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Both classical Fourier analysis and continuous wavelets transformaiion are applied to study non-
linear vibrations of infinitely long flexible panels subject to longitudinal sign-changeable external
load actions. First the governing PDEs are derived and then the Bubnov-Galerkin method is
applied to yield 2N first order ODEs. The further used Lyapunov exponent computation is
described. Transition scenarios from regular to chaotic dynamics of the being investigated plate
strip are analyzed using different wavelets, and their suitability and advantages/disadvantages to
nonlinear dynamics monitoring and quantifying are illustrated and discussed. A few novel results
devoted to the beam nonlinear dynamics behavior are reported. In addition, links between the
largest Lyapunov exponent computation and the wavelet spectrum numerical estimation are

also illustrated and discussed.
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1. Imtroduction

Wavelet analysis has been introduced by Grossman
and Morlet in the early 1980s [Grossman & Morlet,
1984]. Nowadays there exists a considerable number
of references associated with wavelet analysis, and
hence we point out only some of them [Daubechies,
1991; Daubechies & Bates, 1993; Newland, 1993;
Chui, 1997; Astafieva, 1996].

It is already well recognized that the mechan-
ical object characteristics based on power spec-
tra analysis in the frame of Fowrier transform

yielding the signal representation only in frequency
domain are not complete. Therefore, in this
work, the frequency-temporal characteristics are
reported with a use of the continuous wavelet-
transformation. This wavelet-based novel field of
analysis finds applications in signal processing and
signal synthesis (for instance, in language recogni-
tion), in the analysis of transformations of var-
ious type, in the investigation of the turbulent
field properties, in finding solutions to equations

[Lepik, 2001, 2007], in pattern recogrition in human
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vision, image compression, radar and earthquake
prediction, de-noising of noising data as well as in
economical packing of large amount of information.

In mechanical civil engineering, the majority of
research oriented on wavelets application concerns
identification, localization and damage detections.

Fedorova and Zeitlin {1998] studied dynamics of
storage rings, optimal dynamics of mechatronic sys-
tems, and beam vibration governed by PDEs. The
wavelet-oriented construction was proposed to find
solutions to the obtained PDEs.

Staszewski  [1998] wused the continuous
Grossman-Morlet  wavelets to identify non-
linear systems applying the slowly-varying, time-
dependani amplitude and phase functions in order
to detect frequency localization in a multi-degree-
of-freedom system. Then, Staszewski and his co-
workers, applied wavelet transform for damage
detection via optical measurements [Patsias &
Staszewski, 2002] as well as for structural health
monitoring [Staszewski & Robertson, 2007]. A two-
dimensional wavelet transform was used for identi-
fication of cracks in plate structures in [Loutridis,
2005].

It should be mentioned that the wavelet analy-
sis devoted to rigid body investigations is still rather
rarely applied [Ghanem & Romeo, 2001; Jeong,
2001; Lepik, 2001].

Liu [2003] applied an adaptive wavelet trans-
form using the flexibility of the generalized har-
monic wavelets to study simulated and vibration
signals.

Practical example of diagnosis for rotating
machinery using both neural networks and wavelet
transforms was presented by Sanz et al. [2007].
The applied method allowed to detect the novelties
and anomalies of faulty signals of the experimental
vibration data of a gearbox.

In [Permann & Hamilton, 2007] the classi-
cal Duffing oscillator was investigated using the
Daubechies wavelets, whereas in [Zheng et al., 1998]
the Newland wavelets were applied to study vibra-
tions of a rotor. Wong and Chen [2001] applied the
Morlet wavelets for the case, when a frequency of
periodic vibrations changes in time.

In [Nouira et al, 2008] experimental study of
the beam-damp interface is carried out, and the
wavelet transform has been applied to monitor the
instantaneous frequencies and damping. It allowed
the authors to determine the spatial distribution of
microsliding and tangential force along the contact
interface. Zhong and Oyadiji [2008] proposed an

approach based on auxiliary mass spatial probing
by stationary wavelet transform (SWT) to detect
cracks in beam-like structure. Natural frequencies
curve was decomposed by SWT inte approxima-
tion coefficient useful for damage detection. Sixty-
four cases have been studied using SWT and FEM,
The effects of crack depth, crack location, auxil-
iary mass and advantages of the applied method
was also been verified via an experimental test. In
the paper [Ji & Chang, 2008] a nontarget stereo
vision technique to measure the response of a line-
like structure simultaneously in both spatial and
temporal domains is developed. After reconstruc-
tion of a spatio-temporal displacement, wavelet
transform is applied to get the modal character-
istics. The applied method has been iHustrated
using a steel cantilever beam and a bridge stay
cable.

