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Abstract

Treated as continuous deformable systems with an infinite number of degrees of freedom, flexible infinite
length cylindrical panels subject to harmonic load are studied. Using the finite difference method with
respect to spatial coordinates, the continuous system is reduced to lumped one governed by ordinary dif-
ferential equations. These equations are transformed to a normal form and then solved numerically using
the fourth order Runge–Kutta method. In order to trace and explain vibrational behaviour, dependencies
wmax(q0) and Lyapunov exponents are calculated for panels with parameter value kx = 48. The correspond-
ing charts of the control parameters {q0,xq} are also reported. Novel scenarios yielding chaotic dynamics
exhibited by cylindrical panels are illustrated and discussed.
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1. Introduction

Investigations devoted to an analysis of interaction between chaos and order have been carried
out recently. They have shown, among others, that a behaviour of complex systems with many
degrees of freedom studied in nonlinear non-equilibrium space, where the rules of equilibrium
thermodynamics do not work, is characterized by a particular regularity and self-organization.

There exist some regular spatial and temporal structures referred to as Prigogine dissipative sys-
tems. Chirikov is one of the first who addressed the problem on chaotic behaviour exhibited by a
Hamiltonian system.

An example of a dissipative system with chaotic behaviour has been studied by Lorenz [1], who
showed chaos owing to three modes approximation of a two-dimensional problem of heat
convection.

Although the chaotic vibrations exhibited by plates and shells have been analysed less, recently
it has been developed more intensively.

It is well known that plates (shells) are members of a range of engineering structures (such as
building, bridges and tanks) and machines (power plants, flight vehicles, brake systems and mech-
atronical devices), and a full understanding of their dynamics plays a crucial role in development
of high technology constructions and mechanics.

Although vibrations of flexible plates of infinite length are considered in a series of publications,
in a majority of them a continuous system is analysed as a one-degree-of-freedom system. The
method of multiple scales is used by Abe et al. [2] to analyse the two-mode response of simply
supported laminated plates subjected to harmonic excitation. The multiple scales technique is ap-
plied to analyse sub-harmonic traveling waves of thin, axisymmetric and geometrically nonlinear
circular plates [3]. Wei Zhang et al. [4] used the Galerkin method to derive averaged equations
from the von Kármán equation, and to analyse both local and global bifurcations of a paramet-
rically and externally excited simply supported rectangular thin plate. Recently, the nonlinear
forced vibrations of a thermally loaded annular plate, with clamped boundaries and in the pres-
ence of a three-to-one internal resonance between first and second axisymmetric modes has been
studied by Arafat and Nayfeh [5].

Various models governing the nonlinear dynamics of plates and shells possess their own history
and still require rigorous mathematical treatment. For example, we briefly mention the von Kár-
mán equation considered in Refs. [4,5]. The von Kármán equations are used in Ref. [6] to analyse
the nonlinear vibrations of polar orthotropic clamped plates at elevated temperatures. It has been
shown, among others, that thermal stresses decrease the vibrations period. In Ref. [7], the von
Kármán equations are used to investigate the nonlinear free vibrations of isotropic and polar
orthotropic annular plates possessing a rigid mass under action of thermal loads. Finite dimen-
sionality and compactness of attractors for the von Kármán equation are considered by Lasiecka
[8]. More generalized questions are also addressed in Refs. [9–11].

Various aspects of the chaotic dynamics of continuous mechanical systems have been studied
by the authors of this paper and their coworkers.

Spatio-temporal chaos and solitons exhibited by von Kármán model have been studied in Ref.
[12]. An effective algorithm, among others, has been proposed and applied to convert a problem
of finding solutions to the hybrid-type partial differential equations (the so-called von Kármán
form) to that of ordinary differential and algebraic equations.
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Bifurcation and routes to chaos exhibited by a thin plate strips are analysed in Ref. [13]. Jump-
like switching phenomena, series of bifurcations, a route to chaos and various types of strange
chaotic attractors have been reported and discussed.

A mechanism of transition to chaos of deterministic systems with infinite number of degrees of
freedom using the example of parametric vibrations of flexible rectangular plates is reported in
paper [14].

