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A closed cylindrical shell with circular cross-section having constant stiffness and density and
subjected to sign changeable loading and embedded into a temperature field is analyzed. Both
Bubnov-Galerkin (with a higher approximation) and Fourier methods are applied to solve the
derived nonlinear nondimensional partial differential equations. Among others, the novel sce-
nario of transition from shell harmonic to chaotic vibrations via the collapse of quasi-periodic
vibrations with one independent frequency and Hopf hifurcation is detected, illustrated and dis-
cussed. In addition, it is shown how for various intensities of the temperature field (including its
absence} the increase of the loading yields qualitative changes in the investigated shell dynamics,
and how chaotic zones are transmitted into periodic ones and vice versa.
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1. Introduction

In general, the shell (plate) type structural members
are nowadays often applied in various fields of engi-
neering including aero-navigation, investigation of
both ocean stores and civil engineering [Ross, 1975;
Liew et al., 1994], as well as mechatronic devices {for
instance, sector-membranes used in pressure sen-
sors). In particular, a very important task of today’s
engineering is associated with a study of nonlin-
ear vibrations of thin spherical shells and circular
cylindrical shells. This is motivated mainly by a
rapid development of rocket, ship, train, vehicle and
other transport tools construction [Avduyevskiy
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et al., 1992; Bakulin et al., 1998]. The fundamental
part of a study of nonlinear vibration of shells is
focused on geometrical aspects of nonlinearity. The
essential contribution to this field is introduced by
Thompson and Bishop [1994], Nayfeh and Mook
[1979], Benamar [1994], Volmir [1972], Bolotin
[1964], and others. Below, we briefly review some
aspects of the state-of-the art of nonlinear vibra-
tions of shells. Evensen [1974] was one of the first
who critically reviewed state-of-the art of the men-
tioned topic including the results published in the
years 1955-1971. On the other hand, although the
monograph by Leissa [1973] includes the overview
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of over 500 references dedicated mainly to dynam-
ics of circular cylindrical shells, only 24 of them deal
with nonlinear shell dynamics.

Paidoussis and Li [1992] studied chaotic
dynamics of heat exchanger tubes which had an
impact on the generally loose baffle plates. It was
shown that for a sufficient flow velocity chaos
appeared and a negatively damped impact oscilla-
tor was used to understand the system behavior.

Yang and Sethna {1992] studied nonlinear flex-
ural vibrations of nearly square plate being period-
ically excited with forces normal to the mid-plane
of the plate. Dynamics consisting of anti-symmetric
or mixed modes occurred. The Hopf bifurcation
produced the amplitude-modulated traveling waves
with jerky motions. Global chaotic phenomena were
observed.

A homogeneous fully clamped rectangular plate
subjected to spatially thermal loads and narrow-
band acoustic excitation wasg studied by Murphy
et al. [1996]. Time series power spectra, autocor-
relation functions, spatial dimension and temporal
complexity were applied to characterize the occur-
ring chaotic orbits.

Subharmonic resonance of a rectangular plate
with uniform stretching when two distinct linear
modes are near one-to-one internal resonance was
studied by Chang et al. {1997]. It was shown via
an averaging procedure that the plate could exhibit
harmonic and subharmonic motions in the directly
excited spatial mode or subharmonic motions in
which both the internally resonant modes appeared.
A period-doubling route to chaos was shown.

Sun and Zhang [2001] used chaos and frac-
tal theories to study dynamic buckling of wvis-
coelastic plates. A nonlinear integral-differential
dynamic eguation was reduced to an autonomic
four-dimensional dynamic system. Lyapunov spec-
tra and fractal dimensions of strange attractors
were reported.

The nonlinear mathematical theory of perfo-
rated viscoelastic thin plates using both Karmén
hypotheses and Boltzmann’s constitutive law of lin-
ear viscoelastic materials was derived by Cheng and
Fan [2001]. In particular, the nonlinear dynamic sta-
hility of a viscoelastic angular plate was studied,
and a novel method of Lyapunov exponent spec-
trum estimation was proposed.

Lai et al. [2002] used fractal dimension and
the maximum Lyapunov exponent to study large
defiections of a simply supported rectangular plate.
Fourier spectra, state-space plots, Poincaré maps

and bifurcation diagrams were computed. Various
bifurcations were detected and their links to chaotic
orbits occurrence were discussed.

Nonlinear equations governing dynamics of
Thnoshenko’s viscoelastic thick plates with dam-
age were derived and studied by Sheng and Cheng
[2004]. The influences of load, geometry and mate-
rial parameters on the dynamic plate behavior were
investigated by the Galerkin approach.

Xiao et al. [in press] derived nonlinear equa-
tions of motion for the rectangular moderately thick
plates with a transverse surface penetrating crack
on an elastic foundation subject to periodic load
action. Bifurcational and chaotic behavior of such
plates were studied using the Galerkin and Runge-
Kutta integration methods.

Ribeiro and Duarte [2006] studied geometri-
cally nonlinear dynamics of composite laminated
plates. The existence of chaos was confirmed by cal-
culation of the largest Lyapunov exponent.

Guo and Mei [2006] showed how the use of
aeroelastic modes could reduce drastically the num-
ber of coupled nonlinear modal equations for the
large amplitude nonlinear panel flutter studied at
an arbitrary yawed supersonic flow angle and ele-
vated temperatures. Periodic and chaotic dynamics
of the panel were reported.

