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Abstract Nonlinear oscillations of the vertical plane
swinging spring pendulum in the resonance case are
studied (frequencies ratio regarding horizontal and
vertical directions is equal to 1:2). Square and cubic
terms of the Hamiltonian are taken into account. Novel
normal form method, i.e., the so called invariant nor-
malization is applied to solve the stated problem.

Full system of integrals exhibits equations of the
normal form, and solution for the pendulum coordi-
nates is expressed via elementary functions. Frequen-
cies of modes of oscillations are proportional to the
first power of amplitude, and not to the second power
as it is exhibited by one dimensional Duffing oscilla-
tor. Amplitudes of the modes are changed periodically,
and energy from one mode is transited to energy of
the second one, whereas the period of oscillations de-
pends on the initial conditions. It is Hlustrated that as-
ymptotic solution with small amplitudes approximates
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well numerical solution of the governing equations. In
addition, an example of a periodic stable solution with
constant amplitudes of the oscillation modes is given.
Stability of this solution is proved.
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1 Imtroduction

In order to investigate nonlinear oscillations of an
elastic pendulum, the Poincaré~Birkhoff normal form
method is applied. For this purpose [1-3], a Hamil-
tonian of the investigated system is split into two parts:
(i} a square form called non-perturbed and (ii) a re-
maining part that contains terms of power three. Ap-
plied canonical transformations enable a significant
simplification of the studied system and the obtained
Hamiltonian system of the third order is integrated. It
means that an asymptotic solution to the investigated
strongly non-linear problem can be obtained. Note that
traditional methods of normalization are rather diffi-
cult to use and they require a quite large number of
transformations [3-9]. A sought change of variables
is realized via either guiding functions or a guiding
Hamiltonian.

In this work, we apply the invariant normal form
proposed by Zhuravlev [10, 11], which does not re-
quire (contrary to classical approaches) splitting either
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{0 aulonOMOUS~hON-autonNomous or resonance—non-
resonance cases, and is realized only by one general
approach. Asymptotics of a normal form are defined
through successive computations of quadratures, Con-
trary to the referenced method [10, 11], the proposed
approach relies on the application of a parameterized
guiding function [12~14]. In this work, our earlier de-
veloped method {15] is applied to further analysis of
non-linear oscillations of a swinging elastic pendulum
initiated also in references [16, 17], where only a linear
term of force-elongation function has been used. Now,
a non-linear dependence between force and elongation
of the spring (penduium length) is taken into account.
In this general case, a normal form of a Hamiltonian
with accuracy of the third order terms with respect to
amplitude is derived for the studied 1 : 2 frequency
ratio. The obtained normal form equations are inte-
grated,

In the applied approximation, only linear and
quadratic terms are taken into account. Although this
approximation does not allow to follow the Duffing
effect, i.e. dependence of oscillation frequency versus
amplitude, but it is sufficient to study non-linear reso-
nances inleraction of vertical and horizontal modes.

In the obtained asymptotic solution, the frequen-
cies of the modes differ from the corresponding linear
case on amount of a quantity proportional to amplitude
of oscillations. Therefore, the Duffing phenomenon is
mainly realized via the resonance interactions of the
corresponding modes of oscillations.

2 Hamiltonian normal form

Following the method given in reference [18], a nor-
mal Hamiltonian form of two-degrees-of-freedom sys-
tem will be derived. We are going to study the case of
resopance | : 2.

Let (q,p) &f {(q1,42, p1. p2) are dependent vari-
ablesand let H = H(q, p) is the Hamxlmman function
governed by the equations

qi = 3H [8p;, pi=—0H/8q;,
i=1,...,n, n

where dot denotes d /dt. Let q = p = 0 is a fixed point
of system (1), and the function H = H(q, p) is ana-
lytical. The function H can be developed into series
regarding q, p, which begins with quadratic terms,
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whereas the series of the functions of the right-hand
sides of (1) begin from linear terms. Let R is the matrix
of linear part of (1}. Eigenvalues Aq, ..., A4 of matrix
R can be split into pairs Ajn = —A;, j = 1,2, Intro-
ducing a linear canonical change of coordinates