Yang et al. [2008] studied a double-cracked
beam and a plate with multiple cracks using the
discrete wavelet transform. Numerical and exper-
imental results were compared showing a good
agreement.

Bayissa et al. [2008] presented a novel dam-
age identification technique based on the statisti-
cal moments of the energy density function of the
vibration response in time and frequency domains.
The wavelet coefficients are transformed into a
new damage identification parameter in the space
domain. The refinements of damage detection omn
transversally vibrating structural components aim-
ing at significant reduction of the border distortions
normally arising during wavelet procedure were pro-
posed by Messina {2008]. The effectiveness of the
applied algorithm is demonstrated via numerical
and experimental examples.

Blasting vibration signal was studied using
wavelets in [Zhong et al, 2008]. The wavelet
frequency band energy was studied and intensity,
frequency and vibration duration have been moni-
tored.

An application of the wavelet transform to
damage detection of a beam-spring structure was
illustrated in [Zhu et al., 2008].

A new technique for detection and diagnosis
of rolling bearing faults was proposed and illus-
trated by Al-Raheem et al. [2008]. The results for
both real and simulated bearing vibration data
show the effectiveness of the proposed approach. Li
et al. [2008] developed the wavelet transform-based
higher-order statistics for fault diagnosis in rolling
element bearings. The results demonstrated show
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high applicability of the proposed method in vibra-
tion signal processing and fault diagnosis.

In the case of archetype models for chaotic
oscillations often the Duffing, Van der Pol and
Lorenz equations are analyzed [Moslehy & Evan-
Iwanovski, 1991; Konishi, 2001; Ghanem & Romeo,
2001; Ribeiro, 2001; Xiaoping, 2001]. As it will
be shown further our research is also associated
with the classical archetype model of chaos, ie.
with the Duffing oscillator. It should be empha-
sized that there are two references closely related
to our research, i.e. [Moshlehy & Evan-Iwanovski,
1991; Konishi, 2001]. It has been shown in [Moslehy
& Evan-Iwanovski, 1991], how the change of param-
eters of the Duffing equation may yield its chaotic
oscillations, whereas in [Konishi, 2001] the exter-
nal force is used as the control parameter, to study
regular and chaotic dynamics. Lepik [2003] applied
a discrete-wavelet transformation and the wavelet-
like algorithms packets to study the Duffing equa-
tion. In [Awrejcewicz & Krysko, 2003b] a state of art
review and application of wavelet analysis to flexi-
ble continuous systems was proposed. On contrary
to the considered aspects, we mainly aim on the
application of continuous wavelet-transformation
allowed for carrying out simultaneously analysis in
both time and frequency domains.

In what follows we study nonlinear vibrations
of infinitely long flexible panels subjected to lon-
gitudinal sign-changeable external load actions. In
order to study complex dynamics of the mentioned
objects and in particular transitions from regular
to chaotic vibrations two fundamental methods are
applied: the frequency-time analysis on the basis
of continuous wavelet transformation and dynamics
monitoring of the Lyapunov exponents. In addition,
the classical Fourier analysis is also applied. Since
there exists many different wavelets used to study
engineering objects, one of our paper targets is to
answer an important question: Which of these used
in literature wavelets are most suitable to study
nonlinear vibrations of mechanical systems?

2. Statement of the Problem

Let us consider nonlinear vibrations of infinitely
long plate strip subjected to action from a longi-
tudinal sign-changeable load assuming that one of
the plate dimensions differs essentially from a sec-
ond one: ¢ < b (Fig. 1}.

The possible boundary layer effects are
neglected during our study. It is assumed that the

h
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Fig. 1. The investigated system.

plate strip is cylindrically deformed along its length.
Therefore, it is sufficient to study the beam strip of
length a, and unit wideness, i.e. we study a 1D prob-
lem with one space coordinate. Equation of motion
reads [Volmir, 1972|:

O*w + Eh
dxt  2a(l —12)

@/ Gu\ 2 P &P
8 fg (8$) T B2
8w
- Pm(t)wa (1)
where w(z,t) is the beam-strip deflection, z is
the space coordinate, t denotes time, a is the
beam-strip length, A denotes its thickness, v is the
Poisson coefficient, P(t) is the longitudinal load,
D = (ER?/12(1 — %)) is the plate-strip cylindri-
cal stiffness, v is the plate-strip weight density, g
is the Barth acceleration, and ¢ denotes damping
coefficient.

