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Active control of two degrees—of—freeddm
building-ground system

JAN AWREJCEWICZ and PAWEL OLEINIK

The presented idea of active control of buildings is valid for the general concept of stabiliza-
tion of some constructions subjected to an excitation coming, for instance, from earthquakes.
The problem is analyzed in a two case studies describing not excited and externally loaded
two degrees-of-freedom dynamical system. 2-DOF linear system is used to model the building-
ground interactions. Algorithm that actively controls the system has been implemented and
tested as well. The task finally reduces the investigations conducted in the work to estimation
of the control force which could guarantee the sufficient minimization of the cost function pro-
posed. On the basis of both analytical derivations and numerical analysis performed a few time
‘histories of convergence of control force, components of the matrix of gain and accelerations of
system masses have:been illustrated and shortly described.

Key words: active control, constructions stabilization, 2-DOF dynamical systems

1. Introduction

Active control of building structures has been widely studied theoretically, using a
variety of control strategies [5]. Control of structural dynamics basically means regu-
lation of the corresponding characteristics for the purpose of providing its controlled
response to the effect of the external dynamic loads.

During the last decade, a rapid development has been observed in the field of struc-
tural control. Although these achievements in civil engineering are quite recent, it needs
to ensure the comfort and safety of occupants and protect the integrity of the structure.
There are studied many theoretical and experimental problems of control in order to
reduce structural vibrations under any unpredictable conditions [1,2]. :

The use of active control on a passively base isolated building model is proposed in
[4] to counteract vibrations due to a low power excitation. The base isolated building
is modeled as a three degrees-of-freedom rigid body. The rotation at the center of this
model of building is controlled by means of vertical synchronized actuators. The control
methods which are applied to the base isolated model and then compared are as follows:
optimal control, eigenvalue assignment using state and output feedbacks.
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A method for design of supplemental dampers in multistory structures is presented
in [6]. Active optimal control theory is adapted to design linear passive viscous or vis-
coelastic devices dependent on their deformation and velocity. The theory using a linear
quadratic regulator is used to exemplify the procedure. With the use of Riccati equa-
tion the design is aimed at minimizing a performance cost function, which produces a
most suitable minimal configuration of devices while minimizing their effect. A progres-
sion visible in investigations of earthquake resistant structures from passively controlled
base-isolated structures to actively controlled structures has now led to hybrid structures.
As it is shown in [7] a hybrid actuator-damper-bracing control system can be composed
of viscoelastic dampers and hydraulic actuators in the form of the passive and active
controllers, which are installed on the brace and connected to the building floor. The
intelligent control strategy is designed to maximally utilize the passive damper and to
minimally utilize the active energy. Thus, the passive controller of the hybrid system is
designed for small moderate earthquakes and the active controller works for large earth-
quakes. The hybrid control system is studied under existing earthquake records and the
ground motions together with assumption of tectonic movements of seismic plates.

A generalized minimum variance algorithm for the control of civil engineering struc-
tures is described in [3]. The algorithm needs the knowledge of the seismic excitation
model to drive the autoregressive moving average exogenous model of the structure. The
control is designed such that the variance of the generalized cost function is minimized.
To demonstrate the effectiveness of this control technique, some simulation tests using a
single degree-of-freedom structure were performed.

2. The problem without external loading

The active control of buildings concerns on constructions being analyzed on the base
of a general approach. Control of the investigated not subjected to any external loading
two degrees-of-freedom continuous dynamical system represents a little particular case
of the active control law used in the paper. There is derived a controlling scheme applied
to the analyzed 2DOF system, which after an initial placement disturbance xy at any ini-
tial time ¢ evaluates until the moment of time ¢y is reached. The system is not influenced
by any external disturbances affecting it from the surrounding environment.

Let the following system of differential equations be given as follows

i(r) = A(0)x(r) + B(1)ult), x(00) =0, ey

where: A — (n x n) matrix of structure parameters,
B - (n x n) matrix of executing (regulatory) elements,
x — n-dimensional state vector of the system.
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Our task focuses on searching for the control force u(t) that would satisfactorily
minimize the cost function J in time ¢ = :

I T
J= %x(tf)TGx(tf)-i'%/ [ *1) ] [ QT ] [x(t) ]d(, | @)

TT R u(r)

where: 0, @, T and R are dependent on time ¢ symmetric weighting coefficients matrices.

