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Theorem 1. Let the trallsformation of I'Griahles 
q, p -+ Q, P he giwn in theIol/owing parametricform 

1 1 
q=x--\II Q =x+-\II2 y 2 y 

(I)
1 1 

p=y+-\II P =y--\II2 x 2 x 

Then, for any arhitrary function \lI(t, x, y) the fol­
lowing property holds: Jacohians of two transforma­
tions q = q(t, x, y), p = pet, x, y) and Q = Q(t, x, y), 
P = pet, x, y) are identity ones: 

(l(q, p) _ a(Q, P) = J(t, x, y). (2)
(l(x, y) - (l(x, y) 

In the space J > °relation (1) with respect to variahles 
q, p -+ Q, P transforms the Hamiltonian system H = 

H(t, q, p) hy thefol/owing rule 

\lIr(t, x, y) + H(t, q, p) = H(t. Q, P), (3) 

where arguments q. p and Q, P in the Hamiltonians 
Hand H are expressed via the parameters x, y infor­
mulas (I). 

In the next step we investigate for which canonical 
transformations the parametrization exists. A reader is 
encouraged to follow a survey of normalisation and av­
eraging for Hamiltonian systems reported in references 
[2-4]. 

2 Function derivative 

A canonical transformation can be represented by gen­
erating functions Sl (t. q, P) and Sz(t, p, Q) in the fol­
lowing way 

dS I = pdq + QdP + (H - H)dt, det S IqP =I- 0, 
dSz = -qdp - PdQ + (H - H)dt, det SZpQ =I- O. 

The following new generating function is introduced 

1 
<t> = - [SI(t, q, P) - qP + Sz(t, Q, p) + Qp].

2 

%l Springer 

Its differential form follows [5, 6] 

d<t> = ~ t I Qi - qi Pi - Pi I+ (H - H)dt. 
2 i=) dQi +dqi dPi +dPi 

(4) 

For dt = 0 the differential form d<t> was introduced by 
Poincare (see [7, 8]). He showed that ifQ(q, p), P(q, p) 
is the canonical transformation, then d<t> is the full dif­
ferential and function <t>(q, p) exists. 

Solving (1) with respect to x, y and \lIy , \lIx one gets 

I 1 
x = Z(q +Q), Y = Z(p + P), 

\lIy = Q - q. \IIx = -P + p. (5) 

Assuming that the transformation Jacobian (5) 

differs from zero «(l(x, y)/(l(q, p) =I- 0), one obtains 
d<t> = d\ll. and hence the identity of the function <t> 
and \lI follows 

\lI(x, y) = \II (q + Q(q, p) p + P(q, P»)
2 ' 2 = <t>(q, p). 

Relations (2) and (5) yield 

A = (l(Q, P)(l(x, y) = 1/J = r Zll det(E + A),
 
(l(q, p) o(q, p) ,
 

and the condition of non-singularity of transformation 
(5) is given in the form: det(E + A) =I- 0, where: A ­
Jacobi matrix; E - unit matrix. 

The obtained result is formulated in the form of the 
following theorem [6]. 

Theorem 2. If in the space (q, p) E Q the transfor­
mation Q(q, p), P(q. p) is canonical and nOlle of the 
eigenvalues of Jacobi matrix A is equal to -I, then 
parametrization (1) exists in the space Q. 

In monograph [8] remarks "with respect to tough" 
non-invariance of the generating function and concern­
ing a choice of the basis of canonical system coordi­
nates and invariance of the differential Poincare for­
mula (4) are outlined. It follows that the parametric 
function \lI(x, y) has also an invariant character. If the 
function \lI(x, y) exists for some arbitrary parameters, 
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then it will exist also for any arbitrary transfonnation 
of canonical variables. 

The condition of existence of parametrization J t= 
o is invariant with respect to the choice of canoni­
cal variables, since the equation det SlqP t= 0 depends 
on the choice of canonical variables. The condition 
on det SlqP t= 0 can be violated during a change of 
canonical variables. Besides, the class of parametrizedr 
canonical transfonnations is essentially wider than the 
class of canonical transfonnation through the use of 
a generating function. For instance, the rotation on 
amount of 90° : q = - P, p = Q can not be achieved 
by generating the function S(q, P), but it can be real­
ized by the parametric function of the fonn: 'IJ = x2 + 
y2. These and other advantages of the parametrization 
in comparison to the method of generating function 
have been already outlined [1,9]. 

Below, we illustrate how an application of equation 
(3) yields the earlier developed [10, II] method of in­
variant nonnalization of Hamiltonians [5, 12]. 

3 Invariant normalization of Hamiltonians 

The nonnal fonn of a Hamilton system is called the 
nonnal Birkhoff fonn [13]. The general compact defi­
nition ofthis fonn is given in reference [14]. In all cases 
the generated Hamiltonian is chosen in the fonn of the 
simplest quadratic function associated with a linear vi­
brational system. On the other hand, the definition of 
the normal fonn is associated with a choice of the gen­
erating Hamiltonian and has non-invariant character [8, 
13-16]. 