We are going to reduce the governing equa-
tion to its nondimensional form by inftroducing the

nondimensional quantities denoted with bars:
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As a result Eq. (1) is cast to the form:
8w ¢/ dw\ > O%w
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In derived Eq. (3) bars are already omitted.
The boundary condition of a simple support has
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the form
w=uw,=0 forz=0,1 (4)
and the following initial conditions are applied
w(x)|,nq = wo sin(rz),
] (5)
w(m)ltzo i 0'

Further steps of mathematical modeling follow
references [Awrejcewicz ef al., 2002; Awrejcewicz &
Krysko, 2003a; Awrejcewics et al., 2007].

In order to reduce the initial-boundary value
problem to a system of ODEs, we apply the

Bubnov-Galerkin approach. A solution is sought in
the following form

N
)= ZAi(t)wi(-’E)a (6)
i=0

where w;(z) should satisfy the boundary condi-
tions of the stated problem. The following system
of ODEs is finally obtained regarding amplitudes

w(z,t

N
Z A; +eA)ag,
=0

N

= —A Z Al + GAL({Ai}{V)
i=0

N N
x> A — Po(t) Y Ay, (7)
1=0 i=

N

where £ =0,1,... and

1
if = / wilz)wy (z)dz,
0

1
biIcZ/ wiY (z)wy(z)dz,
0

1 (8)
Cifp = ./0 wy (2w () da

2
LAY = f{ZA(t } da.

The system of the obtained second order ODEs
is then transformed to a system of first order ODEs
that are solved via one of the Runge-Kutta meth-
ods. Let us consider the solution to Eq. (3) with
simply supported boundary conditions of the form
(4) and initial conditions (5). Basis functions asso-
ciated with the Bubnov—Galerkin method applica-
tion are taken in the following form: {sinw(2i +
1} }izo,.. n, and they satisfy the boundary condi-
tions. Therefore, the following form of solution is
sought:

wlz,t) = ZA (£) sin(m(2i + 1)z). (9)

Substitution of (9) into (3) yields

N
Z (A; + eA;) sin((2i + 1)z) = —A Z Ai(m(2i + 1)) sin((2i + 1)z)
1=0

3z=()

N

+ {BAL{ A} = Palt) D Ai(m(2i + 1))? sin(m(2i + 1)z),

1 N
L({Ai}i\’):fo {ZAi(w(%—i-l))cos(fr(Qi—!—1)m)} do

=1

—ZZ} AA(

i=1j=1

=0

2

(72(2i + 1)(25 + 1)) cos(w(2i + 1)) (10}

x cos(m(2j + 1)x)dx

N 1
Y f {As(m(2i + 1)) cos(m(2i + 1))z
=170

Z{A

(2 4+ 1))}2.
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Multiplication of both sides of Eq. (10) by
sin(m(27 + 1)z) and integration regarding z from
0 to 1 gives:

N

. - 1
S (ds + i) fo sin(x(2i + 1)z)

=0

x sin(w (27 + 1)z)dz
N 1
=\ ;Ai(ﬂi}4fo sin(w(2: + 1)x)

x sin(m(2] + 1)z)dz + {BAL({A;})}
N 1
— P (t) ; Ai(m}g/(; sin(wiz) sin{mjz)dz.
(11)

Note that the functions {sin(miz)}} are mutu-
ally orthogonal in the interval of [0;1], and finally
the following equations are obtained:

.:"ij + EAj = —)\Aj('n“j)4

N
+ (3)\7r2 > (Aid)? - Py (t)) Aj(m5)?,
i=0

i=1,2,...,N. (12)

Therefore, N ordinary differential equations
of the second order are obtained. Substitution of
Aj(t) = Aj(t) allows to reduce the problem to that
of 2N first order ODEs of the form:

Ay = A
AL = —e Al — AA;(mf)

N
+ (3)\7r2 Z (Az1)% — Pg,-(t)) Aj(mi)?,
i=0
(13)

which are then solved by one of the Runge-Kutta
methods. It is clear that for a lack of initial deflec-
tion the solution is equal to zero. Therefore the ini-
tial conditions are taken in the form of (5), where
wy serves as a small initial deflection. Owing to the
structure of Eq. (13) one may observe that an initial
perturbation of a first harmonic is not propagated
into higher order harmonics, and hence the coefli-
cients standing by higher harmonics are equal to
zero. Therefore, in this case the system of Eqs. (11)

“

is cast to the form of the following second order
equation:

Ay +ed) = ~(An?(1 4 342) - Pt Arw2. (14)

Observe that the obtained equation is the well-
known Duffing equation [Nayfeh & Mook, 1979]. Tn
what follows we apply only excitation in the form
of Py = pysinwt.