Ribeiro [2007] studied the chaotic behavior
of geometrically nonlinear vibrations of linear
elastic and isotropic plates under the combined
effect of thermal fields and mechanical excitations.
Newmark’s implicit time integration method was
applied to solve the governing equations in the time
domain.

Raouf and Nayfeh [1990] applied a numerical-
perturbation approach to study the axisymmet-
ric dynamic vibrations of closed spherical shells
subjected to external harmonic excitation with a
frequency near one of the natural frequencies of a
flexural mode in the presence of a two-to-one auto-
parametric resonance between the excited mode
and a lower flexural mode. The limit cycles which
appeared after Hopf bifurcation underwent pitch-
fork bifurcation and a cascade of period-doubling
bifurcations leading to chaos. Also the subcriti-
cal Hopf bifurcation was illustrated, and a cyclic-
fold bifurcation vielding chaos was reported, among
others.

Popov et al. [2001] studied numerically internal
auto-parametric inssabilities in the free non-linear
vibrations of a cylindrical shell. Regular and chaotic
behavior of two-modes interaction was analyzed
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with emphasis put on energy transfer between the
modes.

Soliman and Goncalves [2003] investigated the
axisymmetric chaotic dynamic behavior and snap-
through buckling of thin elastic shallow spherical
shells under harmonic excitation. Both Galerkin
and Fourier—Bessel approaches were applied to
reduce the partial differential equations to a finite
degrees-of-freedom system. Steady-state and tran-
sient stability boundaries were presented and the
vertical load conditions were determined.

A shallow cylindrical shell under gravity and
periodic acceleration and possessing concentrated
mass was studied by Nagai et al. [2004]. The
Galerkin method was used to reduce the problem
of ordinary differential equations. The influence of
mass value on the chaotic dynamics of the system
was investigated as well.

Amabili [2005] studied large vibrations of dou-
bly curved shallow shells with a rectangular base,
simply supported at the four edges and subjected
to harmonic excitation normal to the surface in the
spectral neighborhood of the fundamental mode.
Donnell’s and Novozhilov’s shell theories were used
to compute the elastic strain energy. Shell stability
under static and dynamic loads was studied, both
Lyapunov exponents and dimensions were com-
puted, and snap-through instability, subharmonic
resonance, as well as the period-doubling routes to
chaos were illustrated and discussed.

Pellicano and Amabili [2006] studied dynamic
stability of circular cylindrical shells subjected to
static and dynamic axial loads. Chaotic dynamics of
precompressed shell within Donnell’s and Sanders—
Koiter’s theorems was illustrated.

Although Amabili et al. [1998] claimed that
the full overview of the state-of-the art of nonlin-
ear dynamics of shells embedded in vacuum and/or
in a fluid is carried out, it seems that it concerns
only the closed circular cylindrical shells and hence
omits other configurations of shell systems. In addi-
tion, the mentioned mechanical objects are stud-
ied mainly through a rough one degree-of-freedom
approximation, which is far from the recent engi-
neering expectations.

We illustrate how geometrical nonlinearity pro-
vokes a qualitatively novel behavior of nonlin-
gar dynamics of shells which cannot be predicted
and exhibited by the linear shells’ theory. Note
that Awrejcewicz and Krysko [2003a, 2003b] and
Awrejcewicz et al. 2005, 2007] dealt with nonlin-
ear dynamics of arbitrary geometry of shells, where

high-order approximation of shell dynamics is taken
to achieve almost infinite dimension of the real
problem.

After the Challenger accident a rigorous and
highly accurate nonlinear analysis of thin-walled
structures was highly required. A new design of fuel
containers is required, and therefore a rigorous anal-
ysis of shells embedded into a temperature field is
needed.

In this work the Bubnov—Galerkin method in
higher approximations and in the Fourier represen-
tation is applied. The Bubnov-Galerkin procedure
in the form proposed by Vlasov is used. In particu-
lar, the influence of a temperature field on the shell
dynamics is studied.

The aim of the paper is not a full and multi-
lateral presentation of the problem under investi-
gation, but an attempt of showing the simplicity
of realization and effectiveness of the Bubnov—
Galerkin method applied to the theoretical prob-
lems of plates and shells.

2. Formulation of the Problem

In the frame of the nonlinear classical theory of
shallow shells a closed cylindrical shell with circular
cross-section and of finite length with both constant
stiffness and density subjected to sign-changeable
loading and embedded into the temperature fieid
is studied. The system of coordinates with the
z-axis coinciding with longitudinal coordinate, the
y-axis coinciding with a circular coordinate, as
well as the z-axis directed along a normal to
the mean swface is introduced (Fig. 1). The
cylindrical shell as a 3D object Q is defined
in the following way in the given system of
coordinates: @ = {z,y,z|(z,y) € [ L] x [0;27],
~h <z<h}

The system of equations governing shell dynam-
ics is given in the following nondimensional form
[Volmir, 1963}:

1 _oPw lw o W
228 1o + X2
12(1 — v?) Jat B2 dy? !

