2U̇ + K 2U = F 2(p ,W ),

(18)

where M i, C i and K i are the matrices of mass, damping
and stiffness, respectively.

6 Numerical results

The considered beam (see Fig. 1) is subjected to the action
of the following transversal load: q = q0 sin(ωpt), where ωp

is the excitation angular frequency, and q0 is its amplitude.
The studied system is dissipative, and the damping coeffi-
cients denoted by d1 and d2 correspond to deflection w and
displacement u, respectively.

Next, the beam dynamics and stability are studied nu-
merically. Any method of beam partition is allowed to ap-
proximate PDEs by ODEs. Integration of the latter ones
can be divided into two groups, i.e. explicit and implicit
methods. The explicit methods are mainly realized via the
Runge–Kutta schemes, and they are sufficient to solve our
beam problem. It is mainly motivated by an observation
that the considered Cauchy problem does not belong to stiff
one, since in the eigenvalues frequency spectrum of the
Bernoulli–Euler type equations there are no frequencies dif-
fering in the order of magnitude (see for instance considera-
tions in Ref. [11]).

In order to verify the validity and accuracy of beam
vibration simulations, both mentioned methods (FEM and
FDM) are applied in problem 4, and the following fixed
damping coefficients: d1 = 1, d2 = 0, where ωp = 5.1 is
the excitation frequency, and λ = a/(2h) = 50 denotes the
relative beam length. The beam is subjected to the harmonic
load action with the amplitude q0. The computation step re-
garding spatial coordinate equals s and time step is Δt. Both
of them are yielded by the Runge principle. The stated prob-
lem is solved for beam partitions n = 40, s = 1/40, and
with time step Δt = 3.905 2 × 10−3. In order to compare the
numerical results, power spectra and time histories (signals)
w(t) are reported in Fig. 2 for q0 = 100 (it corresponds to
regular dynamics), and for q0 = 32 200 (it corresponds to
chaotic dynamics). Obtained ODEs are solved numerically
using the fourth order Runge–Kutta method in all cases con-
sidered.

From Fig. 2 one may conclude that signals obtained via
FEM and FDM practically coincide for the case of regular
dynamics. In the case of chaotic dynamics, a signal produced
by FDM is slightly delayed in comparison to that produced
by FEM and possesses smaller amplitude. Frequency power
spectra of vibrations practically either coincide in the case
of regular dynamics or are close to each other in the case of
chaotic dynamics. Hence, owing to the results included in
Fig. 2, the results obtained via the FEM and FDM meth-
ods are reliable for either regular or chaotic beam dynamics
analysis.

In order to investigate beams dynamics driven by har-
monic loads, a special program package has been developed
enabling construction of vibration type charts vs. control
parameters {ωp, q0}. For instance, in order to construct a
chart with the resolution of 200 × 200 points, one needs to
solve a problem of dynamics, to analyse frequency power
spectrum and finally to compute the Lyapunov exponents for
each choice of the control parameters. The developed algo-
rithm also enables separation of the periodic dynamic zones,
the Hopf bifurcation zones, quasi-periodic zones, as well as
chaotic zones.

In Fig. 3, the vibration type charts vs. the control pa-
rameters {ωp, q0} for problem 4 are reported. Charts are con-
structed either with the application of FEM or FDM with
the following fixed parameters d1 = 0.1, d2 = 0 for the
beam length partition n = 40, and for the beam relative
length λ = a/(2h) = 50. The excitation frequency changes
from ω0/2 (chart I) to 3ω0/2 (chart III), where ω0 (chart II)
denotes free frequency of the associated linear system (for
problem 4 there is ω0 = 5.1). A maximal excitation am-
plitude corresponds to the beam deflection of 5(2h), and the
charts are built with resolution 300 × 300.

Analysis of the obtained vibration type charts also sup-
ports reliability of the results obtained for various vibration
regimes. Observe that the zones of chaotic vibrations vs.
frequency obtained via FEM are wider than those obtained
via FDM, whereas they coincide regarding the amplitude of
vibrations. In order to get a vibration character chart vs. con-
trol parameters with resolution 300 × 300, it has to carry out
9 × 104 computational variants have to be carried out. In
the case of FEM, the computational time increases about 1.5
time comparing to the FDM application (for n = 40). The
legend introduced in Fig. 3, regarding vibration type, is also
used further.

In order to confirm reliability of the results obtained for
other types of boundary conditions, in Fig. 4 scales of vibra-
tion type beam character depending on the excitation ampli-
tude q0 = 0.6×104 and for one value of ωp are reported, and
also dependences wmax(q0) are shown.

The problems are solved for the following parameters:
d1 = 1, d2 = 0, λ = a/(2h) = 50, ωp = 6.9, and beam
partition regarding spatial coordinate n = 40.