The approximated analytical periodic solutions
to the Duffing equation can be found using per-
turbation techniques widely described in the works
of Guckenheimer [{1983], Holmes and White [1983],
Nayfeh and Balachandran [1995]. It should be
ernphasized that solutions obtained via perturba-
tion techniques yield reasonable approximation only
in the case of small loading and small damping. For
instance, Holmes [1979] has shown that in the case
of moderate loading values and presence of damp-
ing, the approximated analytical approaches may
yield doubtful results.

In order to apply a numerical procedure we
reduce Egs. (14) to a system of first order differ-
ential equations. Introduction of notation y; = A4;,
Y2 = ) yields the following, equivalent to Eq. {14),
form

yi Ya,
yh = —eA; — (Mr2(1 + 342) (15)
— pesinwt) A .

In what follows we are focused on a study of reg-
ular and chaotic dynamics of the Duffing equation
with the use of the Lyapunov spectrum investiga-
tion.

3. The Lyapunov Exponents

The Lyapunov exponents play an important role in
the theory of Hamiltonian and dissipative systems.
They allow measurement of a noisy level of a nonlin-
ear system. Besides, there is a link between the Lya-
punov exponents and other characteristic features
of chaotic dynamics, like a Kolmogorov entropy and
a fractal dimension. The Lyapunov exponents char-
acterize an averaged speed of the neighborhood tra-

jectories’ divergence.

Let us assume that after application of one
of the methods yielding reduction of an infinite
problem to finite one, the following set of first order
nonlinear ODEs is obtained (in our case this is rep-
resented by system (15))

dY
— = F{x,t).

7 (16}



3352 J. Awrejeewicz et al.

In this paper, we follow the algorithm of Lya-
punov exponents computation developed by Benet-
tin et al. [1976, 1979, 1980).

Let us consider two neighborhood trajectories
with the initial conditions Yy and Yy + AYy. Its
time evolution yields tangent vector AY(Yp,t) of
the length

d(Yo, t) = AY (Yo, 1) (17)

Dynamics AY is governed by linearization of

Eq. (16}

AY JF

a Yy AY, (18)
where 9F /9Y is the Jacobi matrix for F(Y, M). Let
us define an averaged speed of exponential diver-
gence of the neighborhood trajectories

d(Yﬂv t}
d(Yp,0)

1
A(Yo, AYy) = lim Eln
f—o0
d(D)—D

(19)

One may prove that a convergence interval of A
exists and is bounded. In addition, there exists a full
system of m fundamental solutions (e;) of Eq. (18},
and each of them is characterized by velocity A of
the following defined value:

Ai(Yo) = A(Yo, &), (20)

which are the well known Lyapunov characteristic
exponents. They do not depend on a metric of a
space phase [G], and they can be ordered as follows:

Al2 A2 A3 2 2 A

In a particular case of a periodic trajectory,
Eq. (18) can be interpreted as a mapping on a
period 17, which can be given in the form

AYpy1=A - AY,, (21)

Matrix A possesses M eigenvalues ey having
(in general) a complex form:
|| = Joa| = -+ 2 |- (22)
Let us denote the corresponding eigenvectors
by e;. Then (18) for AYy = e; yields
ATx

Aty = CI:?ei. (23)

Then owing to (19) one gets
1
)\i(ei) = T ln|ai| = )\2'.

On the other hand, one may conclude from (23)
that for
M
AYp=ciey +--- +caepr = qui

t==]

the dynamics of the vector AY), is governed by a
first nonvanishing coefficient ¢;. Observe that each
of the Lyapunov exponents defines velocity X in a
certain subspace having dimension smaller on unit
amount than a previous one. It means that almost
for all AYwe have A = Aq.

A generalization of eigenvalues and eigenvec-
tor notions has been extended to periodic orbits by
Oseledec [1968]. This idea is mainly based on observa-
tion that alsononperiodic orbits can be approximated
by periodic ones but with sufficiently long periods.

For any continuous trajectory governed by dif-
ferential equations (15), at least one of the Lya-
punov exponents asgociated with a vector tangent
to a trajectory must be equal to zero.