_LOF 0w Ow
Yox2  Hi2 ot

1 821’.&@ 32]1/1,,.
/\wl
12(1 - »?) ( dx? 2 dy? )}

+kog(x,y,t) =0,

— L{w, F)
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Fig. 1. Computation scheme.
FF HF F 1
A2 2 N+ o
{ O + Ar2y? + dyt + 2L(w,w)
Fw 1PN, PN,
: - A = 0.
oy Hx? A A2 + y? } 0 (1)

The following nondimensional parameters are
introduced (with the bars):

— RL .
=2hi, F=Ey2hPF, t=-—rie
w = 2hiD, a(2h)°F, %mt,
L - _ h
,\=E; x=LE y= Ry ky——kywég,
_Eo(2h)!
=T g

where L and R = Ry are the shell length and radius,
respectively, ¢ denotes time, ¢ is the damping coeffi-
cient of a medium where the shell is embedded, F is
the stress (Airy’s) function, w denotes deflection, h
is the shell thickness, v is Poisson’s coeflicient, Fy
is the Young modulus, ¢{z,y,t) is the transversal
load, &, is the shell curvature regarding y.
In addition,

FPw PF 82w OF
Ox? Gy?

OF _, 0w OF
y? Ox? Bxdy Oxdy’

0w Fw 82w\
Llwrw) =2 {83}2 a7 (Bscay) ]

are the known nonlinear operators, Ny = (1/h) x

L{w, F) =

n
ffL Qdz is the temperature-induced force, M; =

B
(12/1%) ff% Qzdz s the temperature-induced

torque, Q(_a:,y,z) = T — Ty is the temperature
increment, whereas 1y is the initial temperature.

ffff//g,)%

Fig. 2. Support along shell end faces with additional flexible
ribs (boundary conditions (2)).

For brevity of our considerations bars over the non-
dimensional quantities in Eq. (1) are omitted.

In this work, vibrations of a simple supported
shell with the following homogeneous boundary
conditions

2
w =0 2—? = F=0
z
2 (2)
w =0 forz= D 1,
and with the following initial conditions:
dw
—n = . —_— puaneg 0 3
wie koo =0 57| ®

are studied. The physical meaning of the boundary
condition of the stress function F' is shown in Fig. 2.

The temperature field 7 is given in the fol-
lowing form: T{z,y) = Csin(rz)sin(my). The ana-
lytical form of the temperature field distribution
satisfies the well-known Poisson equation and it
influences the earlier explicitly given temperature-
induced force and torque.

Let us consider the dissipative system (g # 0)
subjected to transversal loading distributed in zone
0 < ¢ < gy 0< o<1 and being changed har-
monically ¢{t) = gosin{wyt), where go and w, are
the amplitude and frequency of the exciting force,
respectively.

3. The Bubnov—Galerkin Method
and Fourier Representation

The boundary value problem regarding space coor-
dinates is solved by the Bubnov—Galerkin method
in higher approximations. Functions w and F' being
solutions to Egs. (1) are approximated by an
expression which consists of the product of func-
tions depending on time and coordinates of the
following form
Ni N

w=3 > Ait)piley),

=0 j=0
.Nl N’f_; (4)

F= Z Z B (t)viz(z, y)-

=0 j=0
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In order to find approximated values of func-
tions w and F we take the coordinate systems of
functions of the form {x;{z,y), ¥z, v)} (6,7 =
0,1,2...) in (4), which satisfy the following
reguirements:

(1) @iz, y) € Ha, Py{z,y) € Ha, where Hy is
the Hilbert space, which is further referred to
as the energy space.

(2) Vi,j functions g;;(z,y) and ¥;(z,y) are lin-

early independent and continuous in space {1,

together with their derivatives up to the fourth

order.

wii(x,y) and ;(x,y) satisty rigorously the

main boundary conditions {and initial condi-

tions if amy).

{4) wi;(z,y) and ¥y;(z,y) satisfy a completeness
property in H4.

(5) wi;(z,y) and ¥i;(z, y) should represent the first
N elements of the complete system of functions.

(3)

The coefficients A;;(t} and B;;(t) are the functions
of time being sought. For convenience, left-hand
sides of Egs. (1) appearing in brackets are denoted
by @1 and P2, and therefore (1) takes the following
form:

Py (w F

+kq(@,y.t) =0,

Pw FF 9N, O°N,

=0. (5)

@ *F M 8211{& 821’1{[5
B2l B e oy

Applying, the Bubnov-Galerkin procedure to
) one gets

f/ Drippi(z, y)dudy

/ / q z,y, 6wz, y)dedy = 0,
(250

f / (I’Q’l,b;cg(:ﬂ,y)dfﬂdy =0, k=0,1,...,Ny;
0.J0

I=0,1,...,Ns.
(6)
Now and further we take £ == 27 for a closed

cylindrical shell. Owing to (6) Eqs. (5) take the
following form

>

kL

Z A‘L_;lszjrskl + Z Bi;Ch g + ]1} Qu + Hyp
if i

- g Az E BT'SDl,ijrskl]
i
d?A;; dA;.
- Z [ R dtw] G =0,

2. [Z AigCoghr + Z By Z Fijrskl

ki if

{7)

+ZA7,;| ZA73D2 iirskl + H‘)M:\ =0.