(4.p)" = B(x, y)", 2

where * denotes transposition, matrix R can be al-
ways reduced to the following complex normal form
C = B~'RB, where its cigenvalues Ay, ..., Aq licon a
diagonal. Therefore, H(q, p} = H(x, y). Let a formal
non-linear complex coordinales transformations exist
of the following form

(%, ¥) = (u,v) + N{u, v), (3

def
where N £ (N1,...,Ng), and Nji(u,v) are power
series without free and linear terms. Therefore, the
Hamiltonian function H(x,y) is transformed into the
form

h(u, v) Zhsws 4)
def

where w = (wy,... w4) (u ¥), s=(s1,...,584),

wS (l?.rw;' wy? e w)'u :v;‘v? The formally intro-

duced Hamiitonian (4) is called a complex normal
form, if

1. The corresponding Hamiltonian system possesses a
matrix of its linear part of diagonal form with ele-
menis iy, Aa, —Aj, —As.

2. In series (4), only resonance terms of the form

SIA| F92Ay — s34 ~ 54he =0 (3)

are included,

In our example, we consider the resonance case re-
garding frequencies Ay = 2i, Ay =, and in this case, a
normal form condition takes the form: 51 -2 43 1 —
$53-2—84-1=0,

It has been shown in [19] that for an arbitrary
system (1) there exists formal change (3) transform-
ing Hamiltonian H({q, p) into its normal form 4,
(5). Owing to reference [2], if the initial system is
real, then there exists also real normal form, which
can be transformed Lo its complex normal form (4),
(5} via standard linear transformation of coordinates.
Special cases of the mentioned normal form include
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those proposed by Birkhoff [2], Cherry [20], and Gus-
tavson [21]. Birkhoff [2] considered the case, where
all eigenvalues A; are incommersable, i.e. (4} for in-
tegers s; possesses only integer-valued solution 5| =
§2 =+ ++ =5y = 0. In the latter case, the series (4) has
the form g1 p1,42p2, ..., qupu, and each of the prod-
uct terms represents a formal integral form of the cor-
responding Hamiltonian system.

Cherry [20] considered the case, when the eigen-
values &£Ap, ..., A, are distinct, which has been also
studied by Gustavson [21]. Belitskii [22] proposed the
modified normal form, where Jordan cells of the lin-
ear part matrix are used to reduce the number of non-
linear terms. Note that examples of other normal forms
are illustrated and discussed in reference [3].

3 Computation of normal forms

Three different methods are so far proposed to com-
pute canonical normal transformations (3} and normal
forms (4), (5): (i} using guiding functions; (ii) via Li
series; (iif) via parametrization.

In order to introduce a reader to this subject, we
briefty present all of them.

(i) In order to compute a normal form, the Jacobi
guiding function is first introduced ([2-4], [6, 10,
20, 217). In this case, the vector series N(u, v)
is sought via the guiding function g(x,v) =
Xivy -+ -+ - xou2 + - -« regarding the variables

= (x1,x2) and v = (v, v3), where

up=0g/dvi=x;+..-,
. (6)
Yi=0g/0xj=vj+--, j=1,2,

If the guiding series g (x, v) is found, then in order
to apply transformation (3) one has to express x g
via u, v in (6), i.e. inversion of the power series
for u; is required. In practice, it is tedious task,
but it works always (without any restriction given

to matrix R).

(i) Application of Li series is associated usually with
the scaling
q=2sq, p=ep’, x=gx/, -
y=sy, V=g, w=ew.

Hamiltonian H (x, ¥) normal form A(w) and Li
generator G (w) are represented by the following
series with respect to &:

o0
") S Zé‘kﬁk (X’, )’f),
k=0
0
= Z hy (w'
k=0
0
= Z é‘k Gk (w’
k=0

Normal transformation of coordinates and nor-
mal form A(w’) are sought via the following Li
series

' — & k .rd?-f ’ /
z:ZZ!—L =w +e{w,G)

{{w Gl G+,

h(w’)=Z%LEé(w’) € A(w) +e{4,6)

k=0
LI
+2{{A.6).0}+

where

8f 9g _ Oof dg
0= i~ )

and L’(‘; denotes the kth Poisson bracket regard-
ing function G. Functions k;, and Gy..; define a
sequence of solution of the homoclinic equation