The Lyapuncov exponents for vectors AY are
also called first order exponents. Oseledec [1968]
generalized that notion for an averaged wvelocity
of exponential growth of p-dimensional volume V;,
built on the vectors AYy,AYs,...,AY,, (p £ M).
It is clear that

N (¥o, V) o)

= I 11

Tt l | V,(Yo,0)
is exactly a Lyapunov exponent of p order. Oseledec
[1968] as well as Benettin et al. [1976] have shown
that AP(Yp, Vp) are defined via a first order sum p.
Proceeding in an analogous way for almost all AY
the following relation holds A(Yp, AY) = A;(Yp), as
well as for almost all V}, we have

(24)

N=A4doto = A

f==]

(25)

Relation (25) is used for numerical approxima-
tion of the Lyapunov exponents. For p = M one
gets an averaged velocity of exponential growth of
the phase volume:

M
AM =% 2(Yo).
i=1

Maximal exponent A1 is often used as chaos cri-
terion. Recall that A(Yy, AYp) = Ay (Y) for almost
all tangent vectors AYy. Therefore, for Ay computa-
tion an initial vector AYy can be taken arbitrarily.
Integrating Eqgs. (15) and {18) simultaneously one
finds d(t) = |AY(f}|, and further for convenience
dp = d{0) = 1 is taken. Problems occur when |AY|
increases exponentially, since computational errors
appear. Application of the linearized equation has
one important advantage. Namely, its solution does
not depend on |AY|. However, in some cases inte-
gration of both trajectories is required.

(26)
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Let us take time interval 7 and let us rescale
|AY] into one at the end of each interval, i.e. we
preserve the vector length |AY|(|AY]) — dy = 1,
without change of its direction. Let us introduce the
notion of ¥ = Y + AY, and let 7 be a finite time
interval. Therefore, we successively compute

dip = |AYie1 (7)), (27)
AY3(0) = —AY’Z;(T), (28)

where AYy_1(7) are obtained via integration of

(16), (19) on interval 7 with initial values Y (k7),
AY,(0). Assuming
1 n
1=]
(19) yields
A= lim A, (30)
T X0
For regular dynamics Ay = 0, whereas for

chaotic one we have Ay > 0, which does not depend
on Y. The so-far described method is applicable
either for phase flow or for cascades (maps).

4. The Benettin et al. Algorithm

The proposed algorithm by Benettin et al. [1976]
allows for computation of full spectrum of Lyapunov
exponents in M-dimensional phase space.

Let us take an initial basis from p orthonormal-
ized tangent vectors and let us numerically define
a p-dimensional volume V,(t) defined by those vec-
tors. It allows finding the Lyapunov exponent A}
of order p (24). Applying so-far presented pro-
cedure for p = 1,2,...,M, one gets from (25)
all exponents Aq, Aa,...,Ax. Since during move-
ments the angles between tangent vectors exponen-
tially decrease, numerical errors increase, Therefore,
lengths of vectors AY should be also periodically
orthogonalized. In addition, new created vectors
should occupy the same space as the old (being
orthogonalized) ones. Here, the so-called Gramin—
Schmidt renormalization procedure can be applied.
Let AYy_1(7} be a tangent vector in time instant
at the beginning AY;_1(0). First, we compute for
each time interval T the following quantities

& = |ay (n)], (31)

1
AYLW)"I.

Ay =
)
dls

(32)

Now, for 7 = 2,...,M the following quantities
are successively defined

d—1
o (1) =avP (n -3 arP o)
i=1
AYRL - avPO), @)
df = [ (), (34)
_ G3)
AY9(0) = Ui (1) (1(7) (35)
d

In what follows, in the duration of (k& — 1)-th
interval of time 7, the volume V,, increases by dg)
d,(f} dg’) times.

Therefore, (30) gives

A1 = lim ln(d(l} d§2) dgp)). (36)

n—oc 1T

Computation of )\gp_l) from AP ), and applica-
tion of formula (25) allow finding the pth Lyapunov
exponent

Ap = lim —Zlnd(p) (37)

n—00 NT

5. Transitional Regimes

In general the Lyapunov exponents are used to
quantitatively describe either periodic or chaotic
orbits. Theoretical results reported in the above are
further used in our paper for chaos criteria. How-
ever, in real systems (in particular, in continuous
mechanical systems) often, another behavior takes
place. Namely, transition from chaotic to regular
dynamics and vice versa occurs. Widely applied
classical methods devoted to the investigation of
dynamical systems deal with the construction of
a phase space and its various projections (phase
portraits), construction of the frequency spectra
with the help of FFT, and also the Poincaré maps.
Observe that the latter ones do not allow to fol-
low time histories of the system frequencies, and
recently to get more information from the analyzed
system a wavelet transformation is applied.