i 8

Symbol >, [+ standing before every equation
in system (7) means that each of these equations is
understood as the system of k! equations of these
types, and the associated Bubnov-Galerkin inte-
grals have the following form

1re 1 1 82‘,033 o2 Prs 28 Pig &2 Prs 82Soij 82(Prs
oL = - dxd
Sigrokl ,/0/0 12(1 — »?) [)\2 dr?  Hz? +A A2 Oy? +283:8y 83:83:] $radzdy,
82 i
Criim = / / [ ‘?‘Jy d) }%zdﬂ?di, Coijrl = /f [ J}iflkzdfﬂd?,

1 rZ
Dy ijrsia = / f L{wij, rs)ordady,
o Jo

282¢ij 321,%

1 p€ 1
Da gjrski = / / 5L(<Pij>90rs)1bktd$d'y=
0oJo 2

Tt 1 821[)13 32¢m
Pijrsl.:l - \/OL |:'i—§ amz 8"[}2 +A

az?xbt'j 8271[)1‘3
2 Oxdy 8.’383:] Ydedy,

dy? Oy

£rE 1 p€
Gz’jki:/{)fu wijPudedy, Qu=/0/0 gz, y, t)dedy,
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Lre 1 PM; M,
Hiypy = — At L ppdad
141 ./o /o 201 =2 [ 5.2 T A by pridedy,
(8)
. 82N c')QNt
Hopy = f / [)\ 8732 8 ] Wdzdy.
Integrals (8), except of Qg corresponding only R = R + G-'D,AB — G184
to the part of the shell area, are computed regard- 1 G-l
ing the whole shell surface. After application of the ' +q(H)GTQ + 1; (11}
Bubnov—Galerkin procedure the obtained system of A=R.

ordinary differential equations with respect to func-
tions A;;(t) and By;(t) has the following matrix
form

G(A+cA) +SA+ C B+ D1 AB = Qq(t) + Hy,

CyA+PB+DyAA = Hy, o)

G = {|Gyull, 8 = [1Sirsuill, C1 = [Cuajuall,
Co = 1Coulls Dy = || Duigrskill: D2 = || Dagjrstl],
P | Pijrell = square matrices of dimension
2Ny - No x2-N; - Ny, and A ”A”“,
B = By, Q = ||@i]| are the matrices of dimen-
sion 2- N7 -Np x1

Further, second equation of system (9) is
solved regarding matrix B, and then it is solved
by the method of inverse matrix on each time
step:

where

B = [-P7'DyA — P7ICyA + PIH,C 4
+PB-+DAA

= H,. (10)

Multiplying first equation of (10) by G™! and
introducing notation A = R the following Cauchy
problem regarding nonlinear first order ODEs is

formulated |

1
Iig / sin(imada =
0

1
Io g = / sin{imz) sin(krz)dz
J0

2
I =/ cos(jy)dy
0

The introduced transformation is allowed since
the inversed matrices G~ and P! exist if the coor-
dinate functions are linearly independent.

Equations (11) are supplemented by bound-
ary and initial conditions and the obtained Cauchy
problem is solved by the fourth order Runge-Kutta
method. Step in time is chosen via the Runge rule.
Results obtained using various computational meth-
ods were compared by Krysko and Narkaytis [2005],
who showed that integration by the fourth Runge-
Kutta method was sufficient and the application of
higher order Runge-Kutta approaches was time con-
suming and did not yield improvement of the results.

In our case, @;;, %5 in (4) are approximated by
the product of two functions, where each depends

only on one argument which satisfies boundary con-
ditions (2) and (3):

N1 N2

w= Z Z Ay (t) sinlimz) cos(Jy),
i=1 j=0
N1 Na

F= Z Z B;;{t) sin(inz) cos(fy).

i=1 §=0

(12)

Integrals of the Bubnov-Galerkin procedure are
computed using the following formulas

0, i=0,24,...
L =135,
v
LR
— 2? _31
0, i#3,
:0’

) 1 [Sin(zﬁm) L Si11(27i'012):| A0 2=

an a

Iy g1 = f cos(jy) cos(ly)dy = ¢ , 1 2
0 M}. ~ 2’"—’ (]{z — 0 v = 1‘

&5
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(1 [_ cos(im) _ cos(fm) _ cos(Bem) _ cos(By)
4w ﬁ1 2 B3 P
1
I3 ikr m/o sin(émax) sin(rmrz) sin(krz)de = + = 51 + = 52 + E?: + ;J By # 0;
oos(Bum) g L ] - — 0
[ s g, @J Q v=1,2,3, By =0

A3

1 [sm(27 sin( 27 sin{ 2w sin(2w
_[ ( ’Yz)+ ( 'Yz)+ (tvs)+ ( "/4)}’ vy £ 0

<27
I3 jis =/ cos(jy) cos(sy) cos(ly)dy = gt o 3 ~a
in(2
0 MEQW, ve=1,2,4 —
“fu
1 [cos{ﬁﬁr) _cos(faem)  cos(fam)  cos(Bum)
T = [ costes) o) sinie)e | B #0
e = | cos(im i o - _t 0t ;
d,ikr A iwx) cos(rwa) sin(krz)dz R ’
cos(G,%) ]
%0—%07 '1}21:2’3, 1,1:0;
{ B B Z

\

sin{2m sin(2 sin{2# sin{ 27
(1'7/1)Jr (2mve)  sin(2my3)  sin(2my) vy O

27 - )

1 { "

Iyjls =f sin(jy) sin(sy) cos(ly) = N 72 3 V4
sin(27y,)

T

~om, v=1,2,4 Yo = 0;

(13)
where
ar=j7+1, ay=j—I
G =i+r—k, [o=—i+r+k [g=i—-r+k [fi=it+r+k,
Mm=j—s8+l, m=j-s-I, m=j+s+l, u=j+s-1L
The following notation is further introduced
I =M-Iuhy, M=k, Ii=rknLghL I = 02/\

Lijhtrs = (202 + 326%) Igipr Iajis — 263k lusne Lajish,  IE, = Do ji.