W) = {Ao(w), Gt (W)} + My(w),  (8)

where the function My is known via computa-
tion of a previous step. Equation (8) is solved
as a system of linear equations with respect to
hy and G..i. This method has been applied by
Hori [23] and Deprit [24]. In the discussed case,
there are also no restrictions on matrix R. On the
other hand, Zhuravlev {10, 11] has proposed solv-
ing of homoclinic (8) by integration. If the matrix
R is diagonalized, then {Hy, G4_,} =d Gr/dt
and the derivative follows from ¢ = 8 Hy/ap, p=
—3Hp/3q. Therefore, hy, are averaged functions
of M along the system solution, whereas the
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function Gi_; is a constant in integral fo’ My, dt
taken with minus sign. Two first approximations
of function My (w) have the following form

My =H,

9
My = Hy + Hy, G) + %{{HOeGl},G]}-

(iii) Owing o references [12, 13], instead of the gen-
erating function G, a function ¥ (x, ¥) and a para-
metrical canonical change of variables q.p—
u, v are applied

1 1
qzx——zlfly, u=x+§llly,

| (10)

=y+ -,
P=Yy+ 5 %%

Note that two first approximations of G and ¥ coin-

cide, whereas next are distinct. It should be empha-

sized that approaches (ii} and (iii) sufficiently reduce
computations, which will be demonstrated by our ex-
ample,

I
v=y—§lﬂx.

4 Algorithm of invariant normalization

In what follows, we present briefly an algorithm de-
voted to normal form computation of variant (iii). Tt
can be treated as modification of the Zhuravley ap-
proach, and a normal form in this case is found via di-
rect integration. However, it works in either resonance
Or non-resonance cases. It can be also directly applied
to the case of a non-autonomous Hamiltonian [14].

In the beginning, some fundamental definitions and
background of the applied normal form algorithm will
be introduced. Function f(¢) presented as a sum of
harmonics of the form

fiy=fo+ Z(cz,- cosw;t + by sinw;1),

i

is called a quasi-periodic function.

Let us introduce two linear operators L{f) and
Ly{f) defined on the manifold of quasi-periodic func-
tions f(¢) of the form

Lf®)=fo.  Li(ft)=Y b/ (1)

Let the following Hamiltonian

H(Qap)zHO(QaP)+F(Q»P)+"

a Springer

be reduced to its normal form. In our example, it is suf-
ficient to apply the approximation, where both squared
Hy(q,p) and cubic F(q,p) Hamiltonian forms are
taken into account. In order to find the appropriate
normal form H(Q, P) = Hy(Q, P) 4 F(Q, P), i.c. the
cubic form F(Q, P}, satisfying condition (6), and a
canonical change of variables, the following opera-
tions should be carried out,

I. Solve the Cauchy problem for non-perturbed Ha-
miltonian Hp and present it in the following form

q=q(,X,Y), p=p(,X,Y), (12)
(,'{(Oa Xs Y) :X, p(O,X, Y)xY.

2, Find normal form £ and function ¥
FQ P =LF(9(.Q,P), p(r, Q, P)), .

¥(Q,P) =L Flq(r, Q,P), ptt, Q, P)}.

Note that in the proposed approach formulas (13)
define a normal form supplemented by condition (6),
as well as a function defining a parametric canoni-
cal change of variables. The constructed normal form
yields a solution to the Hamiltonian system as follows,
Let X=X(1,Qq,Pp). Y= Y(t, Qo, Po) be a solution
associated with Hamiltonian F(X,Y), i.e.

%= 23 o YF
5w Yew
X(0) = Qo, Y(O) =Py

Applying Zhuravlev’s theorem [10, 11] and substi-
tuting the solution into (12) associated with non-
perturbed Hamiltonian, one gets a solution in refer-
ence to Hamiltonian H(Q, P) of the form

Q =q(r. X(¢, Qu, Py), Y(r, Qo, Pp)),
P =p(,X(z, Qo. Po), Y(r, Qo, Py)).

