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Abstract. A novel dry friction modeling and its impact on differential equations computation and Lyapunov exponents 
estimation are studied in this paper. A brief review of some existing standard friction laws are presented and novel 
continuous friction model is proposed, which takes into account some elements of the mentioned friction models. We 
show that our continuous friction model is suitable for analysis of stick-slip vibrations caused by dry friction and is more 
efficient from a computational point of view in comparison with the other presented friction models. Its advantages are 
illustrated and discussed using a two degree-of-freedom model. Although there are numerous works in the scientific 
literature dedicated to stick-slip vibrations, we consider a rigid body lying on a belt which moves at non-constant velocity 
that is less investigated. The behavior of the system is monitored via standard motion analysis. Time series, phase portraits, 
bifurcation diagram as well as the Lyapunov exponents are reported. 
 

Keywords: dry friction, two degree-of-freedom, bifurcation diagram, Lyapunov exponents. 
 
1. Introduction 
 
Computing Lyapunov exponents is one of the most known 
and most important identification tools in nonlinear 
dynamics allowing for identification and investigation of 
chaotic dynamics in nonlinear dynamical systems. 
Although the Lyapunov’s theory for estimation chaotic 
dynamics was used by Oseledec as early as forty years ego 
and there are numerous works in the scientific literature 
dedicated to chaotic vibrations, in general there are not 
many effective methods available for the Lyapunov 
exponents estimation. The classical Lyapunov exponents 
definition can be used with success only in systems 
governed by differential equations with smooth right-hand 
sides. On the other hand, methods commonly used for the 
Lyapunov exponents computation require smooth vector 
fields as a necessary condition to be satisfied. 
There are many discontinuous systems arising due to 
physical discontinuities such as dry friction, impact, and 
backlash in mechanical systems or diode elements in 
electrical circuits. For these cases another 
numerical/analytical approaches may be also applied, i.e. 
phase portraits, bifurcation diagrams, the Melnikov-type 
methods, Fourier spectra, as well as various methods 
experimentally and numerically oriented. Our 
investigations in this paper will be concern with systems 
governed by differential equations with non-smooth right-
hand sides due to dry friction phenomenon. The response 
of a mechanical system with dry friction may include 
several nonlinear effects such as stick-slip vibrations, self-
sustained oscillations and other nonlinear instability 
phenomena [8, 16]. 
Although dry friction belongs to one of the known 
phenomenon exhibited by mechanical systems, its proper 

mathematical modeling does not belong to easy tasks. 
Friction force between sliding surfaces is a complex 
process and depends on several parameters, i.e. relative 
velocity of sliding surfaces, normal load, time, 
temperature. Publications from a mechanical point of view 
are mainly concerned with dry friction stick-slip 
oscillations with various models of friction. An extensive 
literature review on dry friction models can be found in the 
works of [1, 2, 3, 10, 11, 14]. 
Even in the last decade stick-slip vibrations were the aim 
of research of many authors, for example in the works [7, 
9, 13]. In these works, stick-slip induced vibrations are 
studied for cases where body or bodies are riding on a 
driving belt as a foundation that moves at a constant 
velocity. In our work, as the example of a mechanical 
system which exhibits stick-slip vibrations, the mechanical 
model with non-constant belt (foundation) velocity is 
studied. 
In the next Section 2 a brief introduction and review of 
some existing standard friction laws is given first and then 
our proposed novel continuous friction model is presented. 
Several various friction models will be used to facilitate 
the comparison of obtained results. These models and their 
impact on differential equations computation and 
Lyapunov exponents estimation are studied using 2-dof 
model with dry friction (Section 3). This approach can be 
used for all problems involving dry friction, e.g. for 
Filippov systems described by a set of first-order ordinary 
differential equations with a discontinuous right-hand side. 
Numerical methods to calculate periodic and non-periodic 
solutions in the system’s phase space, bifurcations diagram 
as well as the Lyapunov exponents can be found in Section 
4. Results and conclusions of our study are presented in 
Section 5 and Section 6, respectively. 
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2. Several Dry Friction Formulations and Proposed 
Continuous Friction Model 
 
Several dry friction formulations have been proposed 
based on the classical (discontinuous) Coulomb model. 
One of the simplest form of the friction law is the classical 