In general, there are two widely used methods to 
construct canonical transfomations leading to the nor­
mal fonn. One of them is based on application of the 
so called generating functions. This way was chosen 
by Birkhoff [13]. In the second approach, instead of 
the generating functions, Lie generators are applied. It 
seems that the latter approach is more suitable, since it 
does not need an inverse of the power series required 
in the case when the generating functions are used. 

It is worth noting that Zhuravlev [10, II] proposed 
a general criterion of nonnal Birkhoff fonn for a per­
turbed Hamiltonian of the fonn 

H(t. q, p. E) = Ho(t, q, p) + F(f, q, p. E). 

- - 2 ­
F(t, q, p, E) = EF,(t. q, p) + E F2(t, q, p) + ... 

Definition. A perturbed Hamiltonian has a nonnal fonn 
if and only if the associated perturbation is the first 
integral of the non-perturbed fonn ;:1; + {Ho, F} = 0, 
where {f, !?} = j~!?q - j~!?p are the Poisson brackets. 

There are at least three main advantages of this ap­
proach compared to the known ones [8, 13-16]. 

10 
• A solution to the full system of differen­

tial Hamilton's equations with the nonnal fonn 
Hamiltonians is obtained through the superposition 
of the solutions of non-perturbed system and solution 
of the system with autonomous Hamiltonian equal to 
F(O, q, p. E). 

The result has been fonnulated as a theorem (see 
[ I , ]). 

Theorem (ZhuravIev)./fa system with Hamiltonian H 
satisfies the normalform condition. then the following 
steps are required to construct a !?eneral solution ofthe 
correspondin!? Hamilton's equations: 

(a) .find	 a !?eneral solution of the system I-l'ith 
Hamiltonian Ho(t, p, q); 

(b) find a general solution ofthe system defined via the 
perturbation F(0, p. q, E) under the condition that 
the explicitly occurred time in this system should 
be equal to zero. 

Then the general solution of the input non­
autonomous system can be presented as matching (in 
an arbitrary manner) of the obtained solutions (instead 
of arbitrary constants in solution of the second system, 
these of the first system are substituted, and vice versa). 

2°. An invariant character of this criterion enables 
nonnalization without an initial simplification of the 
non-perturbed part and without splitting into cases of 
autonomous - non-autonomous, and resonance - non­
resonance ones. 

3°. Asymptotics of nonnal fonn and variables trans­
fonnations associated with Hamiltonian nonnalization 
are found through succesive quadratures of known (on 
each step) functions. 

4 Algorithm of invariant normalization with the 
help of parametric transformations 

Next, we illustrate how equation (3) of Theorem 1 can 
be transfonned to an equivalent one in the Zhuravlev 
nonnalization method [5, 12]. 

~ Springer 
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Let the Hamiltonian being nonnalized have the fol­
lowing fonn: 

H(t. q, p) = Ho(t. q. p) + F(t, q. p. E), 

F(t, q, p. E) = EF\(t, q. p) + E2 F2(t. q. p) + ... 

and let 

fjCk)(t. Q. P, E) = Ho(t. Q. P) + FCk)(t, Q, P, E) 

be the k-th order asymptotics of the nonnal fonn 

F(k)(t, q. p, E) = 10 1'1 (t, Q, P) + ... + 10kFk(t, Q. P) 

with respect to canonical transfonnation (I), and let 

\IICk)(t, x. y, E) = E\III(t, x, y) + ... + 10k\Ilk (t , x, y) 

be the k-th order asymptotics of the function 
\II(t. x. Y. E) in relations (1). 

Then, it follows from Theorem I, that the asymp­
totics \liCk) satisfies Equation (3), which can be given in 
the following fonn: 

a\liCk) (I I)
-- + fl t x - _\liCk) Y + _\II(k)at o. 2 Y' 2· 

- Ii (t x + ~ \liCk) Y - ~ \II(k))
0, 2 y' 2. 

+ F(k) (t x - ~ \II(k) Y+ ~ \liCk)) 
, 2 y' 2·
 

_ -Ck) ( I I)
- F t, x + 2\11y, Y - 2\11•. (6) 

The latter result yields a chain of the coefficients 
of the canonical transfonnation \II; and the nonnalized 
Hamiltonians 1'; of the fonn 

a\II; ­at + {Ho, \II;} + R; = F;,
 

aF; - .
at + {Ho, F;} = 0; I = 1,2, ... (7) 

Functions R; are computed successively using the for­
mulas 

1 _ 
R] = F I , R2 = F2 + 2{F, + F], \lid, ... (8) 
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Observe that if Ho is the polynom of powers not 
higher than second order with respect to q and p, then 
R;, i ~ k are the series coefficients of the function 

F(t,x- ~\IIy. y+ ~\II.) 