Then, a solution expressed via initial variables is
yielded with a help of a canonical change of variables
Q,P > q,p expressed by the following parametric
form

1 1
qzx—zw}., Q=x+§wy’
| (14)

1
= -l1f =V —- - .
p y-i—2 s P=y zwx
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Removing parameters x,y one gets the following
explicit form of variables transformation with the ac-
curacy of cubic terms:

q(Ql P) =Q - WP(Q’ P)s
p(Q, P) =P+ ¥o(Q. P).

In our next step, we are going to apply the illustrated
and discussed algorithm to construct an asymptotic so-
lution of a spring-type swinging pendulum in the res-
ORance case.

(15)

5 Swinging pendulum

We consider a pendulum with two-degrees-of-free-
dom, i.e. a point mass hanging on a massless spring
swinging in a vertical plane (Fig. 1). Note that this
problem has been considered by Vitt and Gorelik [25]
in order to illustrate internal resonance behaviour, In
addition, this problem has been studied using classi-
cal perturbation approaches for instance in references
[8, 26].

In the majority of investigations, only partial results
are reported due to applied complicated methods of
analysis. Furthermore, it is extremely difficult to ap-
ply the mentioned techniques to study resonance os-
cillations. In what follows, we solve this problem in a
relatively simple manner using the introduced invari-
ant normalization approach with the application of a
parametric change of variables.

The following notation is introduced: k—spring
stiffness; [—spring length in mass equilibrivm po-

¥

mg

Xy

Fig. 1 Scheme of elastic two degrees of freedom pendulum

sition; Ix,!{y—mass coordinates; [ R—spring length,
where

R=/(1+x)?+y2

The Descartes system of coordinates originates in
point O, mass equilibrium position and axes x, y are
oriented vertically and horizontally, respectively (see
Fig. 1).

Spring tension is defined via the following formuia

8k

FUR -1y,
0

k
T=—({R-Ip)+
Io

where [y is the length of non-stretched spring.
Potential and kinetic energies have the forms

k
Ep=—mglx + -2—15[(11? — 1) — (I ~1p)?]

f_"i _ 4 _ 4
+ 418[(1R lo)* — (I —lp)*],

g M dx\? + dy 2
T2 \ar dr’
_mgl[/dx 2 n dy 2
T2 | \dr dat] |
where ¢’ is the non-dimensional time; ¢ = wt’ denotes
dimensional time, and w = /377 is the frequency of
linear oscillations regarding the vertical axis.
Introducing dimensionless impulses: ¥ = % and

v =y, the following Hamilton function H = (E. +
E,)/(mgl) is defined

k Iy UR—1o)* ~ (1 — ko)
2mg 1 5

8k g (R —~IpY* — (1 —Ip)*
+ - X
4mg | lg

H=

(u2+v2)—x+

] -

Note that a constant in H is taken to satisfy H(0, 0, 0)
=0.

The studied equation takes the following Hamil-
tonian form

dx oH du aH

dt — ’  dt . ax
dy 9H  dv_ aH
dt v’ dr @y’

2} Springer
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The following Hamiltonian linear, square and cubic
terms are distinguished
H=H+H+H, H={(-+KrM+3)x,

Hy == {u* + 17 + wlx® + wdy?),

k2] —

1
Hy=K [5(1 + A+ 3y + SR+ 1)2x3],

K =i, A= (i — 1),
mg lo
o] = KA+ D(1+360%), w3 =Kr(l+827),

where w) and w; are the non-dimensional frequencies
of linear oscillations regarding x and y, respectively.

Owing to equilibrivm condition the linear term
equals zero, and hence

—1+EA(14+8)07)=0 = of=1 (16)

We are focused on oscillations investigation on
equilibrivm neighbourhood for large ¢ and in the res-
onance condition case w% = 4w%. The latter condition
yields

(A D1+ 3827) — 4a(1 -+ 62%)
=1-3A+823 -2 =0, an

and hence one may present A in the form of the series
regarding §:

18 40 o 728 5 o
A—§+§T8~?7293 +—E96833 +oeen (i8)
Remark In the taken approximation, only square and
cubic terms appear in the Hamiltonian, In other words,
in equations of motion only linear and quadratic lerms
exist. It means that the applied approximation is not
sufficient to study the Duffing phenomenon exhibited
by dependence of oscillations frequency versus ampli-
tude of non-linear oscillator. However, it is sufficient
to study non-linear resonance interaction of two ob-
tained vertical and horizontal modes. In the obtained
asymptotic solution, the frequencies of the modes are
proportional to the first power of oscillation ampli-
tudes owing to the resonance phenomenon. Ampli-
tudes of the modes are changed in a periodic manner.