Amontons-Coulomb law, in which friction force frF  is 

defined (in dimensionless form) as a function of the 

relative velocity rV  of sliding surfaces in the slip phase 

and as a function of the externally applied force exF  (all 

forces acting in the system excluding friction force) in the 

stick phase. The constitutive relation for frF  is known as 

the signum model with static friction point and describe 
dry friction phenomenon in the correct and accurate way. 
Note that during numerical simulation an exact value of 
zero is rather rarely computed. For this reason the 
mentioned signum model from a numerical point of view is 
equivalent to the classical Coulomb model. 
Observe that the dependence of friction force on the 
relative velocity based on the signum model is non-

continuous function for 0Vr =  and standard numerical 

procedures devoted for solving differential equations 
cannot be used. For this reason the friction curve is 
therefore often approximated by a continuous or smooth 

function. Usually, friction curve approximated by these 

functions are continuous or even smooth, but for 0Vr =  

we have always 0Ffr = , too. The friction force depends 

on rV  but not depends on exF  in the stick phase. 

In one of the recent paper [13] devoted to mathematical 
modeling of dry friction, the so called switch model is 
proposed and used in order to match the obtained 
numerically simulation results with those given by the 
experimental investigation of the mechanical bodies 
exhibiting stick–slip vibrations. Switch model (from a 
mathematical point of view) is governed by three systems 
of nonlinear ordinary differential equations: one for the 
slip phase, a second for the stick phase and a third for the 
transition from stick to slip. In the work [13] it has been 
shown that from a computational point of view the 
smoothing methods are more expensive than the switch 
model based methods. 
Below we presented (in non-dimensional form) an 
alternative continuous friction model taking into account 
some elements of the mentioned friction models. First we 

divided the space rex VF −  into the following four 

regions as follows 

 

 ε>r1 V:V , 

 ( ) ( )[ ] ( ) ( )[ ]sexrsexr2 FF0VFFV0:V −<∩≤≤ε−∪>∩ε≤≤ , 

 ( ) ( )[ ] ( ) ( )[ ]sexrsexr3 FF0VFFV0:V >∩<≤ε−∪−<∩ε≤< , 

 ( ) ( )sexr4 FFV:V ≤∩ε≤ , 
 

where sF  denotes maximum static friction force. The proposed continuous friction model has the following form 
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Figure 1 show friction force defined by above formula (1) as a function of rV  and exF . 

 
Fig. 1. The friction force as a function of relative velocity rV  in stick phase for several fixed externally forces exF  
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In our model friction force is a continuous function on rV  

(like in smoothing methods) and for 0Vr =  friction force 

is equal to externally applied force exF  (like in signum 

model). This model of friction has been already used by 
the authors of this work in studies [5, 6, 15]. In this work 
we take ))|V(|1(F|)V(|F rsr ε−δ+= . 

 
3. Two Degree-of-Freedom Model 
 
Advantages of the proposed friction model and its impact 
on differential equations computation are illustrated and 
discussed using two degree-of-freedom model with dry 
friction, which exhibit both regular and non-regular 
dynamics. Although there are numerous works in the 
scientific literature dedicated to stick-slip vibrations, a 
rigid body lying on a belt which moves at non-constant 
velocity and Lyapunov exponents estimation in these 
systems are less investigated. In this work the mechanical 
model with both constant and non-constant belt 
 

 (foundation) velocity is studied. In addition, we introduce 
external harmonic excitation, too. We consider a two 
degree-of-freedom mechanical system (model) with dry 
friction consisting of (block of) small mass m  riding on a 
driving belt as a foundation that is moving at constant or 

non-constant velocity drv  and attached to inertial great 

mass M  by spring k . Between mass m  and belt dry 

friction occurs with a friction frT  (with maximum static 

friction force sT ). The relative velocity of the mass m  

with respect to the belt as a foundation is denoted by 

xvv drr ɺ−= . In addition, harmonic excitation with 

amplitude 0T  and circular frequency 1ω  is added to the 

small mass m . The mentioned system is shown in Figure 
2. This model possesses stick-slip periodic and non-
periodic solutions. Velocity of the belt is denoted by 

tcosvv 0dr ω= .

 
 

Fig. 2. Two degree-of-freedom model with dry friction and harmonic excitation 
 

The following second order differential equations govern 
the system dynamics 
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where the dot (·) denotes differentiation with respect to 
dimension time t . In our model 

tcosT)yx(kT 10ex ω−−= .  

