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1. Introduction

Homogenization of rods and plates with weakenings is important from a technical point of view (Sergienko et al., 1991;
Dejneka et al., 1995). Various numerical (Sergienko et al., 1991; Dejneka et al., 1995) and matrix algorithms (Mikhaylov,
1980; Molotkov, 1984) as well as saw-tooth function approaches (Pilipchuk and Starushenko, 1997) are used for homoge-
nization. In the case of a large number of periodic nonhomogeneities, homogenization appears to be very promising, which
has been clearly demonstrated using examples of bending of plates with weakenings (Bogan, 1999; Lewinsky and Telega,
2000). In this work, we consider the homogenization of the plane problem of elasticity for plate with periodic weakenings.
We use asymptotic simplifications of the plane problem of elasticity proposed in Manevitch et al. (1979), Manevitch and Pav-
lenko (1991) and described in Awrejcewicz et al. (1998), Andrianov et al. (2004).

2. Rods with weakenings

We consider longitudinal oscillations of a rod comprised of periodically repeated elements (elementary rods) with differ-
ent characteristics (see Fig. 1). The motions of the elements of the rod are governed by the following equations:

(EF)iUix;x, — (PF)iUie = fi(x1, 1), 1=1,2, (1)
where E; are Young’s moduli; F; are areas of the rod cross-sections; p; are the densities; fi(x;,t) are the forces acting on the rod

elements; U; are the displacements, x; is the spatial coordinate; and ¢ is the time.
The following conjugation conditions of neighborhood elements hold:

U, = U,,T; =T, on the contact, (2)
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Fig. 1. Rod with weakenings.

where T; = (EF),Ui.,, i=1,2.
We transform the relations (1) and (2) to the following form:

Uixx_piuitt :(P,‘(X7 t)7 l: 1727 (3)
U, = U,; U, = &U; on the contact, (4)

where p; = [*p;/Ei; @i = L*fi(x,t)/E;; x = X1 /L; & = (EF),/(EF);; and L is the length of the rod.
In what follows we take ¢ =/¢/L, assuming that ¢ << 1 then we apply a multiple-scale method. After introduction of fast
(¢ =x/e) and slow (x) variables one gets

o o 0

A typical periodically repeated cell is shown in Fig. 2. The desired functions are represented by the series
Ui = Ug(x,t) + & UV (x, &, 0) + & UP (x, &) + ..., i=1,2, (6)

where UM (x,¢,t) = UM (x, 6+ 1,t);i=1,2; k=1,2,...; and the parameters « will be defined later.

Observe that consider three key parameters ¢, &; and u appear in the system. The first of them is small in comparison to
the others and we chose ¢ as the basic one for an order estimation of ¢; and u. We introduce parameters 1, $» and 3 using
the formulas

g~et (1—g)~ef, p~ef (1 —p)~eh (7)

A choice of the parameters of asymptotic integrations o; 8 (i = 1,2, k=1 <+ 4) is carried out using a routine procedure (Awrej-
cewicz et al., 1998; Andrianov et al., 2004). As a result one obtains two following limiting cases.

Case (a): a1 =0p=2, B1 =0, B =1, B3 = B4 =0. The choice of the parameters corresponds to elementary rods with approx-
imately similar lengths and similar characteristics.

The dynamics of a cell 0 < & < 1 is governed (in the first approximation) by the equation

2

aag" S AU, =12 (8)
for ¢=u UV =UY; (9)
U(llg) = &1 U(zlg) — (1 —&1)Uox; (10)
U o = US|y (11)
U lso = e1U3 |—g — (1 = &1)Uox, (12)

where Ai(Up) = ¢; — Ugxx + p1Uos, and conditions (11) and (12) follow from the periodicity condition (7).
Integrating (8) gives

UV =V (x,t) + CP(x,0)¢ + 0.5A:%, i=1,2. (13)
From Egs. (9)-(13) one obtains the following homogenized equation

A+ e (1 —pA;, =0. (14)
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Fig. 2. A typical periodically repeated cell.
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The relations (9)-(12) yield only the difference C!"’ — C!"’, and we can arbitrarily set C}"’ = 0. The other constants are defined
as follows:

V) =CY +0.54;;

CP =1 (CY +Ay) — (1 — &1)Uqs; )
c@ :Alll2 + Ay (1 + 2610 — p?) — (1 — &1)ulox
2 2[u(1 — &) = 1] .