-F(k)(t x+ ~\II y - ~\II) . 2 y, 2· 

+f'<k)(t. x, y) = lOR] + E2 R2 + E2 R3 +.... (9) 

The chain of Equations (7) has been earlier obtained 
in [10, 11]. The equations are called homologous and 
are presented in the following fonn: 

R. - F- d\ll·,- ;--' d 1'; = 0; i = I. 2•... (10)
dt ' dt 

Here full derivatives d /dt are computed using 
the rule of differentiation of composite functions 
\II; (t, x. y), F; (t, x, y), where x(t), y(t) (being the func­
tions of time) are defined by a solution of the non­
perturbed system of the foml 

x = Hoy, Y= -Hox , x(to) = XQ, y(to) = Yo· 

(11) 

Instead of x and y, the solution of (11) is substituted 
into relations (10), then from the second equation of 
(10) one may conclude that function 1'; does not depend 
on time. Therefore, the integral of the first equation is 

1
t 

R;(t)dt = (t - to) 1'; (to. Xo, Yo) 
to 

+\11; (to, Xo. Yo) - \II;(t, x. y). (12) 

In fact, this is a key result, since the quadrature 
(12) defines both nonnal fonn and functions \IIi 
through transfonnation of the variables (I). However, 
the proposed representation of integral (12) is not 
always achieved uniquely. The uniqueness is realized 
if function R; with the substituted solution (11) is 
quasi-periodic, i.e. it is the sum of periodic functions 
with respect to t. In the mentioned case, the integral 
of R; is expressed by linear and quasi-periodic 
functions f(t). One may compute the averaged part 
f(t) (independent of time), and then match it with the 
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second part of the right hand side of (12). Next, the 
representation of (12) defines uniquely Fj(to, Xo, Yo), 
and the function IJIj(to, Xo, Yo) with zero time averaged 
value: 1JI;(t, x(t), y(t» = O. The quasi-periodicity 
condition of R j yields constraints on the parameters, 
for which the normal form exists. Below, the obtained 
result is formally formulated. 

Main Theorem.Asymptotics of the k-th solution of 
a normal form and the associated transformation 

of variahles exist and are unique, it' after a suh­
stitution of the solution (II) into the functions R j, 

(i = \, 2..... k), they are quasi-periodic functions 

with respect to time. Then. in the right hand side ot'the 

imegral (12) Fj(to. xo, Yo) is the coefficient of a linear 
term with respect to t, and qlj(to. Xo. Yo) are terms 
independent of time. 

Let us address the link between the generating 
Hamiltonian G and the function IJI. In the method 
proposed in [10,11] the transformation q, p ---+ Q, P 
is sought on the phase flow of a Hamiltonian system, 
i.e. 

dX/dr = G r , dY/dr = -G x , 

X(O) = q, YeO) = p; X(E) = Q, Y(E) = P, (13) 

where: r E (0 :s r :s E) is the helping parameter that 
plays the role similar to that of time t. 

The mentioned transformation is realized in our al­
gorithm using the parametrization. The function gov­
erning transformation on the phase flow of Hamiltonian 
(13) is defined by the equation 

IJIr(r, x, y) = G (x + ~lJIy, y - ~IJI.) • 

IJI(O, x, y) = O. 

3 E3Note that r = is computed with the accuracy 
IJI = EG. Therefore, asymptotics IJI) = Go. IJIz = G I, 
of two first methods overlap, and consequently R I and 
Rz are identical in both approaches. However, one finds 
differences in next approximations for R 3 , R4 , •.. , in 
spite of the fact that the normal form does not depend 
on the selection of method. 

5 Examples of asymptotical solutions 

Highly didactic examples given in references [10, 
II] demonstrate essential simplicity of the proposed 
method in comparison to al1 existing classical ones. 
Our method, from the point of view of its simplifica­
tion, is equivalent to that proposed in [10, II]. How­
ever, it has one more advantage. Namely, the obtained 
chain of equations for the asymptotics is completely 
independent of the input Hamiltonian form, I.e. there 
is no need to distinguish between autonomous and non­
autonomous cases. Recall that in the method proposed 
in reference [10, I I], the non-autonomous system can 
be reduced to autonomous one by an increase of the sys­
tem order. and then the chain of asymptotic equations 
must be derived. Although we are focused on rather 
simple examples the approach can be also applied to 
more complex dynamical systems using computer al­
gebra symbolic computation facilities. 

We illustrate the introduced method using two exam­
ples of solutions to the problems of excited oscillators 
in resonance case [5]. In order to solve these problems 
using classical approaches, one has to introduce an­
other normal form definition [14]. This method does 
not require this additional operation. The normal form 
is computed directly from the quadrature and then a 
solution is constructed. 
Example I. Find a solution of excited oscillators of the 
linear oscillator in resonance. 
Example 2. Let the excited oscillations of the non­
linear Duffing oscillator be: ij + q = E(sin t _ q3 + 
2Aq). Find A, for which a solution is periodic with the 
period 2rr, and then analyze its stability. 

