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Abstract. The experimental rig of the triple physical pendulum with the  first body periodically 
forced is built. A mathematical model of the real pendulum is created. Friction in joints is modeled 
as a composition of dry friction and damping. The parameters of the model are estimated matching 
the output signals from model and experiment. For the minimum searching of the matching function 
the simplex method is used. Very good agreement between model and real system is obtained. Few 
chaotic zones are detected numerically and confirmed experimentally. 

Introduction 

In February, 2005, in the Department of Automatics and Biomechanics, the experimental rig of 
triple physical pendulum was finished and activated. This stand have been constructed  and built in 
order to investigate experimentally various phenomena of nonlinear dynamics, including regular 
and chaotic motions, bifurcations, coexisting attractors, etc. 

This work is a continuation of earlier studies of authors [1, 2] on a triple physical pendulum. In 
those studies a numerical model of triple physical pendulum with rigid limiters of motion was 
formulated. Such a system can exhibit impacts as well as a sliding solutions, with permanent 
contact with the obstacle on some time intervals. Special numerical tools for non-linear dynamics 
analysis of that system exhibiting discontinuities was developed and tested. Also the possible 
application of the numerical model was presented: the piston – connecting rod – crank-shaft system 
of a combustion engine [1]. On the present stage of investigations the experimental rig of triple 
pendulum without obstacles is built. The mathematical model presented here is a special case of the 
models from being studied by us earlier [1, 2]. 

 A pendulum as a simple nonlinear systems is still a subject of interest of scientists from all the 
world. It is caused by simplicity of that system on the one hand, and due to many fundamental and 
spectacular phenomena exhibited by a single pendulum on the other hand. In mechanics and physics 
investigations of single and coupled pendulums are widely applied [3, 4]. Lately, even the 
monograph on the pendulum have been published [5]. This is a large study on this simple system 
also from the historical point of view.   

The subject of a study can be either a mathematical model or a real physical system. Usually 
these two objects are investigated simultaneously, and a problem of mathematical model and 
experimental rig matching arises. 

 Although a single or a double pendulum (in their different forms) are quite often studied 
experimentally [6-8], a triple physical pendulum is rather rarely presented in literature from a point 
of view of real experimental object. For example, in the work [9] the triple pendulum excited by 
horizontal harmonic motion of the pendulum frame is presented and a few examples of chaotic 
attractors are reported.  

There are two aspects of the interest in the pendulum dynamics. The first one is that the single 
and coupled pendulums are the very rich sources of many fundamental phenomena of non-linear 
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dynamics. The second one is the possibility of  modeling of many natural and technical objects by 
the use of system of pendulums. The example is the piston - connecting rod - crankshaft system 
modeled as a triple physical pendulum with rigid limiters of motion [1]. 

Experimental Rig 

The experimental rig (see Fig. 1) of the triple physical pendulum consists of the following 
subsystems: pendulum, driving  subsystem and the measurement subsystem. It is assumed that the 
pendulum is moving in a plane. 

The links (1, 2, 3) with adjustable lengths and masses are suspended on the frame (4) and joined 
by the use of radial and axial needle bearings. The first link is forced by a special direct-current 
motor of our own construction with optical commutation consisting of two stators (6', 6'') and two 
rotors (5', 5''). Both two parts of the motor are structurally symmetrical and electrically coupled. 
The optical commutator is located on the stator disk (6'). Such a symmetrical drive ensures avoiding 
the skewing of the structure and forming the forces and moments in planes different that the plane 
of the assumed pendulum motion. One the other hand such a construction allows the full rotations 
of the second and the third link of the pendulum.  

The voltage conveyed to the engine inductors is controlled by the use of special digital system of 
our own construction together with precise signal generator HAMEG. As a result the square-shape 
in time forcing with adjustable frequency and desired amplitude is obtained. 

 
 

 
Figure 1. Experimental triple pendulum. 1, 2, 3 – links; 4 – stand; 5',5'' – rotors (disk 5' is 

invisible); 6',6'' – stators (disk 6' with optical commutator); 7, 8, 9 – rotational potentiometers. 
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The measurement of the angular position of the three links is realized by the use of the precise 
rotational potentiometers (7, 8, 9). Then the LabView measure-programming system is used for 
experimental data acquisition and presentation on a computer. Detailed description of the triple 
pendulum construction can be found in the works [10, 11]. 