Now we briefly discuss the boundary conditions. Assume, for example, that we have boundary conditions
U=0 for x=0,1.
Then for Eq. (14) one obtains
Up=0 for x=0,1.

Case(b): oy =3,ap=1,p81=1, 82=0, B3 =0, B4 = 1. This case corresponds to one of the most important for practice. Namely,
weak short elements separated by long stiff ones are studied (Sergienko et al., 1991; Dejneka et al., 1995).
A solution to the cell problem yields the following homogenized equation:

A1(Ug) =0, (16)
and the ‘fast’ corrector
UL = Une(1 - ©). (17)

Boundary conditions for Eq. (16) may be written as follows:
Up=0 for x=0,1.

3. Plates with weakenings

Now we will deal with plates with periodic weakenings (see Fig. 3).
The complete system of plane orthotropic elasticity equations has the following form:

BV Use,x, +G"Uy,y, + BYY +G)Viy, — piUia = fi(%1, 31, 0);

(i) (i) () (i (i) . (18)
Bz Viy1y1 +G Vix1x1 + (Bz V(U +G )Uix1y1 - Pivi[t = Fi(x17y17 t)7 1= 1727
with the associated conjugate relations
Ui =Uy; Vi=Vy (19)

1) 2), (1) _ 2
O -1, T -T2,

where

@@ ~2 @ @ =
B] ,Bz rG )v] svz !pZ

L 4YIlY!V

A
\

H WM O O O
B 5B2 ,G ’V] ,V2 !pl

S T et o e e

v
r'y

A

A
Y

Fig. 3. Plate with periodic weakenings.
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T = By (Us, +{'Viy,);
TV = GV(Uy, + Vi), i=1,2.
We will use the asymptotic procedure proposed in Manevitch et al. (1979), Manevitch and Pavlenko (1991) (see Awrejcewicz
et al, 1998; Andrianov et al, 2004). We introduce the following small parameters y; = G(i)/Bgi) and we assume
BY ~BY; wW~y3i=1,2; k=1,2.

After asymptotic splitting in relation to y; the following Laplace equations and conjugate conditions are obtained:

B Uiy, + GPUyyy, — piliee = fi(X1, 1, 0); (20)

U, = Uy; B\ Uy, = BY'Uy, on a contact; (21)

BY Viyy, +GVieyx, — piViee = Fi(x1, 31, 0); (22)

Vi = Vao; GV, = GPVyy, on a contact. (23)
Homogenization of the BVP (22) and (23) leads to the following equations:

BZVOylyl + GVOx1x1 —pVor = F,‘(X] Y1, t)7 (24)
where

g B0 +BYG G+ G piti il o Filit Fab

2 ¢ 3 ¢ 3 P ¢ ’ ¢ .

In order to analyze the BVP of (20) and (21) we introduce the following non-dimensional equations:

Uik + XiUiyy = pillUir = @i(%,y,1), (25)

U; =U,; Uiy =¢U,y,y on a contact,

where p, = piL?/BY; ¢, =fiL?/BY; x=x/L; y=y,/L;and & =B /B".
Observe that the BVP (25) is identical to that discussed earlier for a rod. All of the earlier results hold if one supposes

Ai(UO) = Q; — Uoxx — XiUOyy + PiUOtt~

For elements with similar stiffness and length the relations (13)-(15) hold, whereas for short and weak components the rela-
tions (16), and (17) are valid.

The boundary layers occurring in the neighborhood of the plate edges y, = 0,H can be constructed using Kantorovich
(Kantorovich and Krylov, 1958) methods.
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