Regular and chaotic vibrations and bifurcations of flexible plate strips with non-symmetric
boundary conditions are investigated through the Bubnov–Galerkin and finite difference method
in Ref. [15]. Some new examples of routes from regular to chaotic dynamics, and within chaotic
dynamics have been illustrated and discussed. The phase transitions from chaos to hyper chaos,
and a novel phenomenon of a shift from hyper chaos to hyperhyper chaos has also been reported.

Complex vibrations of an Euler–Bernoulli beam with different types of nonlinearities have been
considered in Ref. [16]. An arbitrary beam clamping has been considered, and a deflection con-
straints (point barriers) have been introduced in some beam points along its length. The influence
of a constraint as well as the amplitude and frequency of excitation on the vibrations has been
analysed. Scenarios of the transition to chaos owing to the nonlinearities have been reported.

This work is focused on an investigation of the chaotic vibrations of long cylindrical panels. In
what follows we illustrate and discuss new results associated with a study of spatial–temporal
chaos.
2. Statement of the problem

Isotropic infinite length shells, i.e., where the shell material satisfies Hook�s law and where a
geometrical nonlinearity is taken into account, are studied. To be specific, the coupling between
deformations of mean surface and displacements has the form
ex ¼
ou
ox
� kxwþ

1

2

ow
ox

� �2

. ð1Þ
The full deformation of an arbitrary point along a thickness ez
x is composed of deformations in

the mean surface ex and bending deformations (ez
x ¼ ex þ ex;u), which due to Kirchhoff–Love

hypothesis read
ex;u ¼ �z
o2w
ox2

. ð2Þ
Consider the shell motion in time interval t0 and t1, and compare the different trajectories of
motion of the system of points between initial and final system states. True trajectories are char-
acterized through the following condition:
Z t1

t0

ðdK � dPþ d0W Þdt ¼ 0; ð3Þ
where K denotes kinetic energy, P is potential energy and d 0W denotes sum of the elementary
works of external forces.
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In this case, when all acting forces on the system possess potential, equality (3) takes the form
(the Hamilton–Ostrogradsky principle):
dS ¼ d
Z t1

t0

ðK �PÞdt ¼ 0; ð4Þ
where S ¼
R t1

t0
ðK �PÞot is the Hamilton action.

After standard operations and transformations into dimensionless form, the following equa-
tions with respect to displacements are derived:
o
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ð5Þ
The transformation to non-dimensional form has been realized through relations:
�kx ¼
a
Rx

1

k
; px ¼

E
1� m2

k3�px; q ¼ E
1� m2

k4�q; k ¼ h
a
;

t ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2Þc

Eg

s
�t; u ¼ �uk2; x ¼ a�x;

ð6Þ
where bars are associated with dimensionless quantities, and omitted (for simplicity) in Eq. (5). In
relations (6) E is elasticity modulus, m is Poisson�s coefficient, c denotes the specific gravity of the
material, g is the Earth acceleration, q = q(x, t) is the transversal load, h and a denote thickness
and the linear shell dimension, w and u are the deflection and displacement of the mean surface,
respectively; kx ¼ 1

Rx
is the shell curvature.

The following boundary and initial conditions are attached to Eq. (5).
The boundary conditions read:

1. Ball-type unmovable support
u ¼ w ¼ o2w
ox2
¼ 0; for x ¼ 0; 1. ð7Þ
2. Stiff clamping
u ¼ w ¼ ow
ox
¼ 0; for x ¼ 0; 1. ð8Þ
3. Hybrid type support
for x ¼ 0; u ¼ w ¼ o2w
ox2
¼ 0 ball� type unmovable support;

for x ¼ 1; u ¼ w ¼ ow
ox
¼ 0 stiff clamping:

ð9Þ



J. Awrejcewicz et al. / Communications in Nonlinear Science and Numerical Simulation 12 (2007) 519–542 523
The initial conditions for t = 0 read:
u ¼ f1ðxÞ; _u ¼ f2ðxÞ; w ¼ f3ðxÞ; _w ¼ f4ðxÞ. ð10Þ
Partial derivatives with respect to x appeared in (5) are approximated through difference rela-
tions with an error of Oðh4

1Þ using the Taylor series expansion in vicinity of the point xi and with
respect to the powers of h1 (h1 denotes partition step x 2 [0,1]):
Gh1
¼ 0 6 xi 6 1; xi ¼ ih1; 0 6 i 6 N ; h1 ¼

1

N

� �
.

