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Abstract Dynamics of a damper with two degrees of freedom (2-dof) and friction with reference to heating
processes is discussed in the paper. A method to solve a nonlinear problem of thermo-elastic contacting bodies
is proposed and a numerical analysis of the system kinetics is carried out.
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1 Introduction

Nonlinear oscillations of mechanical systems are described extensively in a series of classic monographs [1–7],
and some asymptotic methods for solution of equations of nonlinear oscillations are presented in well-known
books [3,4,6,7]. They mainly address classical approaches to the study of vibrations exhibited by various
engineering systems.

In many cases in engineering, the harmful effects of vibrations are suppressed by inclusion of so-called
dynamic vibration dampers [8]. They have rather a wide spectrum of application and can be used to damp
various longitudinal, torsional and transversal vibrations of both machines and civil engineering constructions
[9]. Now, it is well known in engineering that, in order to avoid harmful effects of resonances, the majority of
the externally driven mechanical systems should be damped.

A drawback of the current designs of vibration dampers is associated with heat transfer to the contact-
ing bodies induced by frictional processes. This causes extension of the contacting bodies, and a change of
contacting pressure and friction, often resulting in harmful damper wedging effects.

In this work a one-degree-of-freedom (1-dof) system driven by either a force or kinematic excitation is
studied. An additional mass is added to the mentioned mechanical system via a special pressing device initiat-
ing dry friction on the contacting surfaces. Our proposed mathematical model of the described system includes
thermal effects that appear on the contacting bodies [10,11]. Note that the damper geometrical properties, heat
transfer between the bodies and a surrounding medium yield a change of friction on the contacting surface. We
focus on a solution to the nonlinear problem of thermal stresses and strongly nonlinear equations governing the
dynamics of this system. Based on the analysis, directions for the proper construction of mechanical vibration
dampers are given.
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2 Mathematical modeling

Below, we consider a dynamic model system with dry friction (Fig. 1). It may, for instance, model the
Lanchester system with dry friction. Description of the Lanchester damper can be found in known text books,
e.g., books by Den Hartog [8] and Giergiel [9]. It should be emphasized that we do not study the real Lanchester
damper, but only its simplified model. A body with mass m1 models a fundamental part of the system (shaft
and bushes [8]). System vibrations are generated by harmonic force F1 = F0 sin χ0t . The following notation
is used: m1, mass; k1, elasticity coefficient of the main system constraints; F0, χ0, amplitude and frequency of
driving force, respectively. A damper (two coupled discs and screws [8]) of mass m2 is added. It is coupled with
mass m1 by a pressing system and hence dry friction force Ffr occurs. Assume that the tested damper has the
shape of a parallelepiped (2L × L1 × L2) moving in direction Z2 along the walls of the main system. The initial
value of the distance between the walls, i.e. between the discs and the bush in the Lanchester system, is equal
to the plate thickness 2L (the thickness of the friction washers [8]). Then, this distance is decreased according
to the formula 2U0hU (t), which is realized via power tightening of the screws [8], where U0 is a constant
larger than zero, and hU (t) is a known dimensionless function of time (hU (t) → 1, t → ∞). As a result of this
process, dry friction occurs on the parallelepiped surfaces X = ±L . It is defined by the function Ffr(Vr , Z1),
where Vr is the relative velocity of the plate and walls, i.e. Vr = Z ′

1 − Z ′
2(dZi

/
dt ≡ Z ′

i , i = 1, 2). According
to Amonton’s assumption, the friction force Ffr = 2 f (Vr )P is equal to the product of the normal reaction
component and the friction coefficient, f (Vr ) denotes the kinetic friction coefficient [ f (−Vr ) = − f (Vr )],
and we take f (Vr ) = fs sgn(Vr ) for Vr �= 0. The action of friction on the contact surface X = ±L generates
heat. We follow the generally accepted assumption [12] that friction work is transformed into heat energy.
Furthermore, we assume that walls ideally transform heat and that between the plate and walls the heat transfer
is governed by Newton’s law, and that the surrounding medium temperature is equal T0. Plate surfaces not in
contact with movable walls are thermally isolated. It is assumed that the contact areas have dimensions for
which L