It is shown in Fig. 4 how the boundary conditions es-
sentially influence the system dynamics. For problem 1, the
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beam exhibits periodic and bifurcation type dynamics (ei-
ther for FDM or for FEM). In this case there is no transition
to chaotic dynamics. In graph wmax(q0) sudden jumps do
not occur, and the function is smooth. In problem 2, chaotic
zones matched with bifurcation zones could be observed, but
periodic dynamics is not exhibited. A function presenting
maximal deflection vs. excitation amplitude is smooth only

at the beginning (for q0 = 1 000), where sudden jumps of
wmax are not observed. Transition of the system from peri-
odic to chaotic vibrations and vice versa, is characterized by
sudden changes of wmax even for a small change of the ex-
citation amplitude, and this is understood as stability loss of
the system dynamics.

Fig. 2 Time history and frequency spectra of beam dynamics in a Regular (q0 = 100) and b Chaotic (q0 = 32 200) regimes

Fig. 3 Beam vibrations-type charts using a FDM and b FEM
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In the case of non-symmetric boundary conditions
(problem 3), the system transition into chaotic state oc-
curs for q0 > 2.5 × 104 could be observed. For the given
boundary conditions, the periodic dynamics occurs for q0 ∈
(1.1 × 104, 2.5 × 104). It is remarkable that within beam
chaotic regime in the graph wmax(q0) not only sudden jumps
appear but also the functions are discontinuous.

Fig. 4 Beam vibration regimes (color corresponds to that in Fig. 3)
and wmax(q0) for a Problem 1; b Problem 2; c Problem 3

7 Further results and concluding remarks

As the earlier results of local chaos investigations show,
there are a few typical transition scenarios leading a dy-
namic system from periodicity into chaos, which some-
times are also combined. On the other hand, as it will be
shown further, such transitions, however understood glob-

ally, may differ for the same system (here beam) for vari-
ous boundary conditions. Four typical transitions are well
understood, namely the Landau–Hopf scenario, the Ruelle–
Takens–Newhouse scenario, the Feigenbaum scenario and
the Pomeau–Manneville scenario (see monograph [8] for de-
tails and references therein).

Below, a beam scenario of transition into chaos for
problem 2 are in vestigated and defined. The numerical in-
vestigation is carried out by two methods: FEM and FDM.
Figure 5 shows the fundamental steps helping in scenario de-
tection.

An increasing amplitude of excitation causes the oc-
currence of two independent frequencies (quasi-periodicity),
which are evidenced by FEM and FDM, and their estimated
values are the same. A further increase of the excitation am-
plitude causes the occurrence of linear combinations of the
earlier mentioned frequencies ωp, ω1, ω2.

For example, study the system behavior for q0 = 11 000
applying FDM. It is remarkable that the system dynamics is
governed by a linear combination of frequencies ωp, ω2, ω4.
The following three frequency groups are distinguished: ω4,
ω9, ω7 are the first group, where frequency values differ by
the amount of frequency ω4; ω1, ω10, ω2, ω11 are the sec-
ond group, where the frequencies differ from each other ei-
ther by ω4, or by 2ω4; ω8, ω5, ω3, ωp are the third group,
where the linear combination of frequencies is preserved.
Observe that an analogous system behavior is also monitored
for q0 = 8 700 in the case of FEM application.

A further increase of q0 yields more evident changes
of the earlier mentioned frequencies, and finally all of the
frequencies become linearly dependent. For q0 = 20 000
(FDM) and for q0 = 19 900 (FEM) all frequency distances
are equal and the difference between two neighbourhoods
once achieves 1.062. Observe that for q0 = 100, in a fre-
quency power spectrum, only frequency of excitation ωp =

6.9 is exhibited. An increase of the amplitude of external
excitation causes variation of frequencies. The mentioned
frequencies again appear and disappear. As a result, in the
frequency spectra, either for FDM or for FEM, one may dis-
tinguish six linearly independent groups of frequencies, each
group containing linearly dependent frequencies which dif-
fer by the amount of 0.29. Then, when all of the born fre-
quencies become linearly dependent, the system dynamics is
transited into chaotic state, which is clearly manifested by
the system frequency spectra for q0 = 40 000 (FDM) and
q0 = 39 000 (FEM).

Finally, taking into account the previous description
and comments regarding the scenario of transition of our
beam into chaotic dynamics monitored via FEM and FDM,
the detected scenario fits to the well known Ruelle–Takens–
Newhouse scenario, where in the latter classical case the
transition is realized via two independent frequencies and
their linear combinations.
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Fig. 5 Power spectra, time histories and phase portraits of beam dynamics
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