6. Wavelet Transformation versus
Nonstationary Signals

Investigation of signals representing data using
function superposition goes back to Joseph Fourier
(early 1800's), when he applied only sines and
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cosines to estimate various functions. It is well
known that one of the fundamental characteristics
of the studied quasi-periodic and chaotic dynamics
is frequency spectrum of the vibration process. The
characteristics mentioned define dispersion distri-
bution (averaged squared value) of the frequen-
cies. Typically, in order to estimate a density
of the power spectra the Fast Fourier Transform
(FFT) with successive averaged spectrum histories
is applied. Note that the application of the integral
transformation and the Fourier series is very useful
and illustrative since all transformations are car-
ried out with the help of two real functions: sin(z),
cos(t) or equivalently one complex wave exp(it) =
cos(t) +isin(t), i = v/—1, and are easily proved.

On the contrary, during wavelet analysis the
scale used to study various data plays a key role.
Namely, we can use large and small “windows”
by applying two main wavelet-tool properties, i.e.
different scales and resolutions. The wavelet trans-
form was introduced recently and its mathemati-
cal description is still under development. As it has
been already mentioned, the term “wavelet”, denot-
ing a small wave, was first introduced by Grossman
and Morlet [1984] in the middle 80’s. Nowadays,
various wavelet-type analyzers are widely applied
in various branches of science but not on non-
linear dynamics of heams, plates and shells. The
wavelet-transform of a one-dimensional (1D) sig-
nal consists of the development into a basis con-
structed via soliton-like functions called wavelet,
using various interval transformations and shifts.
Each of the basic functions quantifies the studied
signal frequency and its time localization. There-
fore, the wavelet-transform represents a 2D signal
picture, where frequency and time are considered
to be independent quantities. This is why one may
study the signal properties simultaneously in time
and frequency domains.

The wavelet-type studies are focused on a
choice of the so-called mother wavelet or an analyz-
ing wavelet. One mother (prototype} wavelet allows
to perform the detailed frequency (low frequency
version) and temporal (high frequency version)
analysis of the data being investigated. This is
achieved by using coefficients in a linear combi-
nation of the wavelet functions. Since a wavelet
transformation is a scalar product of the analyzing
wavelet and a signal under analysis, the coefficients
W(t,w) represent a combinational information of
both wavelet and signal (the same is held for the
Fourier coefficients, which contain information on

the signal and the sinusoidal wave). In this work
in order to study chaotic vibrations of the Tim-
oshenko beam we apply a few wavelet transforms
and show that each of them possesses its own pecu-
liar characteristics in time and frequency domains.
Many researchers called the wavelet analysis “math-
ematical microscope” since the methods keep good
resolution on different scales. Parameter ¢ concen-
trates the “mathematical microscope” focus, the
scale coefficient w allows to magnify the signal, and
finally the “optical quality” of the microscope is
defined via the choice of the basis wavelet 2.

Real bases are often constructed using deriva-
tives of the Gauss functions

i) = (-1 [ngﬂ: 7)) ,

Bn() = (i)™ exp (—%) ,

where 41, (k} represent the Fourier transform.

Higher derivatives possess more zero order
moments and hence allow to detect some peculiar
higher order signal features.

Often a complex basis is constructed in the
space of k£ and { using the so-called Morlet wavelet
[Grossman & Morlet, 1984], characterizing a flat
wave being modulated by a Gaussian of unit wide-
ness. The mentioned wavelet functions and their
Fourier transformations are as follows:

2
ra(t) = exp(ikot) exp (—%) ,

Ball) = H(R) exp(—i’fig—’f?ﬁ) ,

where H(k) is the Heaviside function.

Observe that increase of ky improves the
angle basis selectivity, whereas its space selectivity
decreases.

In Figs. 2(a)-2(c) the Gauss wavelets are shown
obtained for m = 1;2;8 depending on time (upper
row) and their Fourler transforms (lower row), as
well as the Morlet wavelet for kg = 15 [Fig. 1(d)].

The wavelet for m = 1 is named WAVE-
wavelet, whereas for m = 2 it is called the MHAT-
wavelet or the Mexican hat. The Gauss wavelet
for m = 2 has narrow energetic spectrum and two
zero moments, whereas for m = 8, it has six zero
moments and is well adapted for complex signals
analysis. The so-far presented wavelets are further
used in our paper.
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Fig. 2. Wavelet functions and the corresponding power spectra.

In tables, the wavelet spectra of a 1D signal,
ie. |[W(t,w)i) are shown as surfaces in 2D and 3D
spaces as well as their projections onto the plane
(t,w) in the form of color pictures, power specira,
phase portraits as well as the Lyapunov exponents
evolution (in our case, two Lyapunov exponents are
monitored).