/
L1 � 1, L

/
L2 � 1. These assumptions allow us to introduce a one-dimensional model. Both ther-

mal and stress–strain states of the plate are considered using the rectangular coordinates 0XY Z . The governing
equation of motion of uncoupled thermoelastic problem have the following form [13]:

µ2∇2u + (λ2 + µ2)grad div u = (3λ2 + 2µ2)α2grad T + ρ2
∂2u
∂t2

, ∇2T = 1

a2

∂T

∂t
,

where ∇2 is the Laplace operator, u = UeX + V eY + W eZ is the vector of relative displacement plate, U is
the displacement in the X direction, T is the plate temperature, λ2 and µ2 are the Lamè coefficients, ρ2 is the
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Fig. 1 Dynamical model of the system with dry friction
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plate density, α2 is the coefficient of thermal linear expansion of the plate, and a2 is thermal diffusivity of the
plate material.

We consider a one-dimensional model taking into account the following assumptions: (i) the external
excitation of the system allows for neglecting of the term ρ2∂

2u
/
∂t2 in the Lamè equation; (ii) the vector

components related to displacements as well as the plate temperature do not depend on Y, Z , and the unequal
zero components U (X, t),W (X, t) and T (X, t) depend only on the X coordinate and time; and (iii) the heat
flows q1 and q2 are generated on the contact surface X = ±L according to the Ling rule [12] and they are
governed by the equation q1 + q2 = f (Vr )Vr P(t). Both flows q1 and q2 go into the plate and wall, respec-
tively: q1 = ±λ2∂T (±1, t)

/
∂X , q2 = −αT (T0 − T (±1, t)), where λ2 is the thermal conductivity of the plate

material, αT is the heat transfer coefficient between the plate and the wall.
The governing equations of the system presented in Fig. 1 have the following form (see [8,10])

m1 Z ′′
1 + k1 Z1 + Ffr(Z

′
1 − Z ′

2, Z1) = F1, m2 Z ′′
2 − Ffr(Z

′
1 − Z ′

2, Z1) = 0, (1)

with the friction model

Ffr(Vr , Z1) =
{

2 fs sgn(Vr )P(t), Vr �= 0, slip,

min
(

m2
m1+m2

|F1 − k1 Z1|, 2 fs P(t)
)

sgn (F1 − k1 Z1), Vr = 0, stick. (2)

In order to solve Eqs. (1) and (2) knowledge of the contact pressure P(t) is required. For this purpose
we introduce some assumptions, and the following equation governing the theory of thermal stresses for an
isotropic body [13] is solved first:

∂

∂X

[
∂U (X, t)

∂X
− α2

1 + ν2

1 − ν2
T (X, t)

]
= 0, (3)

∂2T (X, t)

∂X2 = 1

a2

∂T (X, t)

∂ t
, X ∈ (−L , L), (4)

with the associated mechanical

U (∓L , t) = ±U0hU (t), (5)

and heat boundary conditions

∓λ2
∂T (∓L , t)

∂X
+ αT (T (∓L , t)− T0) = f (Vr )Vr P(t), (6)

as well as zero initial conditions and T (X, 0) = T0, X ∈ (−L , L).
Normal stress occurring in the plate can be found knowing both the displacement U (X, t) and temperature

T (X, t) in the plate [13], since

σX X (X, t) = E2

1 − 2ν2

[
1 − ν2

1 + ν2

∂U (X, t)

∂X
− α2(T (X, t)− T0)

]
. (7)

In the above, the following notation is taken: E2, Young’s modulus of the plate; ν2, Poisson’s ratio of the
plate; while P(t) = −σX X (±L , t) denotes the contact pressure. Quantities m1,m2, k1, P, F1 are measured
per unit of the contact surface S = L1 × L2 of the moving rigid plate and the wall. Note that, when the damper

is neglected, the considered system is reduced to that with 1-dof with a natural frequency of ω01 =
√

k1
/

m1.
Integration of Eq. (3) with Eq. (7) and the boundary conditions (5) gives the contact pressure P(t)

= −σX X (±L , t) in the form

P(t) = E2(1 − ν2)U0hU (t)

