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In this letter we will illustrate and discuss some problems regarding the validity and accuracy of the perturbation-
like methods applied to systems with weak and strong non-linearities.

Hu1 studied the well-known Duffing equation:

x′′ + ω2
0x+ εx 3 = 0, (1)

which has the initial conditions of

x(0) = A, x
′
(0) = 0. (2)

Hu1 assumed the solution of Eq. (1) in the form of

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · . (3)

The fundamental frequency ω2 is given by

ω2 = ω2
0 + εω1 + ε2ω2 + · · ·. (4)

Notice that in classical approaches of the theory of perturba-
tion7 an asymptotic series of x(t) is sought in Eq. (3), but the
fundamental frequency being sought is estimated through the
following equation

ω = ω0 + εω(1) + ε2ω(2) + · · · (5)

instead of being estimated by using Eq. (4).
Equations (1) and (2) possess an exact solution, and hence

a comparison of accuracy of Eqs. (4) and (5) can be carried
out. Hu has shown numerically that Eq. (3), contrary to tra-
ditional application of Eq. (5), yields suitable results even for
0 ≤ ε ≤ ∞.

Hu claims that he has derived a new perturbation technique
that is valid for large parameters.1 However, this should be
treated rather as a particular case, and such a general statement
for any other dynamical systems remains invalid. In order to
explain the result obtained by Hu1 we will recall the exact for-
mula in what follows:

ω2 =
π2

4

(√
1 + εA2

)
/K(m), (6)

where

K(m) =
∫ π/2

0

(
1−m sin2 θ

)−1/2
dθ, (7)

m =
εA2

2 (1 + εA2)
. (8)

Since the following approximation holds8

K(m) =
π

2

[
1 +

(
1
2

)2

m +
(

1 · 3
2 · 4

)2

m2+

+
(

1 · 3 · 5
2 · 4 · 6

)2

m3 + · · ·

]
, (9)

and since for 0 ≤ m ≤ 1
2 , Eq. (9) is convergent with a speed

of geometrical progression convergence.
On the other hand, a solution representation in Eq. (4) al-

lows avoiding the occurrence of the development of the ex-
pression

√
1 + εA2 into a series whose radius of convergence

is bounded.
Owing to some of the results presented by Hu1 it is diffi-

cult to judge whether Eq. (4) has greater advantages when it is
compared to Eq. (5) for cases different from these defined by
Eqs. (1) and (2).

For instance, it is often required to study a non-autonomous
Duffing equation of the form of

x′′ + ω2
0x+ εx3 = F cosφt, (10)

or the autonomous in the form of

x′′ + ω2
0x+ εxα = 0, α > 0, α 6= 3, (11)

with attached boundary conditions (see (2)), or, finally, the
equation

x′′ + ω2
0x+ εxα + εaxβ = 0, α 6= β, a ≡ const, (12)

and many other similar problems.
The main aim of this letter is to warn researchers that the

title of Hu1 promises more than has been shown.
In addition, let us give our point-of-view regarding the dis-

cussion included in Sanchez and He.3, 4 Sanchez’s remark that
the amplitude of oscillation of the Duffing equation is badly ap-
proximated by the perturbation technique for parameters with
large values is not true. In order to show our statement, one
may consider Fig. 1 given by Sanchez,3 where initial condi-
tion A = 1 is not satisfied. In Sanchez3 initial conditions (see
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Eq. (2)) are taken and the assumed solution takes the form of

u(t) = A cosω0t+ ε
A3

32ω2
0

cos 3ω0t+

+ε2
(
− 1

256ω4
0

(
A5 + 8ω2

0A
3
)
cosω0t+

+
A5

1024ω4
0

(3 cos 3ω0t+ cos 5ω0t)
)
. (13)

Observe that Eq. (13) does not satisfy the initial conditions.
In fact, it should have the following form:

u(t) = A cosω0t+ ε
A3

32ω2
0

(cos 3ω0t− cosω0t) +

+ ε2
A5

256ω4
0

(
− cosω0t+

1
4

(3 cos 3ω0t+ cos 5ω0t)
)
.

(14)

One may also apply another approach that yields a more im-
proved solution.9 Namely, assume that

u(t) = B cosω0t+ ε
B3

32ω2
0

cos 3ω0t+

+ ε2
(

B5

1024ω4
0

(3 cos 3ω0t+ cos 5ω0t)
)
, (15)

where B is an unknown constant defined by the following al-
gebraic solution

A = B + ε
B3

32ω2
0

+ ε2
(

B5

256ω4
0

)
, (16)

which yields a reasonably good result.
In addition, one may estimate the problem regarding asymp-

totic and real errors that occur as a result of approximating so-
lutions. Namely, from Eq. (1) for ω2

0 = 1 one gets

ω(I) =

√
1 +

3
4
ε+ O(ε2). (17)

At this stage it is tempting but quite wrong to conclude that
Eq. (17) can be substituted by its equivalent asymptotic ap-
proximation

ω(II) = 1 +
3
8
ε, (18)

which is often applied. In what follows we estimate the real er-
rors introduced by Eqs. (17) and (18) with the exact frequency
value (see Eq.(9)) of the form

ω(exact) =
π
√

1 + ε

2

[∫ π/2

0

dθ√
1−m2 sin2 θ

]−1

, (19)

where m2 = ε
2(1+ε) (see Fig. 1).

Assuming ε → ∞ one sees that m2 = 0.5. Furthermore,
using Eqs. (17) and (18) and integral value8 one sees

lim
ε→∞

ω(I)

ω(exact) = 0.9782, lim
ε→∞

ω(II)

ω(exact) =∞. (20)

On the basis of the obtained results one may conclude that
Eq. (17) can be applied for both small and large values of ε
whereas Eq. (18) can only be applied for small values of ε.

Figure 1. Comparison of the results yielded by Eqs. (17), (18) and (19).

One may also introduce the following principle of a minima
solution singularity: an asymptotic solution should contain a
minima set of singular operations. In other words, it is better
to apply the series (Eq. (4)) and then determine ω instead of
assuming it at the beginning of the series (Eq. (5)), although
both series are asymptotically equivalent.
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