Mathematical Modeling 

Figure 2 presents an idealized physical concept of the real pendulum presented in Fig. 1. The 
system is idealized since it is an ideally plane system of coupled rigid links moving in the vacuum. 
The position of the system is determined by three angles: ψ1, ψ2 and ψ3. The moments of resistance 
in joints (O1, O2 ,O3) are assumed to be a composition of viscous damping and dry friction with the 
Stribeck’s characteristic. It is assumed to be the same parameters of rotation resistance in each the 
joint. Each of the pendulums with mass mi (i =1,2,3) has a mass center lying in the line including 
the corresponding joints and one of the principal central inertia axes (zci) of each link is 
perpendicular to the movement plane x-y. The inertia moment of the i-th link with respect to the 
axis zci is Ii (i =1,2,3). The first link is externally forced by the moment Me(t). 

 
Figure 2. Model of the triple pendulum. 

 
Mathematical description of the above concept of the pendulum follows our earlier works [1-2] 

where the governing equations of the triple physical pendulum in non-dimensional form have been 
reported and where only the linear damping in joints have been assumed. The Lagrangian 
formulation have been used for the derivation of governing equations. 

The system is governed by the following set of differential equations: 

( ) ( ) ( ) ( ) ( )2 , , e t+ + + =M ψ ψ N ψ ψ r ψ ψ ψ p ψ f&& & & &&  (1) 

where 
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The denotations used above have the following meaning: 

( )2 2
1 1B I e= + m l m m+ + 2 2

2 2 2 2 2 3,  B I e m l m= + + 2
3 3 3 3,    B I e m= +

12 2 2 1 3 1 2N m e l m l l= + 13 3 3 1N m e l= 23 3 3 2N m e l

, 

,   ,   = , (3) 

( )1 2 3 11 1M m ge m m gl= + + 2 2 2 3 2M m ge m gl= + 3 3 3M m ge=,   ,   , 

where g=9.81 m/s2 is the gravitational acceleration. 
The vector of generalized forces r is a vector of forces appearing in relation to the resistance in 

joints and has the following form 

( )
1 2
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⎩ ⎭
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3

R

RM

where Mri (i=1, 2, 3) is a resistance moment in i-th joint, composed of two parts: 

M M= + , (5) 

In Eq. 5 MDi is a viscous damping moment with common for all joints coefficient c: 

( )2 2 1DM c ψ ψ= −& &M cψ= & ,  ,  ( )3 3 2DM c ψ ψ= −& &

( ) ( )( ) ( )signTi rel i r rel i i

, (6) 

and MTi is moment of dry friction modeled in the following way: 

, (7) M Nω µ ω=
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where ωrel(i) is a relative angular velocity in i-th joint: 

(1) 1relω ψ= & (2) 2 1rel,   ω ψ ψ= −& & (3) 3 2rel,    ω ψ ψ= −& &

( ) ( )

. (8) 

Ni is a reaction force in i-th joint, whereas µr=µr is a dry friction coefficient µ  multiplied by the 
bearing radius r being common for all joints. 

The dry friction coefficient µr is assumed to be dependent on relative angular velocity according 
to Stribeck’s curve: 

0
0

exp Str rel
r rel r rG rG

r rG

c ω
µ ω µ µ µ

µ µ
⎛ − ⎞

= − +⎜ ⎟−⎝ ⎠
, (9) 

where µr0 is dry friction coefficient for ωrel =0, µrG is dry friction coefficient for ωrel → ±∞ and cStr 
are parameters describing how fast the function µr(ωrel) reaches the µrG as |ωrel| increases. 

The reaction forces in bearings are  

2 2
1 1 1n tN N N= + 2 2
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The external excitation of the pendulum is assumed to be an ideal square shape function of time: 

ω φ= +  (12) 
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with amplitude q, angular velocity ω and with initial phase φ0. 
In order to make easier the problem of numerical solving the Eq. 1, the sign function in Eq. 7 is 

approximated by the use of arctan function and  the Eq. 7 takes the form: 

( ) ( )( ) ( )
2 arctanTi rel i r rel i iM Nε ω µ ω
π

=

&&

1 0.174 [m]l = 2 0.225 [m]l =

[

, (13) 

where ε  is a parameter. The simulations presented in this paper are performed for ε =1000. Thanks 
to this approximation, there is no need for detection of the points of discontinuity of Eq. 7 during 
the simulation. Instead of this, the integration method with variable step and with the control of the 
estimated error is used. The error is estimated by comparison of results obtained by the use of two 
methods: four-order Runge-Kutta  method and five-order Runge-Kutta  method. Last method is 
then applied to solve the differential equations. The discontinuity points in Eq. 12 are detected, 
because we do not smooth the corresponding function. 