(1 + ν2)(1 − 2ν2)L
+ E2α2

(1 − 2ν2)L

1

2

L∫

−L

(T (ξ, t)− T0)dξ . (8)

The motion of the investigated system depends on both the ratios Ffr
/

F0 and χ0
/
ω01. For various values

of the Ffr
/

F0 ratio the system moves with one or more sticks within half of the period of motion. It should be
emphasized that the exact solution of this problem without tribological processes and the case with one stop
and without stops has been already reported by Den Hartog [8].
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3 Dimensionless differential and integral equations

Let us introduce the following similarity coefficients

t∗ = 1
/
ω01 [s], L∗ = F0

k1
[m], N∗ = E2(1 − ν2)U0S

(1 + ν2)(1 − 2ν2)L
[N], T∗ = (1 − ν2)U0

α2(1 + ν2)L
[◦C], (9)

and the following dimensionless parameters

x = X

L
, τ = t

t∗
, θ = T − T0

T∗
, p = P S

N∗
, zn = Zn

L∗
, n = 1, 2, ε = 2N∗ fs

F0S
,

Bi = αT L

λ2
, τT = t∗

tT
, l = L∗

L
, γ = E2α2a2

(1 − 2ν2)λ2
, � = �1

τT
, �1 = γ l,

ω0 = χ0

ω01
, κ = C

2m2ω01
, µ = m2

m1
, f (L∗t−1∗ vr ) = fs F(vr ),

vr = ż1 − ż2,
dzi

dτ
≡ żi , i = 1, 2 b1 = B1

L∗
, b2 = B2

L∗
, (10)

where F(vr ) = sgn(vr ) for vr �= 0, tT = L2
/

a is the characteristic time of thermal inertia; Bi is the Biot
number. The dimensionless parameter ε represents the friction force, γ governs the body heat extension, and
parameter � is responsible for heat generation on the surface contact.

In the dimensionless form the mathematical model reads

z̈1 + z1 + ffr(ż1 − ż2, z1) = sin(ω0τ), µz̈2 − ffr(ż1 − ż2, z1) = 0, (11)

∂2θ(x, τ )

∂x2 = 1

τT

∂θ

∂τ
, x ∈ (−1, 1), τ ∈ (0,∞), (12)

with the friction model

ffr(vr , z1) =
{
εF(vr )p(τ ), vr �= 0, slip,

min
(

µ
1+µ |sin(ω0τ)− z1|, εp(τ )

)
sgn (sin(ω0τ)− z1), vr = 0, stick, (13)

with the following boundary
[
∂θ(x, τ )

∂x
∓ Biθ(x, τ )

]

x=∓1
= ∓q(τ ), (14)

and initial conditions

θ(x, 0) = 0, z1(0) = 0, ż1(0) = 0, z2(0) = 0, ż2(0) = 0, (15)

where:

q(τ ) = �F(ż1 − ż2)p(τ )(ż1 − ż2), (16)

p(τ ) = hU (τ )+ 1

2

1∫

−1

θ(ξ, τ )dξ . (17)

In order to solve problems (12) and (14), the Laplace transformation is applied with respect to time τ . The
theorem on convolution is used [14] to find an inverse transform. Finally, we get

p(τ ) = hU (τ )+�1

τ∫

0

F(ż1 − ż2)p(ξ)(ż1 − ż2)Ġ p(τ − ξ)dξ, (18)

θ(x, τ ) = �1

τ∫

0

F(ż1 − ż2)p(ξ)(ż1 − ż2)Ġθ (x, τ − ξ)dξ, (19)
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where:

{
G p(τ ),Gθ (±1, τ )

} = 1

τT Bi
−

∞∑

m=1

{
2Bi, 2µ2

m

}
exp(−τTµ

2
mτ)

τTµ2
m(Bi(Bi + 1)+ µ2

m)
. (20)

µm(m = 1, 2, 3, . . .) are the roots of the characteristic equation tan(µ) = Bi
/
µ. The functions G p(τ ),

Gθ (±1, τ ) have the following asymptotic estimations

G p(τ ) ≈ τ, Gθ (±1, τ ) ≈ 2
√
τ
/
τTπ, τ → 0, (21)

{
G p(τ ),Gθ (±1, τ )

} ≈ 1
/
(τT Bi), τ → ∞. (22)

Observe that the considered problem is reduced to the system of nonlinear differential equations (11) and
(13), and the integral equation (18) describing to dimensionless velocities ż1(τ ) and ż2(τ ), and the dimension-
less contact pressure p(τ ). The dimensionless temperature θ(r, t) is governed by Eq. (19).