For small amplitudes, the constructed asymptotic
solution governs the process analytically with a high
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accuracy, what is shown by numerical simulation.
Now we are aimed on construction of the normal form.
In the case of resonance (5), it can be obtained via the
algorithm described in Sect. 4, which essentially sim-
plifies the computations.

6 Resonance normal form

Applying equilibrivm condition (16} and the reso-
nance condition (17) our Hamiltonian takes the sim-
plified form

H=Hy+ F,
Ho = (1/2)(u? + v* + 407 + %),
F=(3/2)xy* + Ax,

_ 165 1682 20843
9 243 7 6561
Now we apply the earlier described algorithm.

First, a general solution of non-perturbed system with
Hamiltonian Hy is found:

A

+ 0(8%).

U
x(t) = Xcos2t + —i—sinzr,

(1) = Y cost -+ Vsint,
’ (19)

w(t)y=Ucos2t —2X sin2t,
v(t) = Vcost — ¥Ysint,

Solution to the non-perturbed system is substitated
into Ry = F{x(2), y()). As a result one gets a quasi-
periodic function R (¢, X, Y, U, V) regarding time,
and applying the operators L and L; one finds normal
form and function ¥ associated with the first approxi-
mation of the forms:

Fi=L{R(, X, Y, U W)

(-V2X+UVY +X7?),

W 09) W

(20)

W= —(4XYV +3UV? +57%0)

~ 64

1 o) 1 3

+ A =-XU+=U" ).

(30 +3307)

Observe that the resonance normal form does not
depend on g, i.e. on the non-linear damping system
integral (it is exactly the same as in the case of linear
damping).
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The system is integrated using the Birkhoff vari-
ables of the form

= (VU ++2iX, wn=V+ir. (1)
Relations (19) present a canonical transformation with

valency 2i. Normal form of the first approximation is
H= Hy -+ F, where:

o = i(2217] + 2272),

3

e

- Z,Z3).

Equations associated with the non-perturbed part of
the Hamiltonian read

=12izy, =iz,
and they have the following solutions
2 = 217,

22 = Zre'!, (22)

Equations associated with the perturbed part of the
Hamiltonian are as follows

. aF _ 342
Z] \/—22,
2z, 16
) 5 (23)
. aF 3
Zy= e = — 775,
2 YA ) 1432

They possess two integrals: Hy = const and F =
const. The first integral presents the law of energy con-
servation

2211 +|22* = C?, (24)

where 2[Z;|? is the first energy (horizontal osciila-
tions), and | Z,|2 represents the second mode energy
(vertical oscillations).

In order to obtain the equation for the second mode
energy, it is differentiated twice and taking into ac-
count (23) one gets

diz.12 . . . 34/2 - 5
Idfl =2222+2222=__8£(le%+212%)’
Al 32, s -
=g RLZB+AnZizy)

9
= 55(—%!“ +41Z) 21 Z212).

The energy conservation law yields the second
mode energy of the following form

d3Z? 9

— =5 (3121 +2¢% 2P,

Note that taking & = |Z3|? as a variable, the last
equation can be interpreted as 2 motion of a mater-
ial point with coordinate & subjected to force action
generated by potential —77(£) (motion in a potential
well),

The equation has the following energy integral

2\dt ’ 32 )

In Fig. 2, a graph of potential energy I7(£) for C = 1
is reported. Values of the second mode energy |z2)?
are bounded by intersection points of continuous and
dashed curves. Potential energy achieves its minimum
& = (2/3)C? for —(1/24)CS.

