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Construction of an accurate continuous model for discrete media is an important topic
in various fields of science. We deal with a 1D differential-difference equation governing
the behavior of an n-mass oscillator with linear relaxation. It is known that a string-
type approximation is justified for low part of frequency spectra of a continuous model,
but for free and forced vibrations a solution of discrete and continuous models can be
quite different. A difference operator makes analysis difficult due to its nonlocal form.
Approximate equations can be obtained by replacing the difference operators via a local
derivative operator. Although application of a model with derivative of more than sec-
ond order improves the continuous model, a higher order of approximated differential
equation seriously complicates a solution of continuous problem. It is known that accu-
racy of the approximation can dramatically increase using Padé approximations. In this
paper, one- and two-point Padé approximations suitable for justify choice of structural
damping models are used.

Copyright © 2006 I. V. Andrianov et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Many different phenomenological theories are used to describe energy dissipation in vi-
brating elastic bodies [5]. In [6, 11, 12] a new dissipation model for beams with damping
assumed to be proportional to the beam moment has been proposed. Namely, the follow-
ing equation has been studied:

ρytt(x, t)−μytxx(x, t) +EI yxxxx(x, t)= 0, (1.1)

where ρ is the density of the beam material, μ is the damping parameter, E is the Young
coefficients, and I is the first moment of the beam cross-section.
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2 On the elastic dissipation model

On the other hand, in [6, 11] the models studied are of the form

ytt(x, t) +Byt(x, t) +Ay(x, t)= 0, (1.2)

where A is the relevant elasticity operator.
Notice that the operator B is related in various ways to the positive square root of A.
In [12] spatial hysteresis model has been reviewed and then shear diffusion model has

been introduced. The last one has been obtained by coupling the originally conserva-
tive elastic equations to two different diffusion processes. Then decoupling process has
been used to project the coupled system onto the subspace corresponding to the lateral
displacements. It has been shown that the projected system agrees in many significant
aspects with the spatial hysteresis model.

From a mathematical standpoint, this model has been also analyzed in [13, 15].
We will analyze the applicability of (1.1) by using discrete media with linear relaxation

and its continuous approximation.

2. String model

We deal with an n-mass damped oscillator. The governing equations of motion follow

myjtt +αyjt = cD(yj) + s j(t), j = 1, . . . ,n, (2.1)

y0 = yn+1 = 0, (2.2)

where D(yi) = yj+1 − 2yj + yj−1, yj(t) is the displacement of the jth point, s j(t) is the
external force acting on jth point, α is the coefficient of linear relaxation, m is the mass, c
is the rigidity, and index “t” (e.g., yjt(t)) denotes differentiation with respect to t.

The following initial conditions are applied:

yj(t)= yjt(t)= 0 for t = 0. (2.3)

Usually for large values of n, the string-like continuous approximation to the above
discrete problem is applied:

mytt(x, t) +αyt(x, t)= ch2yxx(x, t) + s(x, t), (2.4)

y(0, t)= 0, y(l, t)= 0, (2.5)

y(x,0)= yt(x,0)= 0, (2.6)

where l = (n+ 1)h.
The function s(x, t) represents a continuous approximation of the discretely defined

function s j(t). Observe that it is defined with an accuracy to any arbitrary function which
equals zero in the nodal points x = jh, j = 1,2, . . . ,n. For this reason, from a set of inter-
polating functions one may choose, say, the smoothest function owing to filtration of fast
oscillating terms. This problem has been solved by Kunin [8], who proposed the following
approximation:

s(x, t)=
n∑

k=1

sk(t)
sin(kπx/h)

πkh
. (2.7)
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The following relation between discrete and continuous systems holds:

yj(t)= y( jh, t), j = 1, . . . ,n. (2.8)

Note that system (2.1) can be reduced to one pseudodifferential equation. For this
purpose the translation operator exp(±∂/∂n) is introduced, and the following formal
identity holds: exp(±∂/∂n)yi = yi±1. Then (see [14] for more details)

Dyi =
[

exp
(
∂

∂n

)
− 2 + exp

(
− ∂

∂n

)]
yi = 4sin2

(
− ih

2
∂

∂n

)
yi. (2.9)

It means that difference operator D in the right-hand side of (2.1) can be represented
by the following pseudodifferential operator:

D = sin2
(
− ih

2
∂

∂x

)
. (2.10)