L]

2.1. The Riccati equation

Let us assume the existence of such an expression representing the cost function

Iy
J=0(x,0)|7 +/(p(x,u,t)dt. 3)

4]
Hamiltonian of the cost function (3) is defined by the formula
H(x,u,k,t)=(p—xT%E(p+xT7\., )]

where x(t), A(t) are canonical variables.

It results from (3) that ¢ takes only scalar values, so the summation in (4) can be done
if and only if the notation (dx/dt)T A is a scalar value too. A transposition of scalars does
not make any difference in (4), therefore we have

H(x,u,Mt) = ¢+ (TA)T =9+ AT )
Differentiating (4) with respect to x yields
0H 0¢ di'd¢ 099

a orar L axar ©
The composite function theorem allows to simplify (6) to the following form
oH d d¢
T w e

One can guess from (4) that A = —d@/d(dx/dt) . Successively, taking into consideration
(7) we get the following Euler-Lagrange equation

oA oH

— = 8

ot ox ®
The Hamiltonian given in (4) satisfying (2) is as follows

T
1| x(¢) O T x(t)
H(x,u,At) = 5 |: (0 ] [ TR } [ (0 } + AT (Ax(t) + Bu(t)). )
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After differentiating the last equation with respect to A, x and u one gets

%—;I = i(t) = A()x(r) + B()u(s)- | (10)

In the background of Euler-Lagrange equation (8) and with application of the properties
M A =AT)A, TT =T the following relation is obtained

M) = —%—Z = —a—ax- B (x(t)TQx(t) +u(t)T T x(t) -Fx(t)TTu(t) +u(t)TRu(t))}

(11)
+ATA(t) = —Qx(t) — Tu(t) — ATA(r). -

Derivative of(9) with regard to u reads

%%: aa[ (x(0)" Qx(t)+u(t) TTx(t)+x(f)TTu(t)+u(t)TR"(’))]+BT7*

If H = const then 0H /du = 0, and hence

O0H

5 =TT x(t) + Ru(t) + BTA =0. (12)

From the above we find . ~ :
u(t)=—RU(TTx(t)+B™A), .. . (13

‘and R(?) is assumed to be reversible in the forthcoming analysis. Substitution of (14) in
(1) yields
#(f) =x(t) (A-BR'TT) - BR-BTA. (14)

Equations (11) and (14) constitute a system of 2n linear ordinary differential equa-

tions of the form ,
i) [ A —BR'BT [ %)
RO e L N YOO N

A _pp—lpT 1T (15)
A,=A-BR'TT, 0,=0-TR'TT.

Solution of the system (15) can be expressed by means of final (terminal) condltlons and
the matrix ¢(t7,?) decomposed to a four component matrices

x(tr) | _ | ou() () || x() (16)
AMis) Qu(t) 02(t) | | A()
where @11, 912, 921, 922 are n X n component matricps. '
Let A at final time #; be equal to

Aty) = 0(tf)x(ty). o (17)
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Taking into account (17) in (16) one obtains
x(tr) = Qu1(t7,0)x(2) + @r2 (85, 1)A(0)- (18)
B(tr)x(tr) = @21 (tr,0)x(t) + @22(25,)A(2). (19)
Substituting (18) into (19) _
005 )@u1(ty,1)x(2) + 08(27) Q12 (25, )ME)) = Q21 (25, 1)x(1) + @22 (2, 1)A(E), (20)

and consequently

Me) = (0nlts,1) = 8(t1)012(t5,1) " (B(tr) @11 (tr,8) — Qa1 (t7, 1)) x(1). (21

The expressions in braces will be from now denoted by K,, therefore (21) can be
rewritten in the form

Me) = Kx(1)x(e), (22)

where K, is n X n Riccati matrix.
Putting A(¢) expressed by (22) into (13), we get

u(t) = —R~Y(TT + BTK,)x(r). (23)

Observe that the sought control law u(¢) is governed by a linear combination of
state vectors. It is known that the best method of determination of the K, matrix and
thereby estimation of u(z) is utilization of a proper convergent numerical procedure. By
substitution of (22) into (15), we have

%(t) = (A, — BRT'BTK)x(2),
At) = Kek(t) + Kex(r) = —Qnx(t) — Ay (1)Kex(2), (24)
(Kx+ KeAn +AIK, — K.BR7'BTK, + Q,) x(t) = 0. (25)

Because validity of (25) covers all x(z) # 0, then the expression in braces preceding x()
must equal zero. Therefore, K, has to satisfy the following Riccati matrix equation