In this case, the partial differential equation (5) are transformed to the following second order
ordinary differential equations (ODEs) with respect to time for ith point of the interval [0, 1]:
€ui ¼ Kx2ðuiÞ � KxðwiÞðkx � Kx2ðwiÞÞ þ pðih1; tÞ;

€wi þ e _wi ¼ k2 � 1

12
Kx4ðwiÞ þ KxðwiÞðKx2ðuiÞ � KxðwiÞðkx � Kx2ðwiÞÞÞ

� �
þ ðKx2ðwiÞ þ kxÞðKxðuiÞ � kxwi þ 0.5ðKxðwiÞÞ2Þ þ qðih1; tÞ;

ð11Þ
where the difference operators read:
Kxð�Þi ¼
�ð�Þiþ2 þ 8ð�Þiþ1 � 8ð�Þi�1 þ ð�Þi�2

12h1

¼ oð�Þ
ox

� �
i

þOðh4
1Þ;

Kx2ð�Þi ¼
�ð�Þiþ2 þ 16ð�Þiþ1 � 30ð�Þi þ 16ð�Þi�1 � ð�Þi�2

12h2
1

¼ o2ð�Þ
ox2

� �
i

þOðh4
1Þ;

Kx4ð�Þi ¼
�ð�Þiþ3 þ 12ð�Þiþ2 � 39ð�Þiþ1 þ 56ð�Þi � 39ð�Þi�1 þ 12ð�Þi�2 � ð�Þi�3

6h4
1

¼ o4ð�Þ
ox4

� �
i

þOðh4
1Þ.

ð12Þ
The boundary and initial conditions are as follows:
Boundary conditions:

1. Ball-type unmovable support
ui ¼ wi ¼ Kx2ðwiÞ ¼ 0; i ¼ 0; N . ð13Þ

2. Stiff clamping
ui ¼ wi ¼ KxðwiÞ ¼ 0; i ¼ 0; N . ð14Þ

3. Condition (10) is a combination of conditions (13) and (14).Initial conditions:
ui ¼ f1ðih1Þ; _ui ¼ f2ðih1Þ; wi ¼ f3ðih1Þ; _wi ¼ f4ðih1Þ. ð15Þ
The second order ODEs (11) are transformed to first order ODEs, which are then solved using
the fourth-order Runge–Kutta method.
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3. Reliability of the obtained results

The numerical convergence of the numerical solution results with respect to spatial variable x
and time t has been investigated.

In Table 1 signals w(0.5; t), phase portraits wð _wÞ and power spectra S(x) for different partition
of the spatial variable x and time under action of transversal load qðx; tÞ ¼ q0 sin xqt with q0 = 500
and xp = 0.46 for harmonic bifurcations (kx = 48, e = 0.1) are reported.

Analysis of the results shows that in order to get close to exact solutions, it is efficient to con-
sider partition of the interval [0,1] with N = 16. Applying the Runge principle for N = 32, 64 and
128, variations introduced into the signal w(0.5, t), phase portrait wð _wÞ and power spectrum S(x)
are not observed.

Consider the same problem when the construction is within a chaotic state. In Table 2, the same
characteristics as in Table 1 are reported (for q0 = 3500 and xp = 0.46).

Observe that although signals for different partitions do not overlap, the integral signal char-
acteristics, i.e., phase portraits and power spectra, are practically the same. Therefore, a number
of N = 32 has been used.

In order to detect any particularities of cylindrical panel vibrations, charts of the control
parameters {q0,xp} are constructed (Figs. 1 and 2). They are designed in the light of the power
spectrum and largest Lyapunov exponent computations. The full chart is shown in Fig. 1, whereas
it�s part A is shown in Fig. 2. In order to obtain the chart shown in Fig. 1, the area of control
parameters {q0,xp} has been partitioned into a mesh with steps {4,0.00115}.
4. Lyapunov exponents

Lyapunov exponents play an important role in theory of Hamiltonian and dissipative dynam-
ical systems, because they measure intensity of chaotic behaviour. On the other hand, there is also
a link between Lyapunov exponents and other characteristics of chaos, like Kolmogorov�s entro-
py and fractal dimension.

