
ANALYSIS OF NATURAL IN-PLANE VIBRATION
OF RECTANGULAR PLATES USING HOMOTOPY
PERTURBATION APPROACH

IGOR V. ANDRIANOV, JAN AWREJCEWICZ, AND VLADIMIR CHERNETSKYY

Received 1 June 2006; Accepted 16 July 2006

An analytical solution of the problem of free in-plane vibration of rectangular plates with
complicated boundary conditions is proposed.

Copyright © 2006 Igor V. Andrianov et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We address the important problems of energy transmission by high-frequency excitations
[21, 23] and structural noise transmission [25], as well as the analysis of folded [9] and
sandwich plates [32]. Although for some boundary conditions even exact solutions are
obtained [18, 19], but in general the application of either Rayleigh-Ritz [8, 13, 14, 20, 22,
26, 28–31] or Kantorovich approaches [33], or the method of superposition [15–17, 27]
is required.

In this paper, we will use homotopy perturbation approach. Introduction of an ar-
tificial small parameter is usually motivated either by the lack of a real physical small
parameter or by a rather narrow application zone of the used natural small parameter. In
general, the expression “small parameter” can be used in a different manner. Namely, the
following key question arises. Is it possible to obtain useful information directly either
through a natural small parameter or through an introduction of an artificial one (or
by the application of a useful summation procedure)? In this respect, it is worthwhile to
speak rather directly on the “methods devoted to development on a parameter” than to
speak only on a “small parameter.”

From this point of view, there is no difference between a real and an artificial small pa-
rameter. However, following the tradition, the phrase an “artificial small parameter” will
be further used. It is worth noting that the idea of introducing a small parameter has been
proposed with respect to different branches of mathematics. For example, Dorodnitzyn
[10] proposed the method of introduction of the parameter ε into the input equations
and the boundary conditions in the way that for ε= 0, a simplified problem was obtained,
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2 Natural in-plane vibration of rectangular plates

whereas for ε = 1 the input problem was governed. In other words, Dorodnitzyn has ap-
plied the continuation method widely known in the numerical mathematics. A serious
problem appeared due to divergent series occurrence for ε = 1. In order to overcome
the difficulties, the so-called methods of analytical continuation have been proposed, but
they appeared to be not satisfactory enough.

Some authors used the artificial parameter approach in a special way. Namely, they ob-
served that a transition from ε = 0 to ε = 1 represented a homotopy transformation yield-
ing today’s accepted term as the homotopy perturbation technique [10–12, 24]. However,
the mentioned technique can be satisfactorily applied only in connection with an effective
method of summation.

It has been already shown in [2–5] (see also [1, 6]) that effective results are expected
using the Padé approximations matched with the homotopy perturbation techniques.

2. Analysis

We consider free in-plane vibrations of a rectangular plate with hybrid-type boundary
conditions in its surface (Figure 2.1).

The governing equations are given in the form

(1 + c)
∂2u

∂x2
+
∂2u

∂y2
+ c

∂2v

∂x∂y
+ ρω2u= 0,

(1 + c)
∂2v

∂y2
+
∂2v

∂x2
+ c

∂2u

∂x∂y
+ ρω2v = 0,

(2.1)

where c = 1/(1− 2μ∗), μ∗ = μ/(1 +μ), μ is Poisson’s coefficient, ω is the frequency of free
vibrations, ρ = ρ0/E, ρ0 is the plate material density, and E is the Young modulus.

The boundary conditions can be formulated with help of the Heaviside function:

H(x)=
⎧
⎪⎨

⎪⎩

0, x < 0,

1, x > 0.
(2.2)

The following formulas hold:

for x = a

2
, u= 0, H1v+

(
1−H1

)
S= 0,

for x =−a

2
, u= 0, H2v+

(
1−H2

)
S= 0,

for y = b

2
, v = 0, H3u+

(
1−H3

)
S= 0,

for y =−b

2
, v = 0, H4u+

(
1−H4

)
S= 0,

(2.3)
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Figure 2.1. Scheme of the investigated plate.

where S=G(∂u/∂y + ∂v/∂x), G is the shear modulus,

H1 =H
(
x, y− a1

)−H
(
x,−y− a2

)
,

H2 =H
(
x, y− a′1

)−H
(
x, y− a′2

)
,

H3 =H
(
x− b1, y

)−H
(
x− b2, y

)
,

H4 =H
(
x− b′1, y

)−H
(
x− b′2, y

)
.