Iihy, I = C2n?Myh;,

—2 4
H A
J]. ?._]‘kl m [)\2 + 2'.'" + )\234 N I2,7:TI2,j57 J"Zluf’:l,jkl = [A2 + 2T + A254:| " TizIQ,irIQ,js.

Therefore, taking into account the given integrals, system (11) assumes the form:

Z Z Z T w A + TigBre + I8 q(t) + Ai; Bilijiims + = TE g Iyl ¢ =90,  (14)

1
Z ZZ[ TP Bij + Il Avs + I, + I, + SAij AuLighns| 0 =0 (15)

]
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The Bubnov-Galerkin algorithm described
briefly so far allows a wide class of problems,
both static and dynamic, to be solved. A solu-
tion to static problems is obtained via the method
first applied by Feodos’ev (the so-called “set up
method”) [Feodos’ev, 1963], and widely applied
for instance, in a monograph by Awrejcewicz and
Krysko [2003]. In order to solve static problems
of plates and shells, various approximate methods
have been applied allowing the partial differential
equations to be reduced to the system of nonlin-
ear algebraic equations, which is usually further lin-
earized. In the sef-up method a solution to PDEs is
reduced to that of the Cauchy problem of ODEs.

Equation (15) is solved regarding matrix B.
Then, substituting found coeflicients By into {(14)
one gets second order ODEs with respect to Ay,
which are solved using the fourth order Runge-
Kutta method.

4. Numerical Example

Next, we study the dynamic behavior of the circu-
lar closed shell defined by parameters k, = 112.5,
A = 2, £ = 9 embedded into a temperature field
and transversally loaded by ¢(t) = ggsin{wyt) act-
ing on the shell surface 0 < < 1,971, 0 < 2 < 1
for the case of w == wy = 26.176. First, an influence
of the series number of approximating functions on
the solution is analyzed for No = 7 and No = Q.
Space distributed vibrations of the shell are studied
for 0 <2 £ 1;0 <y < 27, whereas shell cross-
sections are analyzed for z = 0.5; 0 < y < 27
for N2 = 7 and No = 9. In addition, heat influ-
ence on the shell stress-strain state is traced via
monitoring of the shell deflection surface, stresses
and bending torque distributions for temperature
amplitudes C = 0 and C = 50. Simultaneously, the
relation wpax(C) is monitored for fixed amplitude

qgo, as well as the relation wyax(go) for fixed exci-
tation frequency w, = wp, where wp is the funda-
mental frequency of shell linear vibrations. Finally,
the so-called scales of shell vibration fype are con-
structed. Investigation of the function wma(C) for
each C enables determination of instability zones
of the shell subjected to the temperature field.
The constructed scales of shell vibrations make it
possible to study easily the shell dynamic behav-
ior including transition scenarios from regular to
chaotic dynamics, as well as to estimate a critical set
of the shell parameters, where a further shell heat-
ing is impossible, since it causes its destruction. Let
us study a stabilization process of the shell chaotic
vibrations as well as its stability loss versus param-
eter (. For this purpose the relation wmax(go) is
monitored for every fixed value of C and the relation
Wmax (C) is studied for some fixed values of gg. This
approach provides the estimation of stability zones
and enables all fundamental shell dynamic charac-
teristics to be established at some control points of
the shell pre- and post-critical states.

Let us fix the frequency of excitation wy = wg =
26.176 and let us construct vibration scales using
the observation of a frequency power spectrum.
A given scale represents part of the shell vibra-
tion chart. Namely, it represents a narrow band
of the chart regarding frequency wp = 26.176 ver-
sus load amplitude gq. Figure 3 shows the scales of
the shell dynamic regime regarding variation of the
excitation amplitude 0 < gy < 0.4. On the other
hand, Fig. 3(a) illustrates a corresponding scale
regarding lack of the temperature field (C' = 0).
Furthermore, Fig. 3(b) refers to C = 10, whereas
Fig. 3(c} refers to C = 50. When analyzing the
mentioned figures, one may conclude that a simul-
taneous increase of both amplitudes of tempera-
ture and excitation causes a decrease of the periodic
behavior. Namely, chaotic zones are increased and

0.2 .4

Fig. 3. Vibration scales versus amplitude qq.
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the transition scenarios associated with bifurcation
zones do not appear, although zones regarding the
superposition of frequencies are observed.