(Kx— K:An — ATK: + K.BR™'BTK, — Q) x(t) = 0, (26)

also with inclusion of the final condition Ky(ts) = 6(ts), in which 6(zy) is the known
value. Of course, (26) is numerically integrable in (¢, 7). Thus, we are able to determine
both the Riccati matrix K, and the gain matrix F; for all ¢ € (to,¢f):

F(t) = —R"YTT + BTK,). (27)
Finally, the following control law can be proposed

u(t) = Fx(t). (28)
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2.2, Stationary control law

Let A, B, Q and R be some time-independent (constant) matrices. Matrix K, is then

a particular solution to such an equation K,(ty) = 6(t;). If the solution is stable (in

accordance to Lyapunov criterion) for the sufficiently large #7, then the approximate

values of K, converge to a constant value K. Evidently, one can assume that the matrix

K, is also time-independent and is in its final state K, represented by the solution to the
Riccati equation

~KA,—ATK.— 0, +K.BR'BTK, = 0. (29)

For the purpose of illustration of the principle of Riccati matrix stability the simple
mechanical system visible in Fig. 1 of two degrees-of-freedom modeling the dynamics
of building-ground connection will be analyzed.

In order to control the system under investigation we additionally dispose of a virtual
generator of control force u(¢) which is placed between the two masses of the building-
ground system. Equations of motion with an auxiliary force u(¢) controlling the second
material point (building) are written in the following form

mixXy (t) = —k1x1 (t)‘—- C1X1 (t) — ﬂ(f),
(30)
maiy(t) = u(t).

We propose a function of balance, which will precise the starting point as an input in
the strategy of searching for the control force characteristics. Our fundamental task is to
secure the amplitude of vibrations of the second mass minimized as low as possible in
the preset interval of time # € (fo, 7).

Figure 1. Active building-ground model.
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The cost function (2) will be given in a more consisted form. Therefore, let Q, R and
T satisfy

a1it+q2 —q2 0 0
| 2 @ 00 '
- , R=r, T=0, 31
Q- 0 0 0 0 r €))
0 0 0 0

where g1, q», r are weighting coefficients.
Additionally, let 6 be equal to zero in (fo,f). Matrices A and B are constant and
time-independent: :

0 0.1 0 0

0 0 0 1 0
Azh_Oﬂ_O,B= |- (32)

mi m Tm

0 0 0 O ;1;

Taking into-consideration @, R, T and Qin (2) (glven by (31) and (32)), the following
form of cost funct10n can be 1ntroduced

-/[xT(t ut [g 2][ E;]dt, (33

=3 / ()Ox(t) +uT(t)Ru(t)) ~ (34)

. where both elements of the sum are scalars ;
Product x(t)7 Qx(t), where x(t)7 = [xy,x,dx; /dt,dx; /dt] (see F1g 1)is equal to

X1

Qi+q —q¢ 0 0
. ‘ - -0 0 Xy
th x(t) = |x1 x2 X1 X K qz.
(1)0x(t) = [x1 x2 %1 %2] 0 0 0 0 x'1
0 0O 00 X2

| ~, 35)
= (x1(q1 + ¢2) — 2q2)x1 + (—x¥192 +x292)x2,

and u(t)T Ru(t) = ru?. Thus, we seek a cost function in the form

N : R
1
JZE/(41x%+qz(x2—x1)2+’”2)d’- - -39

o
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2.3. Numerical results for the not externally loaded system

The following set of parameters is assumed: m; = 1500kg, my = 11000kg, k1 =
975000N/m, ¢; = 10800Ns/m. Optimal control will be guaranteed for: g; =5, g2 = 1,
r = 107193, Such estimation of control parameters allows for proving of correctness of
the method used as well as for making a good observations of influence of the control
force on the investigated two degrees-of-freedom building-ground system. Components
of the structure matrices A and B in (32) representing a ‘control mechanisms’ are: a =
ki /m =650,b=1/m; =6.66e—4,c=1/my =9.9091e—-5,d =c;/m =7.2.

Estimation of u(¢) will be preceded by a numerical integration of (26) by means of
the standard 4-th order Runge-Kutta procedure.