In general, Lyapunov exponents describe an averaged velocity of exponential divergence of
close trajectories (see, for example, [13]). A number of the computation of Lyapunov exponents
Table 1
Signals, phase portraits and power spectra (Section 3; q0 = 500)



Table 2
Signals, phase portraits and power spectra (Section 3; q0 = 3500)
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has been developed by Benettin and other [1,17]. In this work, we follow the Benettin et al.
approach.

As it has been mentioned already, Eq. (12) can be reduced to the following normal form:
dui

dt
¼ U i;

dwi

dt
¼ W i;

dUi

dt
¼ Kx2ðuiÞ � KxðwiÞðkx � Kx2ðwiÞÞ þ pðih1; tÞ;

dW i

dt
¼ �eW i þ k2 � 1

12
Kx4ðwiÞ þ KxðwiÞðKx2ðuiÞ � KxðwiÞðkx � Kx2ðwiÞÞÞ

� �
þðKx2ðwiÞ þ kxÞðKxðuiÞ � kxwi þ 0.5ðKxðwiÞÞ2Þ þ qðih1; tÞ;

i ¼ 1;N � 1.

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð16Þ



Fig. 1. Zones of periodicity, chaos and bifurcations in the {q0,x} plane.
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In order to compute all 4(N � 1) Lyapunov exponents the following procedure is applied. First,
an arbitrary orthonormal system of 4(N � 1) vectors is chosen:
fv0
i ; kv0

i k ¼ 1; ðv0
i ; v

0
j Þ ¼ dij; i; 1 6 j 6 4ðN � 1Þg. ð17Þ



Fig. 2. The window from Fig. 1.
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Let us, for simplicity, take the following system of equations:
fð1; 0; . . .Þ; ð0; 1; 0; . . .Þ; ð0; 0; 1; . . .Þ; . . . ; ð0; 0; 0; . . . ; 1Þg.
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Further, using a small computation step, a differential of the transformation defined by Eq. (17)
(with respect to each of the vectors of system (18)) is computed along trajectory of the system. The
vectors thus obtained f�vk

i ; i ¼ 1; 4ðN � 1Þg are normalized using the Gramm–Schmidt procedure:
ak
1 ¼ k�vk

1k; vk
1 ¼

�vk
1

ak
1

;

ak
i ¼ �vk

i �
Pi�1

j¼1ðvk
j ;�v

k
i Þvk

j

��� ���; vk
i ¼

�vk
i�
Pi�1

j¼1
ðvk

j ;�v
k
i Þv

k
j

ak
i

; 1 6 i 6 4ðN � 1Þ.
The Lyapunov exponents are defined through the formula
ki ¼ lim
k!1

1

k dt

Xk

j¼1

ln aj
i .
The problem of shell stability loss subject to a transversal sinusoidal load uniformly distributed
on the shell surface, with excitation frequency equal to free vibration ones x0 = 0.46, is further
investigated.

The dependence wmax(q0) for the shell centre (x = 0.5, point A) and (x = 0.75, point B) is re-
ported in Fig. 3. In the same figure, the characteristics k1(q0) for the shell centre (x = 0.5, point
A) is shown. Besides, in Fig. 3 in window E, the part of vibration character scale versus param-
eters q0 and ki(q0) (i = 1,2,3) is shown within the interval 4000 6 q0 6 5000. In this figure, there
are shown also zones a, b, c, d, e, and f. They will be analysed in more detail. In the interval
0 6 q0 6 1247.3223 harmonic vibrations with frequencies x0 and x0/2 are exhibited, and they
undergo a series of bifurcations. For q0 = 1247.3223 two Hopf bifurcations have been detected
(Table 3, where the same characteristics as in Table 2 are reported and the Poincaré section
wt+T(wt)). Increasing q0 by an amount of 5 · 10�5 pushes our mechanical system to chaos through
Rayleigh–Takens–Newhouse scenario associated with frequencies generated by two Hopf bifurca-
tions (q0 = 1247.32235). This description holds for a zone of transition from bifurcations to chaos
(further referred as zone a). Owing to the theorem proved by Ruelle, Takens and Newhouse,
chaos appears after two Hopf bifurcations and the system exhibits complex topology.