The values of gy of zones shown in Fig. 3(a)
are chosen in the following way: harmonic zone —
go = 0.1; frequencies superposition zone — gy =
0.24, and chaotic zone — ¢y = 0.3. Then the shell
dynamics is studied for fixed ¢y and for the varia-
tion of 0 < C' < 50. The corresponding drawings
and scales characterizing the shell behavior for the
given conditions are reported in Fig. 4, where the
relation wmay(C) and scales of the dynamic regimes
are constructed for Ny = 7.

Note that the system exhibits sudden jumps,
i.e. the shell passes through various dynamic states.
For instance for go = 0.1 for €' = 39.71 (point
A2) a sudden jurnp is observed, and although one
may achieve convergence in average power spectrum
regarding frequency, but a number of series terms
approximating a solution plays a crucial role in the
estimation of the shell stress-strain state. Below,
we study the shell deflection form as well as the
forms of transversal shell cross-sections for fixed
temperature and loading in the neighborhood of a
jump and for its maximal value. Table 1 gives the
shell cross-sections for fixed time instants and for

fixed value of z = 0.5 and for 0 < y < 27. The forms
of transversal cross-sections (z = 0.5; y € [0;2x])
are studied for the same time instants. The reported
wave forms of the circular shell refer to points Al
and A2 and they are shown in Fig. 4, whereas
the shell points B1, B2 correspond to graph 2 in
Fig. 4.

The cross-section I-I has been obtained in the
following way: the shell cylindrical surface is cut by
a plane going over the cylinder axis and dividing
the surface into two parts.

For comparison of the shell dynamics at points
Al and A2 {see curve 1 in Fig. 4) the shell deflec-
tions and the shell transversal cross-sections are
analyzed using the following characteristics: time
history w(t; zg;yo), phase portrait w(w'), power
spectrum S{w), and Poincaré map w(werr). For
instance, the system state shown in scale 1 of Fig. 4
is recognized as periodic, which is manifested by
the already mentioned characteristics. The maxi-
mal shell deflection occurs in the zones situated
in the neighborhood of the borders of externally
loading zone as well as inside it. The existence of
a temperature field causes not only an increase of
the shell deflection, but also its buckling. However,
in the case of the shell behavior exhibited by point

Bg Periodic vibrations
i Quasi-periodic vibrations
. Bifurcations

Linear combinations of
independent frequencies

{3 Chaos

82 Subharmonic vibrations Wol2

Subharmonic vibrations @, /3

Fig. 4. Functions wimax(C) and scales of dynamic regimes of the shell for Ng = 7.
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Table 1.
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A2, the shell deflection is rapidly changed and in
both time history and phase portrait, two-frequency
vibrations occur. Note, that the systern still exhibits
periodic behavior, although a crucial role is played
here by a number of solution terms, which will be
shown for the same parameter C = 39,71, but for
the series terms number Ng == 8.

Note, that in the case of transversal shell cross-
section at points B1 and B2 a similar shell bending
form is observed, whereas at point B2 one may
observe large chaotic shell deflections. Owing to
observed four points in the Poincaré cross-section
at point B1 and the corresponding two loops in the
phase portrait, one may detect a Hopf bifurcation.
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Fig. 5. Relation wmax(gg) and scales of dynamic regimes for No = 9.

Next, we study the shell deflection forms  the number of terms used in the approximating
and the shell transversal cross-section forms for  real solution series (the results reported further
the number of terms used in approximation are obtained for N = 9). The shell deflec-
No =0, tion forms and the shell transversal cross-section

Comparing the graphs in Figs. 4 and 5 for  forms together with the fundamental characteris-
points A2 and B2, respeciively, one may observe  tics regarding points A2 and B2 are reported in
that the vibration process depends essentially on  Table 2.

Table 2.
=39, 71{point A2), g=0.1 C=9,69 (point B2), g=0.24
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Note that at point A2 for C' = 39.71, contrary
to the case associated with Ny = 7, a stahiliza-
tion of the vibration process occurs towards regu-
larity of the shell dynamics. Besides, a transition
from chaos to quasi-periodic vibration is observed
in the case corresponding to point B2. Owing to
the results shown in Fig. 5, one may conclude that
the shell dynamics tends to be a regular process for
¢ = 50.

In order to get a possible full picture of the
shell behavior for a given time instant, it is required
to investigate the shell stress-strain states. The

bending torques are governed by the following

equations:
PP 0w
My = —| — — |,
¢ (6w2 e )

[ng
Oy?
The shell deflection forms and the shell fransversal
cross-sections for the bending torque M™ = M, +
M,, and for the stress function F,, = (9%F/dz?) +
(0°F /0y?) are given in Table 3.

ﬂr’fy == I/'a:L—-2

Bzw]

Table 3.

w(t, %, V)

C=0

section I-I
”T"“‘-—}\ A

C=50
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Fig. 6. Charts of shell dynamic regimes in plane {gg,wp}.

Note, that when the temperature field is not
activated (C' = 0), one may observe the shell
indentation in the neighborhood of the area of
external loading action. Increasing the temperature
amplitude action (C' = 50), the shell deflection
increases in the zones of hoth loading and tem-
perature actions and the shell stress-strain state
is more activated. Deformation waves are propa-
gated into the whole shell surface yielding increase
of the shell deflection. One large and a few small
dents are observed in the middle shell surface owing
to the stress function analysis. However, analy-
sis of the bending torque exhibits waves propagated
on the whole shell surface. On the other hand, for
C = 50, a qualitative change in the shell middle sur-
face is observed since it is buckled in the vicinity of
the load ¢(t) action. The stress function exhibits
both intensive dents and convex buckling in the
neighborhood of load action.