4 Analysis

4.1 Solution without heating

We take �1 = 0. Since P(t) = N∗
/

S = P∗, one gets

z̈1 + z1 + εF(ż1 − ż2) = sin(ω0τ), (23)

z̈2 − εµ−1 F(ż1 − ż2) = 0. (24)

In order to solve the problem the method of equivalent linearization is applied. Assuming that the system
motion is close to harmonic, one may apply linearization and use an equivalent viscous damping instead of
dry friction. In other words, the equivalent damping is found by comparing the energy loss in a real AT and in
an equivalent AC viscous system over the period T0 = 2π

/
χ0.

Assuming the harmonic motion

z1(τ ) = b11 sin(ω0τ)+ b12 cos(ω0τ) = b1 sin(ω0τ + ϕ1),

z2(τ ) = b21 sin(ω0τ)+ b22 cos(ω0τ) = b2 sin(ω0τ + ϕ2), (25)

the relative displacement is

z1 − z2 = d sin(ω0τ + ψ)

where:

d =
√
(b11 − b21)2 + (b12 − b22)2. (26)

Comparing the work done by the two dampers one gets

AT =
t1+T0∫

t1

2 f (Ż1 − Ż2)P∗(Ż1 − Ż2)dt, AC =
t1+T0∫

t1

C(Ż1 − Ż2)
2dt, (27)

whereas comparing the works AT = 8P∗ fs L∗d and AC = Cπχ0L2∗d2 one gets the following equivalent
dimensional

C = 8P∗ fs

πχ0L∗d
(28)

or non-dimensional damping coefficient of the form

κ = 2ε

πµω0d
. (29)
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Taking into account the equivalent damping coefficient, the governing equations (23) and (24) assume the
form

z̈1 + z1 + 2µκ(ż1 − ż2) = sin(ω0τ), (30)

z̈2 − 2κ(ż1 − ż2) = 0. (31)

A solution to Eqs. (30) and (31) is given by (25), where the corresponding dimensionless amplitudes are

b11 = (1 − ω2
0(1 + µ))4κ2 + ω2

0(1 − ω2
0)

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
, (32)

b12 = − 2µκω3
0

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
, (33)

b21 = (1 − ω2
0(1 + µ))4κ2

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
, (34)

b22 = − 2ω0κ(1 − ω2
0)

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
, (35)

b1 =
√

ω2
0 + 4κ2

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
, (36)

b2 =
√

4κ2

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
. (37)

According to (26) the dimensionless amplitude d is

d =
√

ω2
0

(1 − ω2
0(1 + µ))24κ2 + ω2

0(1 − ω2
0)

2
. (38)

According to formula (38), d depends on κ , and the equivalent damping depends on d [see (29)]. Solving
(29), (38) one gets

κ = ω0
∣
∣1 − ω2

0

∣
∣

2

√
ω+ω−

(ω2
0 − ω+)(ω− − ω2

0)
. (39)

The amplitudes are

b1 = 1

ω0
∣
∣1 − ω2

0

∣
∣

√√√√ω2
0

(

1 −
(

1 + 2

µ

)(
4ε

π

)2
)

+ 2

µ

(
4ε

π

)2

, b2 = 4ε

πµω2
0

(40)

where:

ω+ = ε

(1 + µ)(ε + ε0)
, ω− = ε

(1 + µ)(ε − ε0)
, ε0 = π

4

(
1 − 1

1 + µ

)
. (41)

For ε < ε0 and
√
ω+ < ω0, dry friction does not limit the resonance amplitude, and forω0 → 1, b1 → ∞.