This dynamical system can be expressed as a set of first-
order ordinary differential equations. The governing 
equations read 
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Let us introduce similarity coefficients *t , *x , 

*** txv =  and the following dimensionless parameters: 

*tt=τ , *xxX = , *xyY = , *vvV = , *vwW = , 

zZ = , ϕ=φ , mkt 2
*

2
0 =ω , Mkt 2

*
2
0 =Ω , *tω=Ω , 

*11 tω=Ω , )mv(tTF **ss = , )mv(tTF **00 = , 

*00 vvV = , ZcosVV 0dr = , XVV drr
ɺ−= , 

φ−−ω= cosF)YX(F 0
2
0ex . In our calculations we take 

]s[kmt* =  and ]m[1x* = . Then, vibrations of the 

masses m  and M  are governed by the following non-
dimensional second order equations 
 







−Ω=

φ++−−=

)YX(Y

cosF)F),Z(V(F)YX(X
2
0

0exrfr

ɺɺ

ɺɺ

, (4) 

 
which are further recast to the following form 
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where a dot (·) denotes now the differentiation with respect 
to non-dimensional time τ . 
 
4. Numerical Computational Methods 
 
The methods commonly used to compute the Lyapunov 
exponents require smooth vector fields as a necessary 
condition. In signum model and switch model friction 
force is non-continuous function of relative velocity and 
therefore a continuous friction model is proposed in this 
paper, which does not posses this disadvantage and can be 
used during analysis of the systems, where the Lyapunov 
exponents are computed by the standard procedures [4, 
12]. Note only, that while computing Lyapunov exponents, 
besides six equations (5) also six additional systems of 
equations ( 6,5,4,3,2,1n = ) 
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with respect to perturbations are solved, where 
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Finally, forty two equations are solved. The differential 
equations of motion are solved via the Runge-Kutta-
Fehlberg (RKF 45) method with varied time step h  

( 5
min 10h −= , 1

max 10h −= ) and with a Runge-Kutta-

Fehlberg tolerance of 610−=η  and steepness parameter 
310−=ε  and the Gramm-Schmidt ortonormalization 

technique [4]. The behavior of the system is monitored via 
standard motion analysis like time series, phase portraits, 
bifurcations diagram as well as the Lyapunov exponents. 
 
5. Results 
 
Our numerical computations are carried out for the 
particular case mM >> . The initial non-dimensional 

parameters of our model are 1Fs = , 3=δ , 

00002.02
0 =Ω , 2.0V0 = . Let us consider first 

dynamics of the system without harmonic excitation, i.e. 

0F0 =  and for 0=Ω , i.e. when the belt is driving with 

the constant velocity constVV 0dr == . For this case, the 

phase portraits obtained with signum model, smoothing 
method (hyperbolic tangent approximation), switch model 
and our continuous friction model are shown in Figure 3. 

 
 

Fig. 3. Phase portraits of the analyzed for .constVV 0dr ==  for 

different models of friction: signum model (curve 1), smoothing 
method (curve 2), switch model (curve 3) and our continuous 
friction model (curve 4) 
 
The periodic stick-slip oscillations have the sliding 
velocity almost the same at each model in slip phase but is 
visible, that in the sticking phase some differences are 
observed. The differences occur in result of another 
approximating friction force application in near-zero 
relative velocity neighborhood. Contrary to the other 
models results, our results are better (almost exact 
solutions). In Figure 4 are shown the phase portraits 
obtained using both switch model and proposed continuous 
friction model for our mechanical system. Periodic stick-
slip oscillations occur in this case for .constVdr = , too. 
 

 
 

Fig. 4. Phase portraits: switch model (curve 1), continuous 
friction model (curve 2) and continuous friction model for 

210−=ε  (curve 3) 
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The sliding velocity is almost the same as above (for both 
switch and continuous friction models), but in the sticking 
phase some differences are observed, too. Contrary to the 
switch model results (curve 1), our results (curve 2) using 
the applied continuous friction model are better. Namely, 
we have obtained almost exact (high precision numerical 
computations) even for larger (10 times) parameter ε  
(curve 3). It allows to obtain the same accuracy as in the 
switch model, but for larger time steps and steepness 
parameter ε . Finally we see that the switch model is more 
expensive than the continuous friction model from the 
computational point of view in this case. 
Figure 5 shows phase portraits obtained with the two 
compared friction models (the standard approximation 
using a signum function modeled by the hyperbolic tangent 
function in the stick phase and our friction model). For the 
first friction model the computation took 3353 integrations 
points to obtain the orbit with the non-dimensional period 
time 12. Small time steps are not necessary near the 
transitions, but during the whole stick phase, as Figure 5a 
shows. For our friction model the computation took only 
104 integrations points to obtain the same orbit (Figure 
5b). 
 

a) 

 
b) 

 
 

Fig. 5. Points of trajectories of motion in the system’s phase 
space for different models of friction: a) smoothing hyperbolic 
tangent approximation and b) the proposed model 
 
In our calculations small time steps are taken only near the 
transitions between stick and slip phases and time step in 
the stick phase is bounded by maximum time step maxh . 