Although in this work our aim was to
study chaotic shell dynamics, the engineers were
interested in getting information of the full shell
behavior regarding variation of the external load
parameters. For this reason the so-called charts of
the vibration shell behavior versus control parame-
ters (here temperature amplitude and external load
amplitude and frequency) are constructed. A chart
represents the parameters plane (go,wp), where the
temperature amplitude C' is additionally changed.
Fach point of a chart possesses its own color cor-
responding to the shell vibration regime. In other
words one gets the system dynamics presented in a
condensed matter. Numerical computations are car-
ried out for Nz = 1, Ng = 7, and a set of parameters
(go,wp) is covered by the mesh of 300 x 300 points.
Namely, a number of problems being solved achieves

the value of 9-10%. Each of the mentioned problems
has been studied using the qualitative theories of
differential equations and nonlinear dynamics. The
frequency power spectra, phase portraits, Lyapunov
exponents, time histories and the Poincaré sections
are monitored.

Three charts are shown in Fig. 6. Figure
6(a) is associated with the lack of temperature
action (C' = 0 in formula T(z,y) = Csin(rz)sin
(my)), whereas Fig. 6b{c) corresponds to C' = 10
(C = 50).

It should be emphasized that the chart under-
goes essential changes when the temperature ampli-
tude increases. Zones of regular shell dynamics are
similar only for small values of 0 < gp < 0.2 and
the shell exhibits periodic dynamics. However, for
go > 0,2 and for C = 10, the shell exhibits chaotic
dynamics. The monitored shell stress-strain charac-
teristics indicate that the shell deflections increase
and large dents occurrence is observed. On the other
hand, for € = 50 large bifurcation zones appear.

5. Concluding Remarks

A novel computational approach to the solving
of strongly nonlinear partial differential equations
by modeling the dynamics of closed circular shells
using the Bubnov-Galerkin approach modified by
Vlasov is presented in this paper. It has been shown
that both shell vibration character and accuracy of
the obtained results depend strongly on the number
of terms used in the series approximating the sought
solution.

Next, the main results are briefly summarized.
The influence of external temperature field together
with the band type time-changing load applied in
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the interval of 0 € ¢ < 1,97 causes an increase
of the shell chaotic dynamics (see Figs. 3(b) and
3(c)). The increase of the loading surface causes an
increase of the chaotic zones (go > 0.4), and also
the Hopf bifurcation zones increase substantially.

The shell stress-strain state is characterized
by the increase of the shell deflections and the
wave propagations are exhibited by the shell middle
surface.

References

Amabili, M., Pellicano, F. & Paidoussis, M. P. {1998]
“Non-linear vibrations of simply supported circular
cylindrical shells coupled to quiescent fluid,” J. Flu-
ids Struct. 12, 883-918.

Amabili, M. [2005] “Non-linear vibrations of doubly
curved shallow shells,” Int. J. Non-Lin. Mech. 40,
683-710.

Avduyevskiy, V. S., Galitseyskiy, B. M. & Glebov, G. A.
(1992] Introduction to Heat Transfer in Airplanes
and Rocket-Cosmic Techniques, eds. Avduyevskiy,
Koshkin, Mashinostroyeniye, Moscow (in Russian).

Awrejeewlicz, J. & Krysko, V. A. [2003a] Nonclassic
Thermoelastic Problem in Nonlinear Dynamics of
Shells (Springer-Verlag, Berlin).

Awrejcewicz, J. & Krysko, A. V. [2003b] “Analysis of
complex parametric vibrations of plates and shells
using Bubnov-Galerkin approach,” Arch. Appl. Mech.
73, 495-504.

Awrejcewicz, J., Krysko, V. A. & Shchekaturova, T. V.
(2005] “Transitions from regular to chaotic vibrations
of spherical and conical axially-symmetric shells,” Int.
J. Struct. Stab. Dyn. 5, 350-385.

Awrejcewicz, J., Krysko, V. A. & Krysko, A. V. [2007]
Thermo-Dynamics of Plates and Shells (Springer-
Verlag, Berlin).

Bakulin, V. N., Obraztsov, I. F. & Potopakhin, V. A.
(1998} Dynamical Problems of Theory of Compos-
tte Shells, Influence of Thermo-Dynamic Loads and
Concentrated Energy Flows (Moscow, FizMatLit) (in
Russian).

Benamar, R., Bennouna, M. M. K. & White, R. G. [1994]
“T'he effects of large vibration amplitudes on the mode
shapes and natural frequencies of thin elastic struc-
tures,” J. Sound Vibr. 175, 377-395.

Bolotin, V. V. [1964] The Dynamic Stability of Elastic
Systems (Iolden-Day, San Francisco).

Chang, S. 1., Lee, J. M., Bajaj, A. K. & Krousgrill,
C. M. [1997] “Subharmonic responses in harmonically
excited rectangular plates with one-to-one internal
resonance,” Chaos Solit. Fract. 8, 479-498.