In the case ε0 < ε < π
/

4 and for
√
ω+ < ω0 <

√
ω− dry friction does not limit resonance amplitude either

and for ω0 → 1, b1 → ∞. When ε > π
/

4, we get the frequency interval
√
ω+ < ω0 <

√
ω−, where the

resonance frequency ω0 = 1 does not appear.
For µ → ∞(m2 → ∞, ε0 = π

/
4) we obtain the case of 1-dof vibration with friction considered by Den

Hartog [8], where:

b1 = 1
∣∣1 − ω2

0

∣∣

√

1 −
(

4ε

π

)2

. (42)
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Observe that for ε < π
/

4 (b1 is a real number) one gets: ω0 → 1, b1 → ∞.
Now we consider the problem of optimal damping of vibrations. We assume that the body of mass m1 has

velocity ż1(τ ) = ω0b1 cos(ω0τ + ϕ1). Note that the velocity of body m2 is governed by

ż2(τ ) = ε

µ
τ + C+, if ż1 − ż2 > 0, (43)

ż2(τ ) = − ε

µ
τ + C−, if ż1 − ż2 < 0. (44)

The constants C+, C− are different for all intervals of motion. Assuming that only sliding occurs, the work
done within one period by the damping force 2 fs P∗ sgn(Ż1 − Ż2) is [8]:

AT = 4F0L∗b1ε

√√√
√1 − π2

4

(
ε

µω2
0b1

)2

. (45)

An optimal value of friction is obtained from the following equation ∂AT
∂ε

= 0, if

(
∂2 AT /∂ε

2
∣
∣
ε=εopt

< 0

)
.

The optimal dimensionless friction is

εopt =
√

2

π
µω2

0b1, (46)

and

AT opt = 4

π
F0L∗b2

1µω
2
0. (47)

The obtained value corresponds to the maximally damped fundamental system. However, in this case the
amplitude b1 should be known (say, from an experiment).

4.2 Numerical analysis

Numerical analysis of the considered problem [differential equations (11), (13) and integral equation (18)]
is carried out using the Runge–Kutta method and the method of quadrature with estimations (21). Estimation
(21) is required to to compute kernels of the integral equations at zero. The temperature on the contact surface
is given by formula (19). Observe that during temperature computation the kernel defined by formula (21)
possesses the singularity ∼ 1

/√
τ , which can be integrated. The function sgn(vr ) has been approximated in

the following way

sgn(vr ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, vr > δ,
(

2 − |vr |
δ

)
vr

δ
, |vr | < δ,

− 1, vr < −δ
where: δ = 0.0001.

If heat is not generated by friction (γ = 0), then the contact pressure p(τ ) = hU (τ ). Let us assume that
hU (τ ) = H(τ ), where H(·) is the Heaviside step function (H(τ ) = 1, τ ≥ 0, H(τ ) = 0, τ < 0). The
previous analysis (Sect. 4.1) indicates that resonance occurs in the system. Taking µ = 0.5, ε = 0.5 and using
(41) one finds ε0 = 0.26, ω+ = 0.44, ω− = 1.4. We have ε > ε0,

√
ω+ < ω0 <

√
ω− and for ω0 = 1 the

system is in resonance. In Fig. 2a for a lack of heat extension (�1 = 0), time histories of both dimensionless
velocities ż1 and ż2, and dimensionless relative velocity (Fig 2b) vr = ż1 − ż2 are reported.

For the general case, numerical computations were carried out for various values of the parameters µ,�1.
Figures 3, 4, 5 and 6 show results of the numerical analysis for �1 = 0.1 and Bi = 1, τT = 0.1. In Fig. 3a
the dimensionless displacements z1 of the body with mass m1 and z2 of the damper with mass m2 versus time
τ are shown (the same is done for the velocities in Fig. 3b). Figure 4 illustrates the dimensionless relative
velocities vr of two bodies versus dimensionless time τ . The system oscillations are out of resonance and
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Fig. 2 The dimensionless velocity ż1(τ ) of the fundamental body and velocity ż2(τ ) of the damper (a) versus dimensionless
time τ during resonance (ω0 = 1); dimensionless dependence of sliding velocity vr (τ ) = ż1(τ ) − ż2(τ ) versus time τ (b)
(�1 = 0, µ = 0.5, ε = 0.5, ω0 = 1, �1 = 0)
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Fig. 3 The dependence of the dimensionless displacements z1 of the fundamental body and the displacements z2 of the damper
(a) the dimensionless velocity ż1(τ ) of the fundamental body and the velocity ż2(τ ) of the damper (b) versus dimensionless time
τ for τ ∈ (300, 320), taking into account heat generation (�1 = 0.1, µ = 0.5, ε = 0.5, Bi = 1, τT = 0.1, ω0 = 1)