(2.4)

After introducing small parameter ε, conditions (2.3) take the following form:

for x = a

2
, u= 0, ε

[

GH1
v

a
+
(
1−H1

)
S
]

+
(
1− ε

)
S= 0,

for x =−a

2
, u= 0, ε

[

GH2
v

a
+
(
1−H2

)
S
]

− (1− ε
)
S= 0,

for y = b

2
, v = 0, ε

[

GH3
u

b
+
(
1−H3

)
S
]

+
(
1− ε

)
S= 0,

for y =−b

2
, v = 0, ε

[

GH4
u

b
+
(
1−H4

)
S
]

− (1− ε
)
S= 0.

(2.5)

For ε = 0, the boundary conditions enable separation of the variables. The unknown
displacement and frequency are developed into the series with reference to the perturba-
tion parameter ε:

u= u0 + εu1 + ε2u2 + ··· ,

v = v0 + εv1 + ε2v2 + ··· ,

ω2 = ω2
0 + εω2

1 + ε2ω2
2 + ··· .

(2.6)

Substituting (2.6) into (2.1) and into boundary conditions (2.5) and splitting with
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respect to ε, we get

(1 + c)
∂2u0

∂x2
+
∂2u0

∂y2
+ c

∂2v0

∂x∂y
+ ρω2

0u0 = 0,

(1 + c)
∂2v0

∂y2
+
∂2v0

∂x2
+ c

∂2u0

∂x∂y
+ ρω2

0v0 = 0,

(2.7)

for x =±a

2
, u0 = 0,

∂v0

∂x
= 0,

for y =±b

2
, v0 = 0,

∂u0

∂y
= 0.

(2.8)

The solution to (2.7), satisfying boundary conditions (2.8), has the following form:

u0 =Asin
2mπx

a
cos

2nπy
b

,

v0 = B sin
2nπx
b

cos
2mπy

a
,

ρω2
01 = 4π2

(
m2

a2
+
n2

b2

)

, B1 =−Amb

na
,

ρω2
02 = 4π2

(
m2

a2
+
n2

b2

)

(1 + c), B2 =−Ana

mb
.

(2.9)

In the next approximation, one finds

(1 + c)
∂2u1

∂x2
+
∂2u1

∂y2
+ c

∂2v1

∂x∂y
+ ρω2

0u1 =−ρω2
0u0,

(1 + c)
∂2v1

∂y2
+
∂2v1

∂x2
+ c

∂2u1

∂x∂y
+ ρω2

0v1 =−ρω2
1v0,

for x = a

2
, u1 = 0,

∂v1

∂x
=−H1v0

a
,

for x =−a

2
, u1 = 0,

∂v1

∂x
= H2v0

a
,

for y = b

2
, v1 = 0,

∂u1

∂y
=−H3u0

b
,

for y =−b

2
, v1 = 0,

∂u1

∂y
= H4u0

b
.

(2.10)

The values ω2
1 can be found applying an adjoint problem solution:

ρω2
1 =

⌊
A
(
a1,a2

)
+A

(
a′1,a′2

)
+B
(
b1,b2

)
+B
(
b′1,b′2

)⌋
, (2.11)
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where

A
(
a1,a2

)= n2a

b2

[

0.5
(
a2− a1

)− a

8πm

(

sin
(

4πma2

a

)

− sin
(

4πma1

a

))]

,

B
(
b1,b2

)= m2b

a2

[

0.5
(
b2− b1

)− b

8πn

(

sin
(

4πmb2

b

)

− sin
(

4πmb1

b

))]

,

N(m,n)= (n2a2 +m2b2)−1
.