In both examples, the investigated equations are of 
Hamiltonian type, and they possess the same unper­
turbed Hamiltonian No = !(qZ + pZ). The associated 
solution is as follows: 

q = qo cos(t - to) + Po sin(t - to), 

p = -qo sin(t - to) + Po cos(t - to). (14) 

Solution to Example I: R J = F1 = -q sin t. 
Substituting (14), the time periodic func­
tion is obtained with the associated integral 

J;;' R[ (t)dt = -! (qo sin to + Po cos to) (t - to) ­

~ (qo cos to + Po sin to) + f(t). Therefore, one 
may easily derive normal form FI of coeffi­
cients and the function IJI). A solution to the first 

~ Springer 
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approximation is obtained in the following way. 
Since Hamiltonian F(O, Q, P) = -~P is associated 
with the system Q = - ~, P = 0, its solution is 
Q = Qo - !Et, P = Po. Substituting Q and P 
(instead of qo and Po) into (14), the following solution 
is obtained Q = (Qo - Et /2)cos t + Po sin t, P = 
-(Qo - Et /2) sin t + Po cos t (Zhuravlev's theorem 
[II n. Then the transformation Q = q - !E sin t, P = 
p + !E cos t is carried out with respect to the function 
I.IJ, and the exact solution expressed by input variables 
is q =(qo-Et/2)cost+(po+~)sint. Since the 
solution of Example 2 is found using the averaging 
procedure, and it is reported in references [5,10], the 
normal form method (to compare both approaches) 
will be further applied. 

Solution to Example 2: One finds R 1 = F1 = 
-q sin t - Ap2 + q4/4. Substituting solution (14) into 
R1, one finds the coefficient of the normal form se­
ries: F1(0, Q, P) = -!p - ~(Q2 + p 2) + f2(Q2 + 
P 2)2. A periodic solution is represented by a fixed point 
corresponding to the system 

- ( 3 2)
aFJ/aQ=Q -A+gA =0, 

- I 3aFI/ap = -"2 + P ( - A + gA2) = 0. 

One finds Q = 0, P = ±A for A = ~A2 ± 2~' 

where A = JQ2 + p2 is the amplitude. The depen­
dence w = I - EA vs A is called the amplitude­
frequency characteristics. 

A fixed point is stable, if the corresponding function 
F1 achieves its extremum. This yields stability condi­
tion for the periodic solution, i.e. 

2 2(A - ~ A ) (A - ~ A ) > 0, 

which fully overlaps with the condition obtained 
through the averaging procedure. 

Let us give one more example [5]. In this case, in 
order to get a solution, one has to compute higher order 
approximations, and rather complicated classical pro­
cedure approaches are required. Our method yields the 
solution in a simpler way. 

Example 3. Find Poincare points for time instants 
tn = 2lr n (n = 0, 1,2, ... ) for the non-linear equation 
ij = 1'2 cos t f cos q with accuracy of 1'6. 

~Springer 

The equation governs various problems of mechan­
ics and physics. One of them is that of vibrational mo­
tion of a spherical particle in a fluid, where a flat stand­
ing wave occurs [17, 18]. Consider a vertical tube with 
stiff horizontal roof. In the tube the standing wave is 
generated and its velocity is governed by the formula 
u = Aw sin wt cos kz, where: w - wave frequency; t ­
time; k - wave number; z-axis going vertically up; A 
- amplitude of fluid particle displacement, which is as­
sumed to be small. The frequency and wave number are 
dependent through sound velocity in the fluid w = kc. 
Note that for a particle with radius "a" the following 
inequality is satisfied IJ,/(pkca 2 ) « I, then the Stokes 
friction and the Basse force are negIegible in compar­
ison to inertial forces. Then, the equation governing 
particle dynamics is 

(p + 2po)zo = 3pw - 2(po - p)g, 

w = au + uau/az ~ au/at = Aw2cos wt coskz, 

where p and Po - densities of fluid and solid particle, 
IJ, - coefficient of dynamic fluid viscosity. 

For the particle of neutral floating p = Po, the gov­
erning equation can be transformed to that of Exam­
ple 3, in which q = kzo. t' = wt, I' = Ak. In refer­
ences [17, 18] in order to solve the defined prob· 
lem the classical averaging technique is applied [19]. 
The series is developed with respect to the parame­
ter E. In order to solve the problem, three approxima­
tions are required. The solution is obtained in the form 
q = I'll + 1'

212 + 1' 313 + 0(1'4). 

In what follows we illustrate how to obtain the solu­
tion to the stated problem using our method. The split­
ting is carried out using the parameter <5 = 1'2. There­
fore, in order to achieve essentially higher accuracy, 
i.e. of 1'6 order, only two approximations are required. 
Again they are obtained in a simpIer way in comparison 
to classical approaches. 

Solution. The equation of our example is obtained 
from the system of Hamilton equations with the Hamil­
tonian H = !p2 +<5FI(t,q, p). FJ = -costsinq. 