they reach the periodic attractor (Figs 3, 4b) with period T1 = 2π
/
ω0 = 2π , whereas the damper undergoes

stick–slip oscillations (Fig. 4b). Evolutions of the dimensionless contact pressure p(τ ) and the temperature
θ(τ ) on the contacting surface are shown in Fig 5. Both of these characteristics change periodically with the
dimensionless period of T2 = π . The same period is seen for the variable |vr |, occurring in (16), which governs
heat generation on the sliding surface.

In order to investigate how the damper mass influences the system motion we also investigated our system
for µ = 2(m2 = 2m1). In this case one gets ε0 = 0.52, ω+ = 0.16. We have ε < ε0,

√
ω+ < ω0 and for

ω0 = 1 the system is in resonance assuming that the heat extension is omitted. In Figs. 6 and 7 time evolutions
of the contact characteristics are reported. In Fig. 6a the dependence of dimensionless displacement z1 and z2
versus dimensionless time is shown, whereas Fig. 6b illustrates the corresponding relative velocity. Figure 7
shows dimensionless the contact pressure and temperature versus dimensionless time. Note that an increase of
the parameter µ causes a decrease of the contact time (see Figs. 4b, 6b) and the vibration amplitude decreases
(see Figs. 3a, 6a), but the temperature amplitude in the periodic state increases (see Figs. 5b, 7b).

A numerical analysis of the results for �1 = 0.2, µ = 0.5, ε = 0.5, Bi = 1, τT = 0.1 is illustrated in
Figs. 8 and 9. An increase of the coefficient �1 causes an increase of time τr (the so-called time of passive
regulation), when the trajectory achieves periodic motion. For�1 = 0.1 time τr ≈ 250, whereas for�1 = 0.2
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Fig. 4 The dimensionless sliding velocity vr (τ ) = ż1(τ )− ż2(τ ) versus time τ for τ ∈ (0, 100) (a) and for τ ∈ (300, 320) (b)
taking into account heat generation (�1 = 0.1, µ = 0.5, ε = 0.5, Bi = 1, τT = 0.1, ω0 = 1)
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Fig. 5 Time histories of dimensionless contact pressure p(τ ) and contact surface temperature θ(τ ) for τ ∈ (0, 100) (a) and for
τ ∈ (300, 320) (b), taking into account heat generation (�1 = 0.1, µ = 0.5, ε = 0.5, Bi = 1, τT = 0.1, ω0 = 1)
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Fig. 6 The dependence of the dimensionless displacements z1 of the fundamental body and displacements z2 of the damper (a)
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time τr ≈ 500. Additionally, the contact time of both bodies also increases (see Figs. 4b, 8b). An increase of
�1 causes a decrease of the relative velocity amplitude (see Figs. 4b, 8b).

5 Conclusions

A dynamic 2-dof damper with dry friction and heat generation has been modeled mathematically. The proposed
method of solution may also be applied to model any other nonlinear problem of dynamics of thermo-elastic
contacting bodies. A series of practical results regarding the kinetics of the main system and of the dynamic
damper are formulated as a result of the analysis of various contact characteristics (contact pressure, temper-
ature on the contacting surface).

It should be emphasized that the dynamic damper with dry friction may not achieve the expected properties.
As we have shown, heat generation on the contacting surface between the damper and the oscillating body as
well as heat expansion eliminate, for certain parameters, resonance phenomena. The real system, in certain
conditions, behaves as a self-regulating one, i.e. it controls achievement of an optimal contacting pressure.
The thermo-elastic parallelepiped extends itself according to the conditions of both sliding velocity and heat
transfer.
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