The following McLaurin series is applied:

sin2
(
− ih

2
∂

∂x

)
=−

(
h2

4
∂2

∂x2
+
h4

48
∂4

∂x4
+

h6

1440
∂6

∂x6
+ ···

)
. (2.11)

Taking into account the first term in the series (2.11), the string-like continuous ap-
proximation (2.4) is obtained. Taking into account three first terms, the following higher-
order approximation is found:

m
∂2y

∂t2
+α

∂y

∂t
= ch2

(
∂2y

∂x2
+
h4

12
∂4y

∂x4
+

h6

360
∂6y

∂x6

)
+ s(x, t). (2.12)

Initial conditions have the form (2.6).
The problem associated with the boundary conditions requires a more subtle analysis.

Note that the boundary conditions for an n-mass oscillator (2.2) are transited automati-
cally into boundary conditions for the string (2.5). However, if a continuous approxima-
tion has a relatively high order (see (2.12)), one has to define yk(t) for both k < 0 and for
k > n+ 1. If one supposes periodic chain, then

y−1(t)=−y1(t), y−2(t)=−y2(t), and so forth,

yn+2(t)=−yn(t), yn+3(t)=−yn−1(t), and so forth,
(2.13)

and the following boundary conditions associated with (2.12) are then obtained:

y = yxx = yxxxx = 0 for x = 0, l. (2.14)

Initial conditions have the form (2.6).
Previously, we used the expansion of a pseudodifferential operator into the McLaurin

series. However, more effective results may be obtained by using Padé approximations
(PA). In [7, 9, 10] the continuous models are constructed using one-point PA. A brief
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description of the PA follows. Let the function F(ε) is represented by the McLaurin series

F(ε)=
∞∑

i=0

aiε
i for ε −→ 0. (2.15)

The PA [m/n] is defined through the fractional rational function

F[m/n](ε)=
∑m

i=0βiε
i

1 +
∑n

i=1 γiεi
, (2.16)

whose first m+ 1 coefficients of the associated McLaurin series for F[m/n](ε) overlap with
the first terms of the McLaurin series for F(ε).

Let us take into account only two terms of the expansion (2.11). Then one has the
following continuous model:

m
∂2y

∂t2
+α

∂y

∂t
= ch2

(
∂2y

∂x2
+
h4

12
∂4y

∂x4

)
+ s(x, t), (2.17)

y = yxx = 0 for x = 0, l. (2.18)

Initial conditions have the form (2.6).
The PA of the truncated series (2.11), when one takes into account only two terms of

expansion, has the form

∂2/∂x2

1− (h2/12)(∂2/∂x2)
. (2.19)

It leads to the following continuous model:

(
1− h2

12
∂2

∂x2

)(
mytt +αyt

)− ch2yxx = c
(

1− h2

12
∂2

∂x2

)
s(x, t) (2.20)

with the boundary conditions (2.5) and the initial conditions (2.6).
According to references [1–4], it is clear that application of two-point PA (TPPA) is

more efficient than the one-point PA. Recall briefly the definition of TPPA. Let

F(ε)=
∞∑

i=0

aiε
i for ε −→ 0, (2.21)

F(ε)=
∞∑

i=0

biε
i for ε −→ A. (2.22)

TPPA Fp is represented by the following fractional rational function: Fp =
∑m

i=0βiε
i/

(1 +
∑n

i=1 γiε
i), whose first k coefficients of the associated McLaurin series and m+ n+

1− k first coefficients of its development into the Taylor series in the point x = A overlap
with the first coefficients of the series (2.21) and (2.22).

In order to construct TPPA, two limiting solutions are required. Let us analyse expres-
sion

D(y)= yj+1− 2yj + yj−1. (2.23)
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In one limiting case (long-wave oscillations)D(y) may be approximated asD(y)≈ yxx.
In the second limiting case (saw-tooth oscillations [1–4]) one obtains yj+1 = −yj , and
then D(y)=−4yj . Assuming s j(t)= 0, a frequency of vibrations of the discrete system ω
can be found from the following equation:

mω2 +αω+ 4= 0. (2.24)

The equation of continual approximation is now cast in the form

(
1−h2δ2 ∂2

∂x2

)(
mytt +αyt

)− ch2yxx = 0, (2.25)

where the parameter δ2 should be determined.
A solution to (2.25), taking into account the wave length h regarding longitudinal

coordinate has the form y = Aexp(iωt)sin(πx/h), where ω is defined by the following
equation:

mω2 +αω+
π2

1 + δ2π2
= 0. (2.26)

Comparison of (2.24) and (2.26) yields the estimation δ2 = 1/4−π−2.
Finally, the modified continuous approximation may be written as follows:

(
1− δ2h2 ∂2

∂x2

)(
mytt +αyt

)− ch2yxx =
(

1− δ2h2 ∂2

∂x2

)
s(x, t). (2.27)

Attached boundary and initial conditions have the form of (2.5) and of (2.6), respec-
tively.