A solution of the unperturbed system has the form 

q = qo + Po(t - to), p = Po· 
The first integration gives R1 = F J , and the quadra­

ture 

' cos (to + qo) cos (-to + qo) f' ( ) 
R1dt = - + + It.[ ~ 2+2~ 2-2~ . 
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Therefore, one gets 

PI = 0, Iii,(t, q, p) 

cosU + q) cos(-t + q) 
-~----:...:... + -=----:-- (15)

2 + 2p 2 - 2p 

The second integration gives 

1~ 1 aFI alii,
R2=---­

2 oq ap 

I (cos U+ q) cos(t - q))= - cos t cos q 2 + 2 
4 (1+p) (1-p) 

Integral (12) yields the linear part F2, which is in­
dependent of time \112, The final normal fonn and the 
function defining the parametric transformation are as 
follows: 

- I 2 ,s2 [I I] ~ H - -P - o,s­
- 2 + 16 (I + P)2 + (I - P)2 + ( ), 

,sy
\II (0, x, y) = --2 COSX 

I-y 

,s2(1 - 3y2 - 2y4) . 3 
sm 2x + O(,s·).2)316y(1 - Y 

The normal form can not be applied in vicinity of the 
resonance points: P = 0, P = ± I. Note that even in 
resonance cases the normal forms can be directly com­
puted using fonnula (13) [5]. 

6 Integration of Hamiltonian equations 
perturbated by damping 

Below, we consider dynamics of a unit material mass 
driven by a potential periodic force -eoF(t, q)/oq em­
bedded in the medium with damping -,sit governed by 
the equation 

ij = -E 
2 aF(t,q)/aq -Ml, (16) 

where 6 and ,s are the small parameters. 
Equation (16) is transformed to the following form 

aH aH 
it = ap' p+,sp= -aq' 
H = Ep2/2 + EFU, q). (17) 

= 

Note that (17) is not Hamiltonian, since damping force 
is not potential. However, applying the following non­
canonical transformation 

q = ij, p = pex.p(-,st) (I8) 

the system assumes the following Hamiltonian fonn 

:. aff '- aff 
_ q = ap , p = - aij : ( 19) 

H = E[ex.p(-tSt)p2/2 + exp(ot)F(t, ij)]. 

Our target is to analyze an asymptotic solution of 
Hamiltonian (19) on the period 0 ~ t S 2rr. We re­
main only the terms 6 3 and 6,s, in the Hamiltonian ff, 
i.e. 

ff(t, x, y, E) = EH[ (t, x, y) + E2 H2(t, x, y) 

+E3H3(t,x,y)+E,sH4 (t,x,y)+·.· , 

(20) 

The system of equations (19) has the standard form 
and we apply the Poincare transformation with respect 
to the period in the following parametric form 

- I - 1
qll-I = X - 2\11y q,,=x+ \11y

2 

1 1 
(21) _ I' _ l' 

P,,-I = Y + 2\11x Pll = Y - -\IIx
2 

where function \II (T, x, y) is found solving a Jacobian 
type equation. 

Points ijll' PII lie on the trajectory ij(t), p(t), de­
fined by the solution of Hamiltonian (19) and they are 
called Poincare points. A distance in time between them 
is equal to period 2rr: ij" = ij(2rr n), PII = p(2rr n). In 
what follows recurrent relations (17) may be obtained 
for periodic and Poincare points. For this purpose the 
function \II is sought in the following form 

\II =E\III + E2\112 + E3\113 + EO \114 + ... , (22) 

~Springer
 



---

192 Nonlinear Dyn (2007) 48:185-197 

Substituting series (22) into Jacobi equation, the fol­
lowing series coefficients (22) are found [6] 

\II1(t, x, y) = i' Hldt, 
to 

\IIz(t, x, y) = it [Hz - ~(HI' \lid] dt, 
to 2 

\113(t,x, y) = it [H3 - ~({Hz, \lid + (HI, \IIZ}){23) 
to 2 

1
+ g(H1xx\llly\llIY - 2Hlxy \II Ix \Illy 

+ Hlyy\lllx\lllx)]dt, 

\114(t, x, y) = it H4dt, ... , 
'0 

where {f, g} = fygx - j~.gy denotes the Poisson 
bracket. 

The obtained fonnulas allow to carry out the full sys­
tem analysis, which will be illustrated by the following 
example. 

Example. Investigate dynamics of a material point 
driven by the force _E Z cos t cos q and damped by -81;. 

In this case for the coefficients of the series (20) one 
gets 

yZ 
HI = 2 + cost sinx, Hz = 0, H3 = 0, 

H4 = t(_yZ /2 + cos r sin x). 

Substituting the above expressions to (23), one gets the 
following coefficients for the time instant t = 21f 

\II = E\III + EZ\IIz + E3\113 + E8\114 +". , 
_ y2 _ 

\III-21fT' \IIz-O, (24) 

\113 = 21f (~ cos 2x - l sin x ) , \114 = _1f zy z. 