Components of Riccati matrix K, are:

Kx=[(1,'j], Vl",jE(l,...,4). 37

Substitution of the symmetric matrix K, in (26) implies ten subsequent equations:
Gi1 = —2013a+ g1 + g2 + ;(—Glab + 0u14c)bo3 — %(—01317 + t4c)coug,
Q12 = —0Opa—qg2+ %(—0131) + Qy4c)b0iaz — %(—aljb + 0l4¢) c024,
Q13 = 01 — 03d — Ozza+ ;(—00131? + 0t14¢)b0is3 — %(—anb + 014€) 0y,
04 = Ol — O34a + %(—001317 + 0014?)b0€34 - ;(—Oﬂlab + Qt14¢) 044,

. 1 1
022 = g2+ —(—0023b + 024€) b3 — —(—0i23b + 0i24C) 04,
r r (38)

O3 = 02 — Oip3d + ;(—052317 + 0i24¢)b0i33 — %(—Omb + Op4c)Cc034,

Glog = Olpp + %(omb + 0lp4C)b0izg — %('——oc23b + 0l24C) COL44,

033 = 20013 — 20633d + %(—00331) + 034¢)b033 — ;(—Oc33b + 0i34¢) cOi34,
O34 = 0lp3 + Olj4 — O34d + '}(—053317 + 034¢)b0l34 — %(—‘13317 + 034¢) 0y,

. 1 1
Olag = 20024 + p (—0i34b 4 Olgsc)bO3g — ;(—053417 + Olg4C)C0lag

- Equations (38) are then integrated numerically since the constant components Ric-
cati matrix K, results in the following estimation
K. = lim K, (z). (39)
=]

The knowledge of all components of K, permits for calculation of the time-dependent
matrix of gain, and hence

Fe(t) = —RTB K, = [f1(t), /2(6), £5(1), fa(D)]- (40)
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A final form of the resulting time-dependence of control force (control law) is given in
the form

u(t) = F(t)x(t) = fix1 + foxa + faky + fako. 41)

Note that F; approaches a constant solution value at F; for a sufficiently large time ¢;.

Lfx10° A
0.5

0 0.5 1 1.5 t

Figure 2. Time history of components f; of the gain matrix F(z).

Fig. 2 presents time histories of components f; for i = 1,...,4 of gain matrix (40).
Numerically computed limits of F; are found:

F,=—R'BTK, =[0.8232 x 10°, —0.14126 x 105, 0.5926 x 10*, —0.5403 x 10°].
Stationary control law is on the basis of the above governed by the general equation
u(t) = Fex(t). (42)

Our analysis confirms a strong dependence existing between the control force u(t)
and the gain matrix F,. We mentioned that for any building-ground balance coefficients
q1, 2, 1, the system under investigation should be optimally controlled. With regard to
(42) and for the test values ; = 0.5012 x 1010, r, = 107, and initial conditions x; = 0.1,
x2 =0,dx;/dt =0, dx,/dt = 0 two time histories of the control force u(t) are shown in
Fig.3.

Time histories of acceleration of the second mass m; are shown in Fig. 4. Acce-
leration of that second controlled mass is definitely better damped for the case of the
system being under the active control. The obtained results can be corrected (improved)
by modification of balance coefficients g; or r. To do this, one of them is assumed to be
constant while the second one is searched for the more accurate value.
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Figure 3. Variations of control force for the coefficients r; (solid line) and r, (dash line).

08 f:

-1.6

-24L : et
0 05 I 15 t

Figure 4. Time histories of acceleration d2x, /dt? for the passive (solid line) and active control of the second
mass for r; = 0.5012 x 1019 (dot line) and r, = 10r; (dash line).

3. The2-DOF system with an external loading

Let us invoke the system of equations (1) and let it be supplemented with an auxiliary
vector of external loading z(¢) of dimension n. A general form of the system of motion
is given below
%(t) = A(t)x(t) + B(t)u(t) + D(t)z(t), (43)

where this new matrix D(t) indicates a point of application of the external loading.
If a seismic excitation is assumed to be of a deterministic type the law of the optimal
control for the analyzed dynamic construction can be found after minimization of the
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second order function of effectiveness

1 AECRHE-CRECEECOREED
J(nzu) = 5xT(e)0(s)xt) +5 [ | 2(0) ST(e) N@) L) || 2() |dt,
o | ut) T7(t) LT(t) R() u(t)
(“44)
where 0, 9, S, T, N, L and R are the symmetric weighting matrices.