The color pictures given in the tables allow
to trace changes of the wavelet-transform coefli-
clents on various scales and versus time, as well as,
graphs of local extremes of the mentioned surfaces
(the so-called skeletons) evidently characterizing a
structure of a being analyzed process. In tables, we
have time on horizontal axes, whereas on vertical
axes time scale is shown. Bright {dark) areas cor-
respond to large (small) values of energy density
|W(¢,w)]. The sequence of wavelets is the same for
all tables: Morlet wavelet, WAVE-wavelet, Mexican
hat wavelet, and the Gauss-8 wavelet.

The mathematical model of the mechanical sys-
tem being studied — Eq. (15) — consists of two
control parameters: frequency w and loading ampli-
tude p,. Changing those parameters, one may study
various vibration regimes. In Table 1, for instance,
classical results regarding harmonic vibrations are
reported.

The phase portrait and the power spectrum
indicate that the oscillations are harmonic. Coming
back to wavelets, it is clear that not all of them yield

enough clear signal characteristics. Observe that the
wideness of Mexican hat and WAVE wavelets are
so broadband, that an extraction of the signal fre-
quency is difficult. The most suitable for this pur-
pose is the Morlet wavelet, and then the Gauss-8
wavelet, and the frequency yielded by them fits well
to the standard by Fourier spectrum analysis. How-
ever, the main wavelet analysis the advantage of in
comparigon to the Fourier ones is that we may mon-
itor the frequency spectrum changes versus time. In
other words, assuming that we have, at hand, esti-
mated well the frequency from the wavelets, one
may conclude that Table 1 reports the frequency
oscillations to be constant in time.

Omne may expect on a basis of theoretical back-
ground that the Lyapunov exponents in this case
are negative (lack of chaos). Besides, increase of
computational time yields their asymptotic limit-
ing values.

In Table 2, principally different behavior is
obtained. The largest Lyapunov exponent is pos-
itive, and matching this observation with the
broadband Fourier spectrum and the phase por-
trait allows to conclude the chaos occurrence. The
wavelet spectra arve in favor of that conclusion.

The chaos identification elements like a phase
portrait and a Fowier spectrum yield the integral
information on the system within the monitoring
time interval. Even for unchanged values of the .
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control parameters (in our case, these are ampli-
tude and frequency of excitation), it may happen
that on one time intervals oscillations are regular,
whereas on the other they are chaotic ones. In such
cases the wavelet-spectrum and the dynamics of the
Lyapunov exponents supplement each other giving
a reliable picture of the system behavior.

The described situation is given in Table 3.
Phase portrait and Fourier spectrum are con-
structed on the whole time interval, and they clearly
testify the occurrence of chaos. However, trac-
ing the Lyapunov exponents evolution, one may
observe such time instant, when the largest Lya-
punov’s exponent changes from positive to negative,
It means that the system oscillations are regular. In
order to study this time instant we apply wavelet

Table 3.

analysis. One may observe the mentioned transition
from chaotic to periodic dynamics, but for an ear-
lier time instant than that indicated by the largest
Lyapunov exponent. Again it appears that the most
suitable, in the sense of frequencies recognition, are
the Morlet and the Gauss-8 wavelets.

Knowing time threshold, where transition from
chaos to periodicity takes place, one may construct
a phase portrait and a Fourier spectrum indepen-
dently for two time intervals. They are reported in
third (up to time instant ¢ = 150} and fourth (after
t = 150) rows of Table 3. They are favorable to the
discussed results via wavelet spectra analysis.

Owing to the earlier discussion, it is of inter-
est to introduce the comparison of frequency-
temporal wavelet-spectrum and the dynamics of the

(w=25p; =74).
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(Continued)
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Table 3. (Continued)
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(Continued)
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Table 5. (Continued)
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Lyapunov exponents. Namely, how big is a differ-
ence between the estimation of the time instant,
where the motion is changed from chaotic to har-
monic, while computed via the wavelet analysis and
the Lyapunov exponent estimation? Data given in
Table 4 suggest that the mentioned difference can
be relatively large.

For the control parameters applied in Table 4 a
fransition from one-frequency vibrations takes place
within the time interval of ¢ € [130;140] in the case
of wavelet based analysis, whereas the Lyapunov
exponent becomes negative for ¢ = 160. In other
words, the Lyapunov exponent is delayed in com-
parison to the wavelet-transform estimation. How-
ever, we have already mentioned that in order to
achieve a limit of the Lyapunov exponent fime evo-
lution, a rather long computation is required. This
is why time interval is expected when the Lyapunov
exponent starts to “stabilize” after the change of
oscillation character.

