STRING AND BEAM-LIKE MODELS AND THE REDUCTION PROBLEM

UDC 534-16(045)=111

Igor V. Andrianov, Jan Awrejcewicz

Institute of General Mechanics RWTH Aachen, Germany Department of Automatics and Biomechanics, Technical University of Łódź, Poland

Abstract. In this short communication two types of belt vibrations are discussed and boundaries of their application are established.

Key words: string, reduction, vibration, boundaries.

The investigation of moving objects approximated by one-dimensional equations (belts, tapes, and cables) is very important from the view of applications (see [1-6] and the references therein). One may expect that the equations governing the dynamics of the given objects are properly derived for both linear and non-linear cases. However, even for the linear case, the problem is reduced to a consideration of the infinite systems of ordinary differential or algebraic equations (see examples given in references [1-4]).

In this report only a linear case is considered, although the obtained results can be easily generalized into a non-linear case.

As it has been mentioned in reference [1], the belt vibrations can be classified into two types, i.e. that of a string-like type or of a beam-like type, depending on the bending stiffness of a belt.

We are going to establish boundaries of applications of two mentioned models. For a linear case elementary transformations are needed to carry out the study. We show that the obtained linear estimations hold also for a non-linear case.

In the computational scheme, a conveyor belt is modelled by a stretched beam of length L (Figure 1).

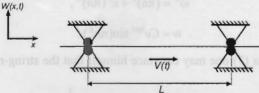


Fig. 1. Schematic model of a conveyor belt [1].

The governing equations can be reduced to the following form [1, 2]

$$\rho F \frac{\partial^2 W}{\partial t^2} + 2V \frac{\partial^2 W}{\partial x \partial t} + V^2 \frac{\partial^2 W}{\partial x^2} - T \frac{\partial^2 W}{\partial x^2} + V_1 \frac{\partial W}{\partial x} + EI \frac{\partial^4 W}{\partial x^4} = 0, \tag{1}$$

where: W(x,t) is the displacement of the belt in the vertical direction; V is the time-varying belt speed, $V_1 = \partial V / \partial t$; ρ is the mass density of the belt; F and I are the area and first moment of the beam cross-section; t is time; x is spatial coordinate; T is constant tension.

The following boundary conditions are applied:

$$W = 0 \quad \text{for} \quad x = 0, L \; ; \tag{2}$$

$$\frac{\partial^2 W}{\partial x^2} = 0 \quad \text{for} \quad x = 0, L \ . \tag{3}$$

In computations both equation (1) with boundary conditions (2), (3) (beam like approximation), and the so called string-like approximation governed by equation

$$\rho F \frac{\partial^2 W}{\partial t^2} + 2V \frac{\partial^2 W}{\partial x \partial t} + V^2 \frac{\partial^2 W}{\partial x \partial x} - T \frac{\partial^2 W}{\partial x \partial x} + V_1 \frac{\partial W}{\partial x} = 0 \tag{4}$$

with boundary condition (2) are applied. It should be emphasized that while solving equation (4), infinite systems appear which cannot be reduced to finite ones [1].

In what follows we show that the occurred difficulties are only of mathematical character and they do not possess any physical insight. We put V = 0 and transform equation (1) to non-dimensional form

$$\frac{\partial^2 w}{\partial \tau^2} - \frac{\partial^2 w}{\partial \xi^2} + \varepsilon^2 \frac{\partial^4 w}{\partial \xi^4} = 0$$
 (5)

where: w = W/h; $\xi = x/L$; $\tau = tL\sqrt{T/\rho F}$; $\varepsilon^2 = EI/(TL^2)$.

Recall that for physically motivated considerations the parameter ε is small, i.e. $\varepsilon << 1$. The associated boundary conditions (2), (3) are also transformed into the equivalent

The associated boundary conditions (2), (3) are also transformed into the equivalent non-dimensional form

$$w = \frac{\partial^2 w}{\partial \xi^2} = 0 \quad \text{for} \quad \xi = 1.$$
 (6)

Eigenfrequencies and associated modes of systems (6), (7) vibrations read:

$$\omega^2 = (\pi n)^2 + \varepsilon^2 (\pi n)^4 \,, \tag{7}$$

$$w = Ce^{i\omega\tau} \sin(\pi n\xi) . \tag{8}$$

Owing to formula (7) one may convince himself that the string-model (4) can be only applied either for

$$\varepsilon^2(\pi n)^4 <<1 \text{ or } n > \frac{1}{\pi \varepsilon^{1/2}}.$$
(9)

This observation yields a conclusion that the problem of occurrence of infinite systems associated with analysis of string-like model does not appear at all.

REFERENCES

- Suweken G., Van Horssen W.T., (2003), On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part I: the string-like case, *Journal of Sound and Vibration*, 264, 117-133, 2003.
- Suweken G., Van Horssen W.T., (2003), On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part II: the beam-like case, *Journal of Sound and Vibration*, 267, 1007-1027, 2003.
- Suweken G., Van Horssen W.T., (2003), On the weakly nonlinear transversal vibrations of a conveyor belt with a low and time-varying velocity, Nonlinear Dynamics, 31, 197-203, 2003.
- Pelikano F., Vestroni F., (2000), Nonlinear dynamics and bifurcations of an axially moving beam, Journal of Vibration and Acoustics, 122, 21-30, 2000.
- Wickert J.A., (1992), Non-linear vibration of a travelling tensioned beam, *International Journal of Nonlinear Mechanics*, 27(3), 503-517, 1992.
- Sack R.A., (1954), Transverse oscillations in travelling strings, British Applied Physics, 5, 224-226, 1954.
- Andrianov I.V., Kholod E.G., Olevsky V.I., (1990), Approximate nonlinear boundary value problems of reinforced shell dynamics, *Journal of Sound and Vibration*, 194(3), 369-387, 1990.
- Awrejcewicz J., Andrianov I.V., Manevitch L.I., (1998), Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications, Springer-Verlag, Heidelberg, Berlin, New York, 1998.
- Andrianov I.V., Manevitch L.I., (2002), Asymptotology: Ideas, Methods and Applications, Kluwer, Dordrecht, 2002.

MODELI TIPA STRUNE I GREDE U ZADACIMA REDUKCIJE

Igor V. Andrianov, Jan Awrejcewicz

U ovom kratkom radu dva tipa oscilacija trake su prikazana, kao i oblasti njihove primene.

Ključne reči: struna, redukcija, vibracije, granice.