3.1. The Riccati modified equation

Using (4) the Hamiltonian satisfying the cost function J written in (44) is as follows

T
x(t) Q@) S@) T(@) || x() :
H(xuwdt) =2 | 2(t) ST(t) N(@) L(t) Z2(t) | +M k. (@5)
u(t) TT(t) LT(t) R() | | u(®)
where x is expressed with (43).
- Differentiation of (45) with respect to A produces
oH ‘
= = x(1). (46)
Similarly to the previous derivations the Euler-Lagrange equation (8) takes the form
oL OH : ‘ ,
3= —0()x(t) —AT(O)M(t) — S(£)z(t) — T ()u(t). (47)
The partial derivative dH /du of (45) together with assumption of H = const is
%—I: = R()u(t) + BT (t)M(t) + TT (t)x(¢) + LT (£)z(¢) = 0. (48)

By calculating u(t) from (48) and applying it successively to (46) and (47) a system of
2n linear differential equations is found to be
+| P
-S,

x| _| An —-BR'BT x
Al | -0, AT A
where: A, =A—BR™'TT, 0, =Q—-TR'TT, D, =D—-BR™LT, S, =S—TRILT.

Solution to the (49) in which all state variables and matrices are time-dependent is equiv-
alent to the solution of (16) with an additional particular solution

xt) | _ FORE0
[ Mey) } = olr!) [ M) } i [ (0) ] ’ cO

Z, 49)
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where ¢ is a transition matrix. Taking the final condition A(f) = 6(¢f)x(¢f) and then
substituting it to (50), one gets

Me) = (022(t5,1) = 8012 (t7,1)) ™ (8011 (2, ) — 21 (£, )x(t) + ra() = Or1(1))).  (51)

Finally,
Mt) = Kx(t)x(8) +r(8), (52)

where K, is the (n X n) Riccati matrix, r(#) represents a filter of the external excitation

z(t).
Substituting A(¢) in (48), one finds

u=—R (BT +TT)x+BTr+L72). (53)

To estimate K, and  a numerical procedure has to be applied. Finding the time derivative
of (52), using x expressed by first equation of system (49) and after that comparing the
result for A with the second equation of system (49), one gets

(K + KAn+ATK, — K.BR™'BTK ) x = — 4+ (K,BR'BT — AT)r — (K, Dy + Sp)z. (54)

Vectors x and z are arbitrarily chosen so (54) is true if and only if K and r are satisfied
by the following

Ki=—KAn~ATK,+ KBRT'BTK, — Qn,  Kulty) =6(tf),
(55)
# = (K:BR"'BT — AD)r — (K:D; +S,)z, r(zg) =0.

Assumption of a deterministic form of the applied force reveals a possibility of replacing
r in (52) with K,z(¢). The Lagrange multiplier given in (52) takes the form

At) = Kx(t)x(t) + K, (£)(¢), (56)
with a final condition A(zy) = 6(¢f)x(¢f). System of equations (55) is now rewritten

KA, +ATK, — K.BR'BTK, + O, = —Ks, Ki(tr) = 0(tf),
_ (57)

KD, +KA,~KBR'BTK, ~AIK,+5,=-K;, K, (ty) =0,

where matrix K, is the solution to the Riccati equation, and X is the Lyapunov solution.
If it is still valid our assumption for r = K,z(¢) then the control law u(t) that has been
introduced in (53) takes the final estimation

u(t) = =RT (1) (BT ()Kx(r) +TT (1))x(s) + (BT(f)Kz(f) +LT(£)2(1))
= Fx(0)x(e) + F(1)z(¢)-

(38)
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3.2. The second stationary control law

Our considerations are founded on the observation that if £ — oo, the state matrices
A, B and D as well as those weighting matrices 0, Q, S, T, N, L and R are some constant
value matrices. In a consequence, matrices K,(¢) and K,(¢) approach the direction of
constant values K, and K, stationary algebraic solutions to the Riccati and Lyapunov
equations

KA, +ATK, —X.BR'B'K, + Q, =0,
— _ _ _ _ (59)
K.D,+K,A,—K:BR'BTK,+ ATK,+ S, = 0.