Here we address another problem related to numerical solving the governing Eq. 1. When we use 
numerical methods we need to solve Eq. 1 algebraically with respect toψ . Since the dry friction 
moments depend on normal reactions in joints (terms in vector r), these equations are non-linear 
and we must use a numerical technique. The Newton method is taken  and we need to know 
Jacobian of the corresponding non-linear function. This implies another problem, regarding of quite 
complex analytical form of the Jacobian. Observe that there is no need to have this analytical form 
or even to compute it numerically. We use approximate analytical form of Jacobian, namely M(ψ) 
according to Eq. 2, which differs not much from full Jacobian, and gives fast convergence of the 
Newton method. This is a very efficient way to deal with solution to Eq. 1. 

Experimental and Numerical Investigations 

Mathematical model built so far requires knowledge of the parameter values to perform numerical 
simulations. Although it is possible to measure and calculate all mass and length parameters of the 
pendulum, however for some parameters it would be quite work-consuming or not enough accurate. 
Therefore we measure only two parameters: 

,  (14) 

and we assume also g=9.81 m/s2. The vector of remaining parameters follows 

]1 2 3 1 2 3 1 2 3 0, , , , , , , , , , , ,r rG Strm m m I I I e e e c cµ µ=µ . (15) 

The model parameters are then estimated by the global minimum searching of the criterion-
function of the model and real system matching. The matching of model and real system is 
understood as the matching of the corresponding output signals ψi(t) (i=1,2,3) from model 
integrated numerically and from the real pendulum, assuming the same inputs (external forcing 
Me(t)) to both model and real system. The sum of squares of deviations between corresponding 
samples of signals from model and experiment, for few different solutions, serves as a criterion 
function. Together with the model parameters also initial conditions of the numerical simulation are 
estimated. A minimum is searched applying the simplex method. In order to avoid the local minima, 
the simplex method is stopped from time to time and a random searching is then applied.  After 
random searching the simplex method is restarted again. 

For the parameters estimation four periodic experimental series are used for different forcing 
frequencies f = 0.35, 0.6, 0.85 and 1.1 Hz (f=ω/(2π)) and for the same forcing amplitude q = 2 Nm. 
The experimental series are registered during time interval of length equal to 20 s. The numerical 
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simulation is performed with the forcing exactly the same as excitation applied in real system for 
each periodic solution saved. Note that the dimension of the problem is now equal to 37 (length of 
the parameter vector (13) plus number of initial conditions for four solutions (24)).  
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The following set of parameters is obtained: 
 
 ,   m1 2.908 [kg]m = 2 2.266 [kg],  m= 3 2.601 [kg]= , 

20.03159 [kg m ]I = 2 0.01847 [kg m ]I = 2
3 0.01230 [kg m ]I =

[m] 2 0.06866 [m]

,   ,  , 1 2

1 0.06687e = ,   e = ,  e3 0.05138 [m]= , (16) 

4 2 13.684c 10 [kg m s ]− −= ⋅

4
0 6.521 10 [m]rµ

−= ⋅ 46.055 10 [m]rGµ −= ⋅ 0.9042 [-]Str

, 

,  ,  c = , 

which corresponds to the model and real system output signals matching presented in Figs 3-6, 
where solutions are presented only for last 10 s. If we divide final value of criterion-function by the 
number of samples used in calculation of criterion-function, we obtain average square of deviation 
between two signals obtained: from the model and the experiment. Let us denote this parameter as 
ASD (average squared deviation). Now this parameter can be used for comparison of matching of 
different sets of experimental data and numerical solutions. For solutions presented in Figs 3-6 we 
have ASD=0.3805⋅10-3 [rad2]. 
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Figure 7. Dry friction characteristics for ε=1000 and other parameters according to Eq. 17. 