In zone a, a first-order jump in k1(q0) occurs, and k1 > 0, k2 < 0, k3 < 0. A sudden increase of
shell deflection is not observed. Further increase of q0 pushes our shell to a full chaotic state
for q0 = 1256 (the signal w(t) is chaotic, and the power spectrum has a continuous fundamental
part, whereas the phase portrait is entirely covered by trajectories). Variation of q0 by 0.615
(q0 = 1256.615) shifts the shell vibrations into an ordered chaotic state associated with a 13T peri-
odic motion (T is period of excitation), and the phase portrait and power spectrum are ordered.
Here, a narrow window of bifurcations is observed (ki(q0) < 0, (i = 1,2,3)). A further increase of
q0 by 0.4 causes a Hopf bifurcation (q0 = 1260, ki(q0) < 0, (i = 1,2,3)), and the so-called Sharkov-
sky order is reached at 2 Æ 13 (see Section 6 of this work). Strange attractors begin to enlarge as
may be seen by their Poincaré sections, and their numbers increase. For q0 = 1260.5, i.e., increas-
ing q0 by 0.5, the shell again exhibits a chaotic state associated with the last Hopf bifurcation
(Sharkovsky order is of 2 Æ 13). The phase portrait clearly shows a strange attractor, and its fur-
ther development through observation of Poincaré sections (k1 > 0, k2 < 0, k3 < 0). Then chaos
successively turns into ‘‘full chaos’’, i.e., the chaotic character of w(t) is clearly expressed, broad-
band phase portraits and power spectrum as for the case of q0 = 1256 (k1 > 0, k2 < 0, k3 < 0) are
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Table 3
Signals, phase portraits, Poincaré sections and power spectra (Section 4)
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exhibited. The behaviour described is related to zone b (see Table 3). The value of maximal deflec-
tion in zones ‘‘a’’ and ‘‘b’’ is practically the same, i.e., a sharp deflection increase is not observed,
compared with what we usually observe during a static stability loss. The value of qþ0;1 ¼ 1256 is
referred to below as first dynamic critical load.
5. ‘‘Chaos–hyperchaos’’ phase transitions

In what follows we analyse an evolution of a vibrational process with increase of the amplitude
of excitation. It is worth noting that the problem of attractor evolution with increase of q0, within
a chaotic state, is rather rarely investigated (even in the problems of radiophysics and electronics).
One may expect the development of a chaotic set, the occurrence of continuous power spectrum
and/or synchronization processes. It has been already shown that qualitative changes in chaos
structure can already be observed in systems with 11/2 degrees of freedom [11]. It is shown in
the theory of shells analysis that ‘‘chaos–chaos’’ transition does not allow for bifurcations in
chaos to be matched with an increase of the Lyapunov dimension of attractor DL. Owing to
the definition, the Lyapunov dimension is computed through the Lyapunov spectrum of expo-
nents (LSE). However, there is not any unique link between Lyapunov exponents and attractor
dimension (AD).

Intuitively, an occurrence of qualitative changes of physical characteristics of an attractor asso-
ciated with an occurrence of positive Lyapunov exponent is more evident, than analogous changes
during an increase of Lyapunov dimension of an integer number. Indeed, in a case of occurrence
of additional positive Lyapunov exponent a new unstable direction associated with the system tra-
jectory occurs. It causes qualitative changes of system dynamics, which is manifested by physical
characteristics. On the other hand, the Lyapunov dimension defines a dimension of an averaged
local volume preserving its magnitude, i.e., it is not compressing and not expanding.

Positive, zero and negative exponents are responsible for Lyapunov�s dimension. The latter
ones are responsible for stability type of the motion, but they do not influence steady-state mo-
tions. They influence rather metrical attractor properties. For instance, it has been shown else-
where that in the general case it is impossible to extract negative Lyapunov exponents from
experimental data.

In what follows we study transition within chaos during a change of the Lyapunov spectrum, as
well transitions from strange attractor with one positive exponent into hyperchaos, i.e., chaos with
two positive exponents. Further, this transition will be referred as the ‘‘chaos–hyperchaos’’ scenario.