7 Periodic solutions

In monograph [27], a periodic solution to the consid-
ered system is obtained using the Lyapunov method.
Below, we illustrate how to find it using (23) and in-
tegrals (24), (25). Recall that a periodic solution cor-
responds to the minimum point £ = |Z;|2 = 2/3)C-, 2
1Z1[* = (1/6)C? (see Fig. 2). Therefore, a solution to
(23) may be sought in the following form

= JATHCe,

Zy = J2/3)Cel Py}, (26)

II

0.1 ¢

Fig. 2 Effective potential energy I7(£)
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Substitution of (26) into (23) yields

o = +(/3/4)C,
y ==xm/4.

B =:(v3/8)C,

In order to get a solution to equations governing
normal form Hp + F, a theorem of superposition of
solutions should be applied. Namely, solutions (26}
should be substituted into solution (22). Finally, a fam-
ily of periodic solutions of cubic power amplitude ac-
curacy and with two arbitrary parameters f) and C is
obtained

c HRECY3 /Y1)

] = —=¢€

NG

70 = \/gcei[(ltcﬁ/&(r—:]):l:n/4;.
- 3

Applying variables x, ¥, u, v, the discussed solu-
tion takes the form

x = (1//12)Csin(2 £ CV/3/4)¢ — 1),

27
y =/273Csin[(1 £ CV3/8)(t — 1)} £ /4], )

Note that using the Lyapunov approach in mono-
graph [27], many complicated formulas have been ap-
plied. In contrast, our approach is direct and simple
in application. Furthermore, it yields explicitly (with-
out any additional study) stability estimation of the
obtained periodic solution. Namely, the Lagrange the-
orem on equilibriom stability in the point of potential
energy (23) minimum justifies it directly. Additionally,
so far a stability of the periodic solution (27) has not
been invesligated.

8§ Oscillations with a small perturbation of
periodic solution

We are aimed now on finding an analytical solution
to the studied problem applying small perturbation to
solution (27} (this problem has been analysed only
numerically so far). Note that the analysis of a per-
turbed solution corresponds to the study of linear os-
cillations of function £(z) governed by (25) for small
deviation of energy £ in comparison to its minimum
E = —(1/24)CS. Frequency & and periods Ty of lin-
ear oscillations are as follows

_ - 9 3 87
&=/ 1"((2/3)C?) = 26 Ty= 3C" (28}
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and amplitude solutions have the following forms
2 3
E=nlP=C*Z+2acosZC ~ n)|,
3 4
2 AR 3
C=C e - s=C(t—t)|].
1] [6 ot cos ( 2)]

The computation leads to a general solution with
four arbitrary constants C, 4, el < I, £

C 3 ,
.= [—3 2o — r('l:l:Cﬁ/4)(Iw-I|)l
Zy \/6( acos4 { tg))e
= 2C E+3 cosBC(r t
“27Y3 2% 2)

x e [(VECY/BY1—1)Lm /4]
Separation of real and imaginary parts of z; and z2

yields the solution with respect to co-ordinates x and
¥ of the form

= (1/@)6(1 - SQCOS%C(I - tg))
x sin(2+ Cv/3/4)(r ~ 1)),

¥y= «/2/3C(1 + %oz cos%C(r - tg))
xsin[(1 £ CV3/8)(r — 1) £ /4].

(29)

The obtained solution governs oscillational process
with frequencies close to | and 2, and essentially
smaller modulation frequency being proportional to
the vibrational amplitude C.

If perturbation parameter ¢ = 0, then solution (29)
yields periodic solution (27).

9 Oscillations for a finite energy value

For an arbitrary energy deviation £ with respect to
its minimum —(1/24)C% < E < 0 one may integrate
(25), and hence the period of functions oscillation £(¢)
can be found. For this purpose, the following transfor-
mation is introduced

el

Equation (23} is transformed to the following form

2

§=Cn(1), ©=03/8)Ct, E =3 — n5.

1 {dn 2
: 3_,2_.3_ .2
4(—“) T =0t =n—np. (30)
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Its solution is

;=L f_dn_
20 JPOY

P =my—my—n +n? G0

={n — o) — 7)(y — n2),

where 79, 71 and 73 are the roots of polynomial F(n):

1
mn= ?70+5\/(1 —no)(1 + 3n0),

— p3]

B N —

i
50~ 5\/(1 —noX(1+350).