3. Beam model

In what follows the transversal vibrations of the n-mass chain are analysed.
The governing equations read

m
∂2yi
∂t2

+α
∂yi
∂t

+ c
(
6yi− 4yi+1− 4yi−1 + yi+2 + yi−2

)= si(t), i= 1,2, . . . ,n, (3.1)

with boundary conditions

y0 = yn+1 = 0, y−1 =−y1, yn+2 =−yn, (3.2)

and initial conditions (2.3).
A typical continuous approximation of the system (3.1) has the form

m
∂2y(x, t)

∂t2
+α

∂y
(
x, t
)

∂t
+ c1

∂4y

∂x4
= s(x, t), c1 = ch4, (3.3)
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with the attached

y = yxx = 0 for x = 0, l (3.4)

and initial (2.6) conditions.
The obtained continuous approximation can be improved. For this purpose, one may

formally replace the difference operator in (3.1) via the pseudodifferential operator in the
following way:

m
∂2y

∂t2
+α

∂y

∂t
+ 16c sin4

(
− ih

2
∂

∂x

)
y = 0. (3.5)

The pseudodifferential operator can be developed into the McLaurin series of the form

16sin4
(
− ih

2
∂

∂x

)
= h4∂4

∂x4
+
h6

6
∂6

∂x6
+
h8

80
∂8

∂x8
+ . . . . (3.6)

Taking into account only the first term in expression (3.6), one obtains the classical
continuous approximation (3.3). However, taking into account the first three terms, the
obtained approximation reads

m
∂2y

∂t2
+α

∂y

∂t
= c1

∂4y

∂x4

(
1 +

h2

6
∂2

∂x2
+
h4

80
∂4

∂x4

)
y + s(x, t) (3.7)

with boundary conditions (obtained using (2.13))

y = yxx = yxxxx = yxxxxxx = 0 for x = 0, l (3.8)

and initial conditions (2.6).
A transformation of the first two terms of the series (3.6) into the PA gives the follow-

ing result:

h4 ∂4

∂x4

(
1 +

h2

6
∂2

∂x2

)
∼ h4 ∂4

∂x4

1
1− (h2/6)(∂2/∂x2)

. (3.9)

Hence, a continuous approximation reads

c1
∂4y

∂x4
+
(

1− h2

6
∂2

∂x2

)(
m
∂2y

∂t2
+α

∂y

∂t
− s(x, t)

)
= 0, (3.10)

and the boundary conditions are defined by (3.4), whereas initial conditions are governed
by (2.6).

TPPA is constructed using two limiting cases for expression

D1(y)= (6yi− 4yi+1− 4yi−1 + yi+2 + yi−2
)
. (3.11)
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For long-wave vibrations one obtains D1(y)≈ yxxxx, whereas for saw-tooth vibrations
(yi+1 =−yi) one gets D(y)= 16yi. Now we will construct continuous approximation

c1
∂4y

dx4
+
(

1−β2h2 ∂2

∂x2

)(
m
∂2y

dt2
+α

∂y

∂t
− s(x, t)

)
= 0, (3.12)

and we will choose the parameter β2.
Applying the so far described approach for the string model, one obtains β2 =

1/16−π−4.
The boundary conditions for (3.12) have the form of (3.4).

4. Conclusions

As the authors of [13, 15] show, the proposed model in [6, 11, 12] of energy dissipations
(1.1) posses many disadvantages. In this work, we show that starting with a discrete model
with linear relaxation is impossible to obtain directly model (1.1). Our consideration
indicates also the validity of the following conclusion. Namely, application of one of the
discussed dissipation models can not be directly motivated by mathematical analysis. It
is rather necessary to carry out an experimental investigation to make the final choice.
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