In Table 4, the dependencies w(t), wð _wÞ, Poincaré section wt(wt+T) and power spectrum for the
central shell point subjected to external load q0 sin 0.46t are reported. The stated characteristics
are given for the values of the parameters characterising intensity of the external load:
qð1Þ0 ¼ 4648, qð2Þ0 ¼ 4652 and qð3Þ0 ¼ 4656 (see also LSE (q0) in Fig. 3). For q1

0: k1 > 0, k2 < 0, q2
0:

k1 > 0, k2 > 0, q3
0: k1 > 0, k2 < 0, i.e., there exist three state of the system. For q1

0 and q3
0 the system

is in chaotic state, for q2
0 it is in ‘‘chaos–hyperchoas’’ state. The dynamical system associated with

q1
0 and q3

0 has two chaotic attractors lying in the corners of Poincaré diagonal, whereas for q2
0

matching of these attractors in the centre wt(wt+T) of the space occurs. In the ‘‘chaos–hyperchaos’’
k1 and k2 achieve their maximal positive values, whereas k3 practically has not been changed,
remaining in negative space.



Table 4
Signals, phase portraits, Poincaré sections and power spectra (Section 5)
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6. Sharkovsky�s type periodicity for differential equations of Vlasov–Marguerre shells

Feigenbaum begun his investigation studying intervals between period doubling bifurcations
exhibited by a logistic map. This map occurred during considerations of ecosystems and was first
analysed by Ferhulst in 1845, and it is often known as Ferhulst diagram y = x2 + c. Feigenbaum
discovered a universal property of this map. The period doubling route to chaos detected by him
occurs not only during iterations of the map cx(1 � x), but also in a case of wide class of mapping
of an interval into itself, like x2 + c, c sinðpxÞ and cx2 sin px defined on suitable intervals.

An orbit diagram presented in Fig. 4 represents attracting periodic orbits for the functions of
the form fc(x) = x2 + c. It is worth noting that in some intervals, the diagram is interrupted. For
instance, for c � 1.75 a white zone is visible and attracting orbits have period 3. A natural ques-
tion arises: Do any other periodic orbits exist? These orbits should be repellers, since on the dia-
gram we see only attracting orbits. In fact, an occurrence of orbits with period 3 is matched with
occurrence of orbits with periods n = 1,2,3, . . .

An interesting property of the orbits with period 3 has been considered by Li and Yorke [18] in
1975, but it occurred that the results became a particular case of Sharkovsky theorem published in
1964.



Fig. 4. Characteristics of the Mandelbrot sets: periods of maps fc(z) = z2 + c (a); window of 3-periodicity (b);
bifurcation free for fc(x) = x2 + c (c); Lyapunov exponent for fc(x) = x2 + c (d).
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Theorem (Sharkovsky, [19]). Let I be finite or infinite interval in R. Assume that mapping f : Z! I
is continuous. If there exists a point f of period n, then there is also a point f of period k for every
integer positive k, k > n, taken from the following Sharkovsky�s order series
3; 5; 7; 9; . . .

2 � 3; 2 � 5; 2 � 7; 2 � 9; . . .

22 � 3; 22 � 5; 22 � 7; 22 � 9; . . .

23 � 3; 23 � 5; 23 � 7; 23 � 9; . . .

. . . . . . . . . . . . . . . . . .

. . . . . . 2n; . . . ; 22; 21; 1
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Let us compare transformations fc(x) = x2 + c and fc(x) = z2 + c, i.e., logistic transformations
in the real and complex plane, and the associated Lyapunov exponent k1(c) constructed for
fc(x) = x2 + c (Fig. 4). Diagrams of the orbits for two functions possess attracting, repelling
and neutral points, which correspond to stable, unstable and neutral equilibrium states.

Recall that if one starts in the neigbourhood of fixed point, to which successive iterations will be
closer and closer, then the fixed point is called attractor. In contrast, if one starts in the neighbour-
hood of fixed point from which successive iterations will go away, then the fixed point is called
repeller. A neutral fixed point possesses the following property: starting in its vicinity and always
remaining on it.

In order to define a fixed point �z of the map f(z) one should compute f 0(z). Namely, if
jf 0ð�zÞj < 1, then �z is called attractor; if jf 0ð�zÞj > 1, then �z is called repeller; if jf 0ð�zÞj ¼ 1, then
the fixed point is neutral.

For the rational mapping, owing to Sharkovsky�s theorem, there exist cycles of all orders
n = 2,3,4 . . .