An analytical solution is given by the elliptic func-
tions. Period T of function £(¢) is expressed via the
elliptic integral K (k) of the form

n=

m

81g dn 2

T:-—-, n = = K(k),

3¢ TP nem

n
(32)

nf2 d
= ??1—?70, K(k):f—ﬁ—u—.
n—m ! 1 —k2sin’w

In the case of functions X (k), the following known
asymptotic series fork « 1 and k' = /1 — k% « 1 can
be applied:

K() = %(1 + %k2+ o(k“)),

K(k)=In(d/k") + %(ln(at/k') - 1)k
+ Ok Ink’).

{33)

Observe that when oscillations start from the equi-
librium position, the initial conditions are as follows:
x=xp, #u =0, y=y, v=0 Magnitude 19 can be
presented as the function of one argument & = |yo/xg).
For this purpose we introduce quantities xg and yg, and
T depends on them in the following form

2 2
¥, g
V0 M= = i an

141462 | —T+22
CaEEA PTAREm
k2=l 1 N g2

2 2J/TFe? 4/14¢2
er:_I__ 1 + 82 .

2 2/T+e7 4/T+¢2

Substituting (34) into (31), the following formula
for period estimation is obtained

8 (14&2/4)1/2
= - LRy J i S
T 3C’ 7o) (1+e2)1/4

Kk). (35)

A variation argument ¢ in interval 0 < & < 2./2
forces variation of argument k from | to Q. The
value of £ = 24/2 corresponds to £ = 0 and the mini-
mal value of 79 = &. The obtained value corresponds
to period Tp associated with potential energy mini-
mum {28).

A further increase of £ forces k2 to be negative, and
hence formula (35) can not be applied.

Application of both dependence (34) for k’(¢) and
asymptotics for X (k) yieids the following asymptotic
series for the period for & = |yp/xp| < 1:

10(g) = In(32/52)
+ (3/8)e + (3/256)(—17 + 51n(32/%)) e
+ 0(c1ns). (36)

Observe that the main term of series (36) is in
agreement with the asymptotics of the period found
in reference [27].

In Fig, 3, the relation 79(2) governed by formu-
las (35) (solid curve) and (36) (dashed curve) is com-
pared. Both dependencies well coincide for (are in
good agreement) £ = |yg/xg| < 1.5.

On the other hand, when ratio yg/xg tends to 0,
then period T approaches infinity. In this case, we get
a non-periedic solution called separatrice. In the next

To

0.25 0.5 .75 1 1.25 £

Fig. 3 Comparison of the relation 19(¢) computed by formula
(24) (solid curve) and formula (25) (dashed curve)
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sections, separatrice solutions as well as periodic so-
lution in the neighbourhood of separatrices are pre-
sented.

10 Break of a vertical oscillation

In the limiting case E - 0, (36) has an exact solulion
1 = sech®(1) and one gets

[z1] = (C/\/Z-) tanh(z), |z21 =

Csect ,
sech(t) 37)

This solution is realised physically if the pendulum
is strongly stretched vertically and then relaxed, Recall
that following results presented in monograph [27] the
initiated vertical pendulum oscillations will be unsta-
ble regarding arbitrary small horizontal deviation. The
described phenomenon is referred to as the breaking
process of vertical pendulum oscillations (see [27]).
Qur proposed method essentially simplifies consider-
ations. Namely, for small horizontal perturbation peri-
odic process of energy pumping from one to another
mode occurs, and it can be described via elementary
functions in more details and more accurate manner in
comparison to those reported in the cited monograph.

Let us consider a solution to the studied problem
in the resonance case for initial conditions x(0) =
x0, ¥(0) = yp, #(0) = v{0) = 0. In this case a solution
to full Hamilton equations with Hamiltonian Hp + F
i$ yielded by Zhuravlev’s theorem, and it is repre-
sented by oscillalions with frequencies 2 and 1 and
slowly changed amplitudes X{#) and ¥{¢), and with
period T of the form

x = X(t)cos2t, =Y ()cost.