Observe that so-far considered cases reported
in Tables 1-4 involve rather classical investiga-
tions. Namely, relatively long time intervals of either
chaotic or regular dynamics have been well repre-
sented by the sign of the computed Lyapunov expo-
nents. In Table 5, a less standard case is reported:
the wavelet-spectrum exhibits two narrow chaotic
windows for time instants ¢ = 150 and ¢ = 275.
Notice that the application of classical tools of anal-
ysis Hke the Fourier spectra and phase portraits fails
in this case due to short time intervals. However,

the application of the wavelet transforms (in spite
of the differences in frequency spectra) allows to
overcome the mentioned difficulty, since short time
system chaotic regimes are exhibited by all wavelet-
spectra.

By neglecting the first transitional Lyapunov
exponent dynamics, the following interesting behav-
ior is observed. Already for ¢ = 100 the largest
Lyapunov exponent being negative becomes posi-
tive, and in the time instant corresponding to the
first chaotic window, the local maximum of the
largest Lyapunov exponent is observed. However,
later on the oscillations are regular ones, but the
largest Lyapunov exponent is not negative, and also
in the time instant associated with second chaotic
window occurrence one may observe again its local
maximum.

In what [ollows, we are going to compare the
evolution of the largest Lyapunov exponent (curve
2 in Fig. 3) with time history of maximum beam
deflection (curve 1 in Fig. 3). It is well known that
jump-like change of maximal deflection corresponds
to a stiff stability loss. As the results presented in
Fig. 3 show, in the time instants associated with sta-
bility loss the largest Lyapunov exponent is either
positive or exhibits its increase tendency.

In the above, we have illustrated and dis-
cussed regular and chaotic beam dynamics and
its quantification via the Lyapunov exponent
estimation. The reported results concern twe con-
trol parameters, i.e. longitudinal load amplitude

_2.1500_maw. ernf

25 T T

LCE, maxWV

a5t

Wﬁf |

)

A
o |

Fig. 3.

w7 p i
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The Lyapunov exponent (2) and the beam deflection (1), w = 2.15
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max LCE for eps=1

max LCE for eps=0.5

max LCE for eps=0.5

2 25 3

Fig. 4. The largest Lyapunov exponent in the {pz,w} plane for various damping coefficients: (a) ¢ = 1; (b) £ = 0.5 and

{cye=0.

and its excitation frequency. In what follows, we
compute the largest Lyapunov exponent for each
pair of the mentioned control parameters p,,w and
the so-called “vibration chart” is constructed [see
Figs. 4(a)-4(c)].

One may observe how the chart changes with
respect to change of damping coefficient £ in the
Duffing equation [Figs. 4(a)-4(c)]. It is visible
that decreasing damping yield increases the chaoctic
zones, and finally for & = 0 the whole chart {p,,w}
represents chaotic dynamics.

7. The Lyapunov Dimension

It is known that a trajectory of any dynamical gys-
tem being in chaos is characterized by a chaotic
attractor, which can be quantized by its dimension.
There exist a few algorithms devoted to dimension
computation. In this work, we apply the method of a
strange attractor dimension computation proposed
by Kaplan and Yorke [1979a, 1979b, 1979¢|. Let the
dimension of the phase space of the investigated
dynamical system be N, so we have N Lyapunov
exponents A1, ..., A,. Then the sum Sy, = > 7o) A;
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Lyapunov dimension

Fig. 5. The Lyapunov dimension chart.

is successively computed. Since the largest Lya-
punov exponent of a chaotic attractor is positive,
then there exists such m, where S, > 0, and
Sm+1 < 0. Owing to Kaplan and Yorke proposal,
the after sought dimension is estimated via the
following relation:

™

DN

D=m+ 2L
|Am+1§

The latter relation is used for our system
dimension chart, shown in Fig. 5, where the same
notion as in the previous cases hold.

8. Conclusions

In general, all transitions of the investigated sys-
tem from its regular to chaotic dynamics and vice
versa are detected and illustrated by all testified
wavelets. However, the analysis carried out indi-
cates that only two wavelets (the Morlet and the
Gauss of eighth order) yield reliable frequency esti-
mation results, and in applications devoted to non-
linear mechanics, the Morlet wavelet transform is
mostly recommended. In addition, we have illus-
trated the links between the largest Lyapunov
exponents computation and the wavelet spectra
numerical estimation. The reported delay of the
largest Lyapunov exponent in comparison to the
results yielded by the wavelet transform compu-
tation occurs due to the memory property of the
investigated system.
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