Removing from (21) parameters x and y and using 
(18) the following recurrent relations are obtained for 
Poincare points qll, Pll, 11 = 0, 1,2, ... of equations 
(17) 

qll = qn-I + 21fEPIl-1 + O(E3), 

I 
PIl = Pn-I (\ - 21f8) + 4E3 sin 2qll + O(E4

), (25) 

where E is the order of impulse Pn = O(E) (invariant 
curves are shown in Fig. 1). 
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Fig. 2 Invariant curve without damping 

For 8 = 0 we deal with a Hamiltonian system. It 
follows from theorem 5 in reference [6] that Poincare 
points lie on closed invariant curve \II(qll' PIl) = 
COllst = 21fE3C with the accuracy of E5 in the fonn 

P; 1-"2E Z +-8COS 2qll=C,	 (26) 

A family of invariant curves is shown in Fig. 2. 
For 8 =1= 0 our system is non-Hamiltonian and 

Poincare points with an increase of 11 start to lie on 
curves (26) with a constant C = CIl depended on 11. For 
Cn one may obtain the recurrent relations in the fol­
lowing way. Let a pair qn-l = qll-I, PIl-1 = PIl-] and 
qn, PIl of Hamiltonian (\9) lie on the following invari­
ant curve 
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'lJ(qn-l. PII_I) = lJi(qll, PII) = 2JTE3 
CI1 _I. (27) 

The next pair (qll = qll, PI1 = PIl(l - 2JT8» and 
((111+1 = qll+), PII+I) lie on the invariant curve with 
modified constant 2JT 10 3CIl of the form 

I,
 'lJ(qll, PII(I - 2JT8» = 2JTE3
CIl . (28)
 

Consequently, taking into account (28) and (27) and 
applying the Lagrange theorem on gets 

alJi 3 .-2JT8pl1-- = 2JTE (C Il - ell_I).
aplI 

Substituting the above function 'lJ the fol1owing recur­
rent solution is found 

CII = CII_I - 2JT8p~/E2. (29) 

For 11 = 0 and having the initial values ofqo. Po, one 
finds Co 

p 2 I
 
Co = 2 O2 + - cos2qo.


E 8 

and then constants ql, PI, CI are found from relations 
(25) and (26). 

It fol1ows from (29) that constant Cn decreases 
monotonously and tends to minimum of the function. 

. y2 I 
j (x, y) = -22 + - cos 2x . 

E 8 

Minimum x = JT /2 + JT 11 Y = 0 corresponds to stable 
periodic solution of (16). Poincare points approach a 
stable point in a spiral way. Therefore, the found min­
imum is stable focus (see Fig. I). ,
 Note that a similar equation is studied in mono­
,
 graphs [17, 18]. However, three approximations of av­

eraging KBM method [19] are required in order to get 
the same result. 

7 A swinging oscillator and its normal form 

Consider an elastic pendulum with two-degrees-of­
freedom, i.e. the heavy point mass swinging in the 

y 

Fig. 3 Scheme of a swinging oscillator 

vertical plane and linked to the massless spring (Fig. 
3). The problem is formulated, for instance, in mono­
graphs [20-22], where also some investigations with 
respect to partial results are given. 

However, high complexity of the used approaches 
do not al10w to carry out a ful1 analysis. Let 
us apply our method of invariant normalization 
with the help of parametric variable transformation 
[23]. 

The following notation is used: k - spring stiffness; I 
- its length in the lumped body equilibrium position; m­

lumped body mass. In addition, w = .fiT! (frequency 
of smal1 vibrations ofmathematical pendulum of length 
n, and 

J.L=j k +1. 
mg 

Let us introduce the Cartesian co-ordinates with ori­
gin in the lumped system equilibrium position and with 
the axes along the vertical and horizontal directions. 
Denote by Ix.ly the mass co-ordinates (Fig. 3). The 
spring length is denoted as I R, where 

R = J(I +x)2 + y2. 

The spring tension is T = k(l R - 10)/10, where 10 
is the non-stretched spring length. On the other hand, 
since I is the spring length in the equilibrium position, 
then k(l - 10)/10 = mg. Substituting 10 = kl /(k + mg) 
into T, one gets T = (k + mg)R - k. Hence, it is clear 
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that J(k + mg)/ml is the vibration mass frequency for 
vertical spring position, whereas /-L is the ratio of this 
frequency over w. 

The force components acting on the lumped system 
are: Fx=mg-T(l+x)/R, Fy=-Ty/R. New­
ton's equations follow: mIx = Fx, mly = Fy. 

Potential E p and kinetic E,. energies of the system 
have the form 

k 2 k 2 
Ep = -mglx + 0 (l R - 10) - 2/ (l - 10) ,

2/ 0

y
E = m [(ldX)2 (ld )2] 

,. 2 dt' + dt' 

= mgt [(~r + (~~r], 

where t' is dimensional time and t = wt' is undimen­
sional time. 