An attractor in a complex plane is a point to which the following iterational process
zn+1 = f(zn), n!1 is convergent. Sometimes there are a few such attractors, which may consist
of an infinitely numerous set of points or create a continuous curve, or any other, say, Cantor type
set.

The Mandelbrot set (M) in the complex plane is shown in Fig. 4. Any complex number c either
belongs to the Mandelbrot set or not. In Fig. 4 periods of the Mandelbrot set (Fig. 4a), bifurca-
tions diagrams of the orbits of fc(x) = x2 + c (Fig. 4c), k1(c) (Fig. 4d) and a window of Mandelb-
rot set in vicinity of the point c = �1.75 + 0i (Fig. 4b) are reported, respectively. The value
c = �0.481762 � 0.531657i corresponds to stable period 5 limit cycle, i.e., parabolic-type dynam-
ics occurs. For fc(x) = x2 + c, in vicinity of c � 1.75, a white zone is visible and attracting orbit has
period 3. In this zone, k1 < 0. Points c1 and c2, where k1 = 0, correspond to bifurcation points, and
the values of c for fc(z) and fc(x) are approximately the same. The value of c, for which attracting
periodic points of period 2 in Julia set exist, lie inside the circle jc + 1j = 1/4(c1 = �3/4, c2 = �5/
4). For almost the same values (c2 6 c 6 c1) there exist attracting points of period 2 of the func-
tion fc(x). In other words, the diagram fc(x) characterizes a behaviour on a real axis of the Man-
delbrot set.

The boundary of attracting points is defined through a cardioid, and the attracting points lie
inside of it. Since the cardioid belongs to the x-axis for c 2 [�3/4,1/4], this is associated with
the part of the orbital diagram, where only one branch exists.

In what follows we are going to study how the Sharkovsky�s theorem relates to the periodic
orbits of the Marguerre–Vlasov differential equations (5) and (6) with kx = 48, e = 0.01 subject
to a transversal load q ¼ q0 sin x0t (simple ball-type support along shell contour (7) and zero val-
ues initial conditions are applied). Elastic, homogeneous and isotropic material is taken v = 0.3;
excitation frequency is equal to the frequency of linear plate vibrations x0 = 0.46. Signals in both
shell centre and its quadrant, power spectra and Poincaré maps for the orbits associated with
Sharkovsky�s theorem are reported.

Sharkovsky�s series of the form 3, 5, 7, 9, 11, 13 (Table 5), 2 Æ 3, 2 Æ 5, 2 Æ 7, 2 Æ 9, 2 Æ 11, 2 Æ 13
(Table 6) and 21, 22, 23, 24, 25, 26 (Table 7) are shown. Besides the (given in previous tables) depen-
dencies w(0.5;t), wð _wÞ, wt(wt+T) and S(w), in Tables 5–7 modal characteristics w(ow/ox) for the
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shell point x = 0.375, surfaces and Sharkovsky�s exponents (SE) for the corresponding q0 are
given. It should be noted that the given Sharkovsky series do not appear in a sequence in our con-
tinuous system, but they are located in the whole space of the control parameters {q0,x0} (Figs. 1,
2). The following properties have been detected:

1. During a period 3 tripling bifurcation, a partition of the fundamental signal into 3(5) equal
parts is observed. In the associated Poincaré section 3, 5, 7, 9, 11, and 13 points are observed.
For the series 2 Æ 3, 2 Æ 5, 2 Æ 7, 2 Æ 9, 2 Æ 11, 2 Æ 13 groups of doubled points are observed. In the
phase portraits period doubling of periodic orbits is exhibited. Furthermore, the Poincaré
map points distribution is ordered for orbits with periods 3; 2 Æ 3; 9; 2 Æ 9; 13; 2 Æ 13, whereas
for the series 5, 7, 11 and 2 Æ 5, 2 Æ 7, 2 Æ 11 they are destroyed and lie in the phase plane in an
arbitrary manner. The given orbits are windows of periodicity in an ocean of chaos, and their
structure is the same in whole range of the control parameters {q0,xq} (Fig. 4). All windows
of periodicity possess negative Lyapunov exponents ki < 0, i = 1, 2, 3.