Cheng, C.-J. & Fan, X.-J. [2001] “Noulinear mathemat-
ical theory of perforated viscoelastic thin plates with
its applications,” Int. J. Solids Struct. 38, 6627-6641.

Evensen, D. A. [1974] “Non-linear vibrations of circu-
lar cylindrical shells,” Thin Walled Structures: The-
ory, Ezperiment and Design, eds. Fung, Y. C. &
Sechler, E. E. (Prentice-Hall, Englewood Cliffs, NY),
pp. 133-155.

Feodos’ev, V. L. [1963] “On the method of solution of
stability of deformable systems,” Prikladnaye Mate-
matika © Mekhanika 27, 265-275 (in Russian).

Guo, X. & Mei, C. [2006] *“Application of aero-
elastic modes on nonlinear supersonic panel flut-
ter at elevated temperatures,” Comp. & Struct. 84,
1619-1628.

Krysko, V. A. & Narkaytis, G. G. [2005] “Compari-
son of various computational methods using example
of vibration madelling of flexible infinite plates sub-
jected to sign changeable loads,” Proc. XX Int. Conf.
Plate and Shell Theories, Saratov, pp. 281-288.

Lai, H.-Y., Chen, C-K. & Yeh, Y.-L. [2002] “Double-
mode modeling of chaotic and bifurcation dynam-
ics for a simply supported rectangular plate in large
deflection,” Int. J. Non-Lin. Mech. 37, 331-343.

Leissa, A. W. [1973], Vibration of Shells, Report NASA
SP-288, Gowvernment Printing Office, Washington,
DC.

Liew, K. M., Lim, C. W. & Ong, L. 8. [1994] “Flex-
ural vibration of doubly-tapered cylindrical shallow
shells,” Int. J. Mech. Sei. 36, 547-5065.

Murphy, K. D., Virgin, L. N. & Rizzi, S. A. [1996] “Char-
acterizing the dynamic response of a thermally loaded,
acoustically excited plate,” J. Sound Vibr. 196,
6835-658.

Nagai, K., Maruyama, S., Oya, M. & Yamaguchi, T.
[2004] “Chaotic oscillations of a shallow cylindrical
shell with a concentrated mass under periodic excita-
tion,” Comp. Struct. 82, 2607-2619.

Nayfeh, H. & Mook, D. T. [1979] Non-linear Oscillations
(Wiley, NY).

Paidoussis, M. P. & Li, G. X. [1992] “Cross-flow-
induced chaotic vibrations of heat-exchanger tubes
impacting on loose supports,” J. Sound Vibr. 152,
305-326.

Pellicano, F. & Amabili, M. [2006] “Dynamic instability
and chaos of empty and fluid-filled circular ¢ylindrical
shells under periodic axial loads,” J. Sound Vibr. 293,
227-252,

Popov, A. A., Thompson, J. M. T. & McRobie,
. A. [2001] “Chaotic energy exchange through auto-
parametric resonance in cylindrical shells,” J. Sound
Vibr. 248, 395-411.

Raouf, R. A. & Nayfeh, A. H. {1990] “Non-linear
axisymmetric response of closed spherical shells to a
radial harmonic excitation,” Ini. J. Non-Lin. Mech.
25, 475-492.

Ribeiro, P. & Duarte, R. P. [2006] “From periodic to
chaotic oscillations in composite laminated plates.”
Comp. Struct. 84, 1629-1639.



Chaotic Vibrations of Closed Cylindrieal Shells in a Temperature Field 1529

Ribeiro, P. [2007] “Thermally induced fransitions
to chaos in plate vibrations,” J. Sound Vibr. 299,
314-330.

Ross, C. T. F. [1975] “Finite elements for the vibration
of cones and cylinders,” Int. J. Num. Meth. Eng. 9,
833--845.

Sheng, D.-F. & Cheng, C.-J. [2004] “Dynamical behav-
iors of nonlinear viscoelastic thick plates with dam-
age,” Int. J. Solids Struct. 41, 7287-7308.

Soliman, M. S. & Goncealves, P. B. [2003] “Chaotic
behavior resulting in transient and steady state insta-
bilities of pressure-loaded shallow spherical shells,”
J. Sound Vibr. 259, 497-512.

Sun, Y. X. & Zhang, S. Y. [2001] “Chaotic dynamic
analysis of viscoelastic plates,” Inf. J. Mech. Sci. 43,
1195-1208.

Thomson, J. M. T. & Bishop, S. R. [1994] Non-Linearity
and Chaos in Engineering Dynamics, Centre for Non-
linear Dynamics, (John Wiley & Sons, NY).

Volmir, A. 8. [1963] Stebility of Elastic Systems (in
Russian) (Moscow, Fizmatgiz).

Volmir, A. 8. [1972] Nonlinear Dynamics of Plates and
Shells (in Russian) {Nauka, Moscow).

Xiao, Y.-G., Fu, Y-M. & Zha, X.-D. [2008] “Bifurcation
and chaos of rectangular moderately thick cracked
plates on an elastic foundation subjected to periodic
load,” Chaos Solit. Fract. 35, 460-4G5.

Yang, X. L. & Sethna, P. R. [1992] “Non-linear phe-
nomens in forced vibrations of a nearly square
plate: Antisymmetric case,” J. Sound Vibr. 155,
413-441.