Assuming undimensional impulses u = ;i- and v = 
y, the following Hamiltonian function H = (E,. + 
Ep)/(mgl) is found 

I 2 
H = _(u2 + v2) + ~(R2 - I)

2 2 

- (/-L2 - 1)(R - I) - x. 

The associated constant in H is chosen in the way that 
H(O, 0, 0) = O. 

The system of Hamilton's equations has the form 

dx aH 
-- ­ ,
dr au 

du aH 
-=-­ ,
dt ax 

dy aH 
-- ­ ,
dt av 

dv aH 
--- ­
dt ay 

Next, we are going to investigate the lumped system 
motion in the neighbourhood of equilibrium (or large 
time durations t). 

Let us change x, y, u, v into EX, EY, EU, EV and H 
into E2 H. Then the system (17) remains unchanged, 

tl Springer 

whereas H takes the following form [22] 

H = HO+EF1+E2F2, 

Ho = (1/2)(u2 + v2 + /-L2 x 2 + i), 
F 1 = (l/2)(/-L2 - \)x/, 

F2 = (l/2)(JL2 - l)(l/4 - x 2/). 

Owing to the illustrated algorithm, the following 
general solution of the unperturbed system with the 
Hamilton Ho is found 

U .
x(t) = X cos lit + - Sin /-Lt,
 

/-L
 

yet) = Y cost + V sin t, 

u(t) = U cos lit - /-LX sin /-Lt, (30) 

v(t) = V cos t - Y sin t 

First approximation. The function R] = F 1 = 
([1'2-

1
) Xy2 is obtained and then a solution of the unper­

turbed system is substituted to it. In the integral only 
terms independent of time (/-L4 - 411. 2) f~ x(t )/(t)dt 
= /-L2Uy 2 - 2UV 2 - 2Uy 2 - 2XYV,L2 +... re­
main. In fact, they define the first approximation of the 
form 

'lI1 = (/-L2 - I)
 
2(/-L4 - 4/-L2)
 

X[/-L\Uy 2 - 2XYV) - 2UV 2 - 2Uy 2] 

of the parametric transformation. 
Since linear (in time) term is equal to zero, the first 

approximation of the normal form perturbation is equal 
to zero, Le. FI = O. 

To conclude, both the normal form and variable 
transfoffilation associated with the first approximation 
are computed. 

Second approximation. The function R2 = F2 + 
! {FI , \lid is found, where Poisson's bracket is 

introduced {f, ,!? 1= .t;,gx + III,!?) - .t~gll - .t~·gu. We 
obtain 

R2(x, y, u, v) I (y4 22) (/-L2 - I)
------,--,.- - - - - x y + ----,---------,

(/-L2 - 1) - 2 4' 8 (/-L4 - 41L2) 

x[-l/-L2 + 2/v2 + 2l + 4x2//-L2 + 8xyuv]. 



195 Nonlinear Dyn (2007) 48: 185-197 

Instead of x, y, u, v the solution of unperturbed sys­ fonn
 
tem is substituted and integrated again. The multiplier
 
standing by linear (in time) part of this integral defines
 
the nonnal fonn of the second approximation 2
· 3(It 2 

- I )E
X = A V,

41t2(1t 2 - 4) 
_ 3(1t2 - 1)(1t2X 2 + V 2)(Y 2 + V 2) 2 

F2 = -----"---:-:---,--------:,.--"----------:.. · 3(1t2 - I )E
V = -A X,81t2 (1t2 - 4) 4(p,2 - 4) 

2 2 2 
· (It - I)E (3 It + 8 ) 

- 1t2(1t2 - 4) 4 161t2 ' 
(1t 2 - 1)(8 + 1t2)(y2 + V 2 )2 y- --B+--A V 

64 It2 (It2 - 4) 
2 2 

~ · (It I (3 1t
2 + 8) - )EV = - --B + --A V. 

Note that function \lI2 is the part of integral, which 1t2(1t2 - 4) 4 161t2 

does not depend on time, and it is 

Finally, the following linear system is found -I )\lI2 ­
- ( 641t2 (1t 2 - 4) 

x(8 V V 2 X + 16 V 2 V Y - 8 V 3 Y 
· WI .

2 X = -V, V = -ItWjX,+40V X y - 8 V y3 + 16V V 2 X 1t2 
· It . 

Y = W2V, V = -W2 Y,-40V2 V Y 1t2 + 7 V 3 Y 1t2 + 32 V X 2 Y 1t2 

3(1t2 - l)E2 
-64 V X y2 1t2 + V y3 1t2 + V 3 Y 1t4 

WI = A,
41t(1t 2 - 4) 

-8 V X 2 Y 1t4 + 7 V y3 1t4
) 2 2 2 

W2 = (1t - I)E (1t + 8 A _ ~B) 
1t2(1t2 - 4) 16 4 

Let us investigate the system within new coordinates 
X, y, V, V and with the Hamilton Ho(X, y, V, V) + 
E2F2(X, y, V, V). Owing to Zhuravlev's theorem, it is possessing the following solutions 
sufficient to find integral of the system with Hamilto­
nian E2 F2(X, y, V, V). The associated system of equa­
tions is 