(2.12)

A particular solution satisfying the first-order boundary conditions is

u1 = A

b2
(−1)n

[

H4

(
by

2
− y2

2

)

−H3

(
y2

2
+
by

2

)]

sin
2mπx

a
,

v1 = B

a2
(−1)m

[

H4

(
ax

2
− x2

2

)

−H1

(
x2

2
+
ax

2

)]

sin
2nπy
b

.

(2.13)

The next approximation gives

(1 + c)
∂2u2

∂x2
+
∂2u2

∂y2
+ c

∂2v2

∂x∂y
+ ρω2

0u2 =−ρ
(
ω2

2u0 +ω2
1u1
)
,

(1 + c)
∂2v2

∂y2
+
∂2v2

∂x2
+ c

∂2u2

∂x∂y
+ ρω2

0v2 =−ρ
(
ω2

2v0 +ω2
1v1
)
,

for x = a

2
, u2 = 0,

∂v2

∂x
=−H1

a

(
v0 + v1

)
,

for x =−a

2
, u2 = 0,

∂v2

∂x
= H2

a

(
v0 + v1

)
,

for y = b

2
, v2 = 0,

∂u2

∂y
=−H3

b

(
u0 +u1

)
,

for y =−b

2
, v2 = 0,

∂u2

∂y
= H4

b

(
u0 +u1

)
.

(2.14)

Again solving the adjoint problem, one gets ω2
2, and finally the following approxima-

tion is found:

ω2 = ω2
1

⌊
2.5−π−2 + 2π−2N(m,n)

(
aA
(
a1,a2

)
+ aA

(
a′1,a′2

)
+ bB

(
b1,b2

)
+ bB

(
b′1,b′2

))⌋
.

(2.15)
The application of Padé approximations [7] enables extension of the function using

its finite series number, and this allows us to propose a suitable solution to our problem.
The series part obtained so far,

ω2 +ω2
0 + εω2

1 + ε2ω2
2, (2.16)
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Table 2.1. First vibrations’ frequency square ρω2.

a/b (2.15) Error % (2.17) Error % Exact solution

0.5 220.951 15.8 277.65 5.8 262.459

1 82.625 4.7 91.336 4.8 86.726

1.5 58.029 6.6 60.379 2.8 62.152

2 49.716 4.0 50.602 2.2 51.791

is taken and the following Padé approximation is obtained:

ω2 ≈ ω2
0

(
ω2

1−ω2
2

)
+ω4

1

ω2
1−ω2

2
. (2.17)

Note that in the limiting case, when on the plate sides perpendicular to the axis 0y
there is no clamping, and when on the other two plate sides clamping is applied on the
whole plate thickness, one may even find an exact solution. In Table 2.1, the frequencies
associated with the first vibration mode, for which an influence of the boundary condi-
tions plays an important role, are reported (for μ = 0.3). One may easily conclude that
the applied method of boundary conditions perturbation provides fully reliable results.

The proposed method has advantages in comparison with the known methods of
solving the problems related to the mixed boundary conditions, that is, the methods of
Bubnov-Galerkin, Ritz, Kantorovich, Trefftz, and so forth. Namely, it does not require
an a priori knowledge of the shapes of deformed surfaces. Furthermore, the proposed
approach does not lead either to a high-order system of transcendental equations.

3. Conclusions

The proposed asymptotic method enables a solution represented in an analytical form,
which is important while applying any optimal design in solution of direct problems. It
should be emphasized, however, that the FEM method is universal with respect to a space
filled by a plate. It is rather difficult to apply the asymptotic method to complex-form
spaces, since they require knowledge of an analytical solution of zero-order approxima-
tion. Besides, application of the asymptotic method does not provide an easier way to
introduce higher accuracy, since it is rather difficult to construct higher approximations.
However, one may require a solution obtained by two methods in order to control re-
liability of the obtained approximate solution. In the case of complex plate forms, the
results obtained by the asymptotic method can serve as tests for FEM, if a transition from
complex to simple geometry is possible.
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