Modulations X (¢} and Y (r) corresponding to verti-
cal x(¢) and horizontal y(z) displacements can be rep-
resented by the sum of solutions delayed on the period
7o of the form

X (1) = xo(|tanh(t — 19/2)]
+ [tanh(r — 370/2)| - 1),
Y (1) = 2xg(sech(r — (1/2)10)
+ sech(r — (3/2)1)),

(38)

T = (3/4)xpt.

in Fig. 4, a comparison of both numerical (for
xg =0.1, yp = 0.01) and analytical solutions is shown.
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Fig. 4 Analytically (thick curve) and numerically (thin curve)
cbiained time histories

Solid thick curves correspond to analytical functions
computed via formulas (38). Analytical estimation of
modulation (38) and period of energy pumping from
one to another mode coincides well with numerical
results. Asymptotic formula (34) yields 1y = 8.075:
C =0.20025; T = 8%y/(3C) = 107.5. On the other
hand, numerical computation of the studied equations
presented in Fig. 3 gives the period T = 108,

The proposed solutions (37) and (38) are not pre-
sented in the monograph [27], and hence this is a
new result. The same holds for the reported solution
in vicinity of the periodic solution (29) and formulas
(32), (35), (36) for modulation period,

The obtained solution governs also breaking pro-
cess of the pendulum horizontal oscillations. They are
unstable, and hence they transfer into vertical oscilla-
tions,

11 Advantages of the method of invariant
normalization

Although this problem has already been discussed in
references [11], [14], but it is reconsidered again in the
light of the obtained results.

In spite of that, the classical method of normal
forms is originated [rom Poincaré and Birkhhoff
works, it is rather rarely applied by non-linear ana-
lysts. A reason is that it requires a lot of transforma-
tions to achieve construction of a normal form. Algo-
rithms devoted to construction of a normal form given
for instance in [28, 29] also require extensive computa-
tions to achieve the goal. Besides, classical algorithms
essentially differ from resonance and non-resonance,
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as well as autonomous and non-autonomous cases. Re-
searchers dealing with the investigation of non-linear
oscillations either use commercial packages or ap-
ply other approaches. This observation holds swinging
pendulum with an elastic length [8, 26, 27].

We propose an alternative approach removing the
occurring drawbacks. Normal form (20) can be found
without a computer or it can be realized via simple
programming using either “Maple”, or “Mathematica”
being applicable simultaneously for resonance-non-
resonance, and autonomous-non-autonomous cases.

Furthermore, a normal form oriented analysis has
many advantages in comparison to the method of Lya-
punov, among the others, First, normal form construc-
tion yields two first integrals in the beginning, and the
third one is easily found, which allows us to find the
full system integral. Second, the obtained integrals al-
low us to construct the Lyapunov function, and hence
the problem of periodic solution stability is solved si-
multaneously. Third, the method of invariant normal-
ization is interesting from the methodological point of
view.

Finally, all of the obtained results have clearly il-
lustrated the mentioned advantages of the method of
invariant normalization in comparison to classical nor-
mal form approaches.

Concluding remarks

Our main goal has been achieved, i.e. the asymptotic
solution regarding small amplitude of oscillations of
the spring-type swinging pendulum in the resonance
case wy :wz = 1:2 has been constructed, For par-
ticular initial conditions, one may find periodic so-
lution (27), where amplitudes of horizontal and ver-
tical modes are constant and frequencies differ from
the linear case on amount of first power of oscilla-
tion amplitude. Therefore, resonance condition yields
strengthening of the Duffing effect. Stability of this so-
lution is yielded by integral (25) and the Lagrange the-
orem. In other words, for any other initial conditions
the oscillations take place with periodically changed
in time amplitudes. It has been derived analytical for-
mula (4} governing changes of amplitude T on ini-
tial data (35) and (36). Furthermore, elementary func-
tions (38) allow to describe vertical oscillation break
during horizontal pendulum coordinate excitation, The
comparison of both analytical solution (38) and nu-
merical one exhibits a high accuracy of the presented

approach regarding amplitudes variations and the pe-
riod of these variations. Finally, it is expected that the
used novel approach can be also applied to detect an-
alytically an intersection of siable and unstable homao-
ana heteroclinic orbits exhibited by high dimensional
dynamical systems, and hence to predict chaotic dy-
narics. This problem has been recently addressed in
the monograph [30], where classical perturbation ap-
proaches have been used.
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