X = Xo COSWlt + (uo/Wj) sin Wjt, 

x_ 3(1t2 - 2 V = -ItXoSinwlt + ItUOCOSWlt, _ l)E2 
2 

41t 2(1t2 -4)(y +V )V, Y = Yo cos W2t + (VO/W2) sin W2t, 

2 2 V = -yosinw2t+(vo/w2)cosw2t.
[j = _ 3(1t - l)E 2 2
 

4(1t2 _ 4) (Y + V )X,
 

2 2Y = _ 3(1t - I )E 2 2 2 
41t2(1t2 _ 4) (It X + V )V One may substitude the functions into (30) in order 

to get the full solution. +(p} - l)(1t2 + 8)E 2 
2."I To sum up, the solution with accuracy of E4 is suc­161t2(1t2 _ 4) (y2 + V )V

2' cessfully constructed. 
V _ _ 3(It - I)E2 

2 2 2 Let us analyse now solution of the Hamiltonian sys­41t2(p} _ 4) (p. X + V )Y 
tem (17) as well as the following initial conditions with 

(It 2 - I )(p,2 + 8)E 2 
2 the Hamiltonian Ii = Ho+ f 2 F2

161t2(1t2 _ 4) (y2 + V )y. 

The system possesses two integrals: y2 + V2 = 
x(O) = xo, U(O) = 0, y(O) = Yo,

A, 1t2X2 + V 2 = B, and after their account, the
 
linear equations are obtained in the following v(O) = O.
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and B = 1. 

x = Xo cosw,t, y = Yo cos W2t, 

U = -JLtosinw,t, V = -Yosinw2t, 

A = yJ, B = j,l2xJ, 
3(j,l2 - 1) 2 

W 
I 

-
- 4j,l(j,l2 _ 4)'

V
0' 

j,l2 - 1 (j,l2 + 8 2 3 22)
W2 = j,l2(j,l2 _ 4) -1-6-Yo - 4JL Xo . 

Substituting these expressions into (17), we find 

x(t) = xo[cos WI t cos JLl - sin Wit sin JLt]
 

= xocos(w\ + jt)t,
 
y(t) = Yo[cos W2t cos t - sin W2t sin t]
 

= Yo cos(W2 + l)t.
 

In this way, we find the dependence of the frequency 
of oscillations on amplitudes Xo and Yo. 

8 Concluding remarks 

We have proposed a method to study dynamical sys­
tems with periodically modulated Hamiltonians. 

In the first part of the paper the parametric form of 
canonical transformation and the method of normaliza­
tion have been introduced and illustrated. 

Note that the last mentioned method is sometimes 
called the method of invariant normalization (see [10, 
I ID. A similar like approach has been applied to carry 
out averaging and invariant normalization for a giro­
scope using computer algebra REDUCE program (see 
[24D. 

In the second paper's part dynamics of a swinging 
oscillator is analysed. In what follows the Hamiltonian 
of the studied system is defined, and also its normal 
form is constructed. After integration of the syslem, 
the asymptotic solution of the investigated non-linear 
system is obtained [23]. 

In our work asymptotical series of transforma­
tions close to identity are applied, i.e. similarly to 
the classical theory ca<;e. However, the applied by 
us approach has better series convergence as well 
as higher accuracy (with respect to same approxi­
mation order) in comparison to classical approach. 
In the Arnold's monograph a series of advantages of 
Poincare versus Jacobi guiding functions are reported. 

1d Springer 

In particular, invariant (non-invariant) properties of the 
mentioned Poincare (Jacobi) guiding functions are out­
lined. Owing to the proved identity of the Poincare 
and parametric functions, all advantages hold also 
for the applied by us parametric form of canonical 
transformations. 

Moser and others applied a property of a normal 
form to be the first integral of its leading (unperturbed) 
part, when the leading part is quadratic form of coor­
dinates and impulses. It is remarkable that all authors 
follow the Birkhoff classical approach, i.e. they apply 
the mentioned leading part of Hamiltonian. Zhuravlev 
[10, 11] uses the mentioned property to construct a nor­
mal form independently on the form of an unperturbed 
Hamiltonian. This is the novel point of view of a normal 
form. Instead of tedious Birkhoff's approach yielding a 
successive cancellation of resonance terms in the third 
and fourth approximations, the being sought normal 
form and canonical transformation are defined by sim­
ple quadrature (12). It is clear that there exist cases 
when a Hamiltonian cannot be reduced to the corre­
sponding normal form. Namely, in this case no one of 
the existing methods can be appl ied to yield the normal 
form. Note that it is easy to define such Hamiltonians 
using the Zhuravlev's method. One has only to check 
if the being approximated (by the recurrent formulas) 
function is a quasi-periodic one. 

Note that in our short manuscript it is rather dif­
ficult to exhibit all advantages of the applied method. 
However, this method has been already applied to yield 
important practical results (see reference [24)). 
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