In order to illustrate the stationary feature of (59) that investigated in Section 2 building-
ground system shown in Fig. 1. will be analyzed once again but with a distinction that
the ground is being under action of force loading f(t). For the purpose of control force
u(t) generation an actuator has been placed between the two existing masses of the 2-
DOF dynamical system and will have a determined influence on their displacements.
Equations of motion are derived from the Newton law and are supplemented by the
additional f(r) term '

mysiy (£) = —u(t) + ko (f() —x1(1)) + 1 (f(£) = 21 (£))

, (60)
mo¥s (t) = u(t).
Let system matrices be defined as follows:
[0 0 1 0 0 [ gi+a —¢ 00
0 0 0 1 0 — 00
A= b g _a g , B= L |0 97 ()q2 %2 00|’
Tmy Tm Tm
0 0 0 0 o 0 0 00
0 0
b= EL_OL ,ST—[_‘“OOO , N= ‘“0], 61)
o 0 00 | 0 0
| 0 0
0 1

Azz[ J T=[0000]", L=[00], =0, R=r.
i1 22

Substitution of (61) in (44) provides us with the cost function

T
il ox 0O 5 0

x
1
J(x,z,u)=§ z ST N O z |dt
U

n | u 0 0 R
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(62)

i
1
=3 / (" Qx+ 2" STx +xT Sz+ 2" Nz+ u" Ru)dt.

fy

Multiplying the appropriate matrices given in (61) by xI = [x1,x,,%;,%;], one finds the
final form of cost function

i
J= % /(ru2 +g2(x1 —x2)* +q1(x1 — f))dt. (63)

to

"3.3. Numerical results for the externally loaded system

Let our system of two degrees-of-freedom be subjected to the loading of a deter-
ministic force foexp(As/2)cos t. The following set of parameters is assumed: m; =
1500kg, my = 11000kg, k; = 975000N/m, ¢y = 10800Ns/m. Optimal control will be
guaranteed for: gy =10, g2 =1,r=10"103 z; = —@?, 0 = —A, 0= 1s"1, A =0.55s"1,
fo = IN. Estimation of u(¢) will be preceded by a numerical integration of (57) by means
of the standard 4-th order Runge-Kutta procedure. This time we have to integrate 18
equations. Ten of them can be repeated as in (38) but the next eight can be found by
substitution of K, from (37) and K, = [C;;], V{i € {1,...,4}, j € {1,2}} to (§7).

Components of the structure matrices A and B in (32) representing a ‘control mecha-
nisms’ are: a = k; /my, b= 1/my, c=1/my, d = ¢y /m;. For the known values of matrices
K, and K, the sum of two gain matrices F, and F} is :

EY+FZ = _R—IBT(KX(I) +Kz(t)) = [ 1(t)7f2(t)’f3(t)af4(t)’f5(t)af6(t)]a (64)

and subsequently

u(t) = fix1(t) + foxa(2) + fax1(t) + faka(t) + fsz2(t) + fe2(2). (65)

Analogously to the time history in Fig. 2 some six components time dependency of the
gain sum of matrices (64) have been presented in Fig. 5.
For a sufficiently large ¢/ the stationary values f; are:

F,+F, = [1.4250764, 1.14125345, 0.09274669, 0.55781137,
(66)
—0.13076894, 0.40341027] x 10°,

and the stationary control law is given in the following manner
u(t) =Fr(t)+ F,(t). . (67)

With the use of (67) and assumption of ; = 0.50119 x 1071% and , = 0.50119 x 10~°
the time history of control force fluctuations is shown in Fig. 6.

It is seen in Fig. 6 that these two characteristics are the fast stabilizing ones being
similar to theirs not loaded case counterparts presented in Fig. 3. '
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Figure 5. Time histories of components f; of the gain Fy(z) + F,(t).
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Figure 6. Variations of control force for the coefficients ry (solid line) and r; (dash line) in the externally
loaded case.

4. Conclusions

The presented idea of active control of buildings is valid for the general concept
of stabilization of some constructions being not under any external excitation. A two
degrees-of- freedom mechanical system was used to model the building-ground interac-
tions, and an algorithm of its active control has been implemented and tested as well. Fi-
nally, the problem has reduced the investigations conducted in the work to an estimation
of the control force which could guarantee the sufficient minimization of the cost func-
tion proposed. On the basis of both analytical derivations and numerical computations
performed a few time histories of control force convergence, components of the gain
matrix and accelerations of one of the system masses have been illustrated and shortly
described. One can observe, that system responses stabilize quite quickly (in about 2



408 J. AWREJCEWICZ, P. OLEINIK

sec.), and the shapes of control force time dependencies (see Figs. 3 and 6) are very
perspective, quite fast stabilizing themselves as well as confirm the proper numerical
application of the theory of active control used.
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