2. For each of the orbits discussed in item 1, changes of shell deflections in time w(x, t)
(0 6 x 6 1;127,500 6 t 6 128,000) are given in Table 6. It allows analyzing shell deformation
with respect to a type of a considered orbit. Owing to an increase of the period, deflections
exhibit deeper chaotic dynamics, i.e., a transition into spatial chaos is observed.
7. Vibrations of cylindrical panels in zones ‘‘d’’, ‘‘e’’, and ‘‘f’’

In order to fully understand nonlinear vibrations of our analysed panels, their dynamics in
zones ‘‘d’’, ‘‘e’’, ‘‘f’’ is studied (Table 8–10, respectively).

The given zones are extracted from a general picture of vibrations. For instance, in zone ‘‘d’’
associated with chaos a fast panel deflection is observed, i.e., a second dynamical stability loss
for k1 > 0, qþ0;2 ¼ 2953 appears.

In Table 8, power spectrum, phase portraits, signals wA(t), points of the signals c and d, and
the Poincaré map for pre-critical (q0 = 2952) and critical (qþ0;2 ¼ 2953) states are reported.
The given characteristics show vibrations as chaotic ones, and for qþ0;2, the phenomenon of
convexity–concavity is observed. It is worth noting that attractors corresponding to convexity–
concavity exhibit mirror-type reflection. Let us further analyse vibrations in zones ‘‘e’’ and ‘‘f’’,
i.e., a transition of our system from chaos into a periodic window, and then an exit from this
window.

In Table 9, the same characteristics as in Table 8, but for the points q0 = 3724 (chaotic zone)
and q0 = 3724.5 (bifurcation zone) are reported. For q0 = 3724 a full chaotic state is observed,
and the series of convexity–concavity appears successively, and two chaotic attractors are
matched in the Poincaré sections. Here, so-called intermittency is exhibited. A variation of the
amplitude of excitation by 0.5 pushes our system into Sharkovsky bifurcation state of the type
2 Æ 3. Then, a collapse of the chaotic attractor, and creation of 3 groups of doubled points asso-
ciated with a previous period tripling and Hopf bifurcations occurs. In Table 10, analogous char-
acteristics for zone ‘‘f’’, i.e., an exit from the bifurcation zone, are shown. For q0 = 4108.5
complex vibrations of the system owing to the ordered series due to Sharkovsky�s series 3; 2 Æ 3,
and occurrence of a new independent frequency, are observed. An increase of q0 on amount of



Table 8
Dynamical characteristics (zone d)
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0.5 pushes the system to new bifurcation, i.e., concavity occurs, and the system vibrates with fun-
damental frequency and frequency generated through the Hopf bifurcation. Further increase of q0

on amount of 0.5 suddenly transforms the system into chaos similar to that of zone ‘‘e’’.
8. Computation of a Feigenbaum constant

In the analysed cylindrical infinitely length panel subjected to transversal sinusoidal load there
are zones where a transition from harmonic to chaotic vibrations takes place owing to the



Table 9
Dynamical characteristics (zone e)
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Feigenbaum scenario [20], i.e., a series of successive Andronov–Hopf bifurcations appear. In
computational experiments, the series {q0} of period doubling bifurcation of the period 7 orbit
occurred, yielding a possibility to compute the Feigenbaum constant (Table 11).

Analysis of the results included in Table 11 shows that a good convergence for the series {q0}
for the computation of the Feigenbaum constant holds for six Hopf bifurcations. Further increase
of the load amplitude causes difficulties in the computation of successive bifurcations, since accu-
racy of computations is decreased.



Table 10
Dynamical characteristics (zone f)

Table 11
Computation of the Feigenbaum constant

No. of bifurcation q0 Feigenbaum constant

1 2287.70123873
2 2371.12397775
3 2464.88647395 0.889724
4 2492.97413230 3.338210
5 2498.67513981 4.926788
6 2499.89796544 4.662159
7 2500.16165971 4.637286
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9. Conclusions

Analysis of complex vibrations of cylindrical panel with kx = 48 shows that in the space of con-
trol parameters {q,xp} there exist subspaces, where a transition into chaos is realized through
classical Feigenbaum and Ruell–Takens–Newhouse scenarios.

The finite difference method has been applied in order to reduce our continuous deformable sys-
tem to the consideration of a set of ordinary differential equations. Poincaré maps, pseudomaps,
power spectra and Lyapunov exponents have been applied to consider the chaotic vibrations of
flexible infinite length cylindrical panels.
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