 
In Fig. 7 we have presented dry friction characteristic for ε=1000 and other parameters estimated 

(according to Eq. 17). Observe, that because of approximation, some parts of characteristic  are cut 
of. Namely, we do not observe static friction coefficient (µr0=6.521⋅10-4 m) larger than friction 
coefficient for ωrel → ±∞ (µrG=6.055⋅10-4 m). In this situation the value of µr0 coefficient plays no 
role as well as cStr coefficient has no significance on simulations presented in this paper. 

In Figs 8-9 there are presented characteristics of dry friction moments MTi and damping moments 
MDi (straight lines) as well as characteristics of reaction force Ni for each the joint (i=1,2,3). We 
have presented these characteristics for two cases: for periodic solution in Fig. 8 (f  = 0.6 Hz) and 
for chaotic solution in Fig. 9 (f  = 0.73 Hz). We can compare moments generated by damping and 
moments generated by dry friction. Note that damping can be practically neglected for the first joint 
(point O1), for the second joint (O2) the influence of damping is larger and for the third one (O3) the 
damping plays significant role. We can also observe the values reaction forces in particular joints 
for different solutions. Namely, for periodic solution with forcing frequency f  = 0.6 Hz these forces 
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can reach ~83 N, whereas for chaotic one with forcing frequency f  = 0.73 Hz these forces can 
reach even ~1100 N (for the first joint). 
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Figure 10 contains a bifurcation diagram for the mathematical model with the forcing frequency 

f as a bifurcation parameter. The diagram was performed for the frequency growing from  0.35 Hz  
to 1.1 Hz. Chaotic windows are observed numerically for f∈(0.395,0.400) (zone I), for 
f∈(0.631,0.645) (zone II) and f∈(0.695,0.779) (zone III). However, this bifurcation diagram is only 
for growing parameter and  these chaotic zones may be larger (in some regions a few solutions can 
coexist, for example both chaotic and periodic ones). These three zones are also observed 
experimentally in regions approximately the same as shown in Fig. 10. In addition, full rotations 
performed by individual links observed in particular zones of numerical bifurcation diagram are 
experimentally confirmed. Note that in zones I and II only the third link performs full rotations, 
whereas in zone III all links perform full rotations.  

Figure 11 presents comparison of chaotic solutions for forcing frequency  f  = 0.73 Hz obtained 
experimentally and numerically. Both solutions start from the same initial conditions and their 
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divergence can be observed. Figure 12 contains projections of the Poincaré section of the attractor 
of the mathematical model for f  = 0.73 Hz. 
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Figure 10. Bifurcation diagram regarding the mathematical model. 
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model for forcing frequency f  = 0.73 Hz. 

Concluding Remarks 

Good agreement between both numerical simulation results and experimental measurements have 
been obtained and presented. A few chaotic zones have been detected and confirmed well by the 
experiment. Experiment verifies positively the boundaries of the particular chaotic windows as well 
as some qualitative features of  chaotic solutions like performing (or not) the full rotations by 
individual links. It leads to conclusion that the used mathematical model of triple pendulum with its 
parameters estimated can be applied as a tool for quick searching for various phenomena of 
nonlinear dynamics exhibited by a real pendulum as well as for explanation of its rich dynamics. 

It should be noted that because of the method of parameter estimation used, the model parameter 
values are not optimal in the sense of the best real physical values approximation, but rather in the 
sense of the best matching of output signals from the model and the real pendulum.  

There may be two sources of differences between results of numerical simulation and 
experimental observations. Firstly, the mathematical model may be not sufficiently complex for 
describing some real physical phenomena in the triple pendulum. Secondly, the method of global 
minimum finding, for the criterion-function, in the case of multi-dimensional problem (the simplex 
method) does not belong to perfect ones. In other words sometimes it is not clear, that we have 
found a global minimum and not just a local one. 

The first reason of differences between model and reality in our case, however, seems to be more 
important. Especially the friction model may be developed in order to obtain better results. For 
example, one idea is to make assumption, that the friction and damping in the first joint have their 
own parameters independent from the parameters of motion resistances in other joints. It can be 
justified by a special work conditions of the first joint bearings, because of nearness of the motor 
producing some quantities of heat. The second idea is to develop the friction model itself. It may 
happen that the used Stribeck’s characteristic is not sufficient for describing friction phenomena 
proceeding in bearings for full range of relative angular velocities. 
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