Consequently, we show that in this case smoothing 
approximation of classical signum function is clearly more 

expensive than the proposed model. The differential in the 
first friction model is extremely large for relative velocity 
equal to zero, whereas in our model it is equal to zero and 
this is an advantage for numerical computations. 
Our proposed friction model is continuous function of 
relative velocity and therefore it can be used during 
analysis of the systems, where the Lyapunov exponents are 
computed by the standard procedures. In our model with 
harmonic excitation ( 5.0F0 = , 21 =Ω ) the dependences of 

the largest Lyapunov exponent λ  with drV  and 0F  as 

control parameters and displacement X  of the mass m  on 
the vertical axis are reported in Figure 6 using proposed 
continuous friction model during computations. 
 

 
 

Fig. 6. Dependences of the largest Lyapunov exponent λ  with 

drV  and 0F  as control parameters 
 

The periodic and non-periodic solutions are detected using 
bifurcation diagram in the velocity drV  and the 

displacement X  plane, too, in Figure 7. 
 

 
 

Fig. 7. Bifurcation diagram of the analyzed system with drV  as 

the control parameter and X  on the vertical axis 
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Let us consider now dynamics of the system without 
harmonic excitation, but for 0≠Ω , i.e. when the belt is 
driving with the non-constant (harmonic oscillation) 
velocity τΩ= cosVV 0dr , where 1.0V0 = . The studied 

mechanical system possesses various interesting solutions 
include stick-slip vibrations, as show below. Figures 7 and 
8 present different behaviors of analyzed mechanical 
system using our proposed model. 
 

a) 05.0Fs =  

  
 

 
b) 3.0Fs =  

  

 

 
c) 6.0Fs =  

 
 

 
 

d) 95.0Fs =  

  
 

 
 

Fig. 7. Time series and phase portraits of the analyzed system for 
1.0=Ω  and various static friction force sF  of the belt (grey 

line) and the mass m  (black line) 
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a) 1.0=Ω  

 
 

 
 

b) 2.0=Ω  

 
 

 
 
 
 
 

 
c) 3.0=Ω  

 
 

 
 

d) 4.0=Ω  

 
 

 
 
 
 
 

Fig. 8. Time series and phase portraits of the analyzed system for 6.0Fs =  and various angular velocity Ω  of the belt (grey 

line) and the mass m  (black line) 
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5. Conclusions 
 
In this paper a brief review of some existing standard 
friction laws based on the classical (discontinuous) 
Coulomb model are presented and novel continuous 
friction model, which takes into account some elements of 
mentioned friction models is proposed. Their impact on 
differential equations computation and Lyapunov 
exponents estimation are studied. We show that our model 
is suitable for stick-slip vibration simulations. This model 
is validated using a two-degree-of-freedom mechanical 
system with dry friction. It has been observed that our 
continuous friction model yields engineering accepted 
results and possesses advantages in comparison to other 
friction models. The obtained results have been compared 
with those given by switch model application, and they 
indicate better numerical efficiency of our proposed 
continuous model. The obtained results exhibit advantages 
of the proposed algorithm in comparison to the algorithm 
using smoothing approaches, too. Continuous friction 
model is validated and it gives correct results and almost 
exact solutions (high precision numerical computations), 
even if the numerical steepness parameter ε  is extremely 
large. It allows obtaining the same accuracy as in the 
switch model faster and for larger steepness parameter ε . 
For these reasons our calculations are less expensive from 
the computational point of view. 
During the mentioned analysis we have applied the 
standard techniques, i.e. time series, monitoring of phase 
portraits, bifurcation diagrams and the Lyapunov 
exponents. One of the important advantages of our novel 
model is associated with direct application of the standard 
numerical procedures devoted to either solving nonlinear 
differential equations or to computation and estimation of 
the Lyapunov exponents. In addition, some interesting 
dynamic behaviors (including stick-slip vibrations) of the 
analyzed system are reported and analyzed. 
The proposed continuous friction model may also be 
suitable for simulation of the stick-slip vibrations and it 
may be applied to model friction force in any other 
mechanical systems. 
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