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Abstract

In this work a transition into a chaotic dynamics of plates with unmovable boundary conditions along a plate contour and subjected
to a longitudinal impact action modeled as a rectangular type loading of infinite length in time is studied. The well-known T. von Kár-
mán equations governing behaviour of flexible isotropic plates have been applied. Finite-difference approximation of order O(h4) allowed
to transform the problem from PDEs to ODEs. We have shown and discussed how the investigated plate vibrations are transmitted into
chaotic dynamics through a period doubling bifurcation. Furthermore, essential influence of boundary conditions on bifurcations num-
ber is illustrated, and for all investigated problems the Feigenbaum constant estimation is reported.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that non-linear dynamics of plates
(shells) plays an important role in both pure and applied
sciences as well as in engineering applications. Plates
(shells) are members of buildings, bridges, tanks, flight-
vehicles, power plants, mechatronical devices, brake sys-
tems, etc., and hence a complete knowledge of their
dynamic behaviour is highly required [1–4].

The von Kármán equations are used in Ref. [5] to ana-
lyse the non-linear vibrations of polar orthotropic clamped
plates at elevated temperatures. It has been shown, among
others, that thermal stresses reduce the vibrations period.
In Ref. [6], the von Kármán equations are used to investi-
gate the non-linear free vibrations of isotropic and polar
orthotropic annular plates possessing a rigid mass under
action of thermal loads. Finite dimensionality and com-
pactness of attractors for the von Kármán equation are
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considered by Lasiecka [7]. More generalized questions
are also addressed in Refs. [8–10].

Regular and chaotic vibrations of a plate within von
Kármán model are analysed in Ref. [11]. The reduced
von Kármán equations are used to study bifurcations of
a thin plate-strip excited transversally and axially [12].

The Bubnov–Galerkin approach is applied to analyse
both regular and chaotic vibrations together with bifurca-
tions of flexible plate-strips with non-symmetric boundary
conditions in Ref. [13]. Some new examples of routes from
regular to chaotic dynamics are illustrated and discussed.
The phase transitions from chaos to hyper chaos, and a
novel phenomenon of a shift from hyper chaos to hyperhy-
per chaos are outlined.

Flexible plates subjected to longitudinal time constant
loading are studied by vast number of researchers. It seems
that the most important and fundamental results in this
field are reported in Volmir’s monograph [14]. From the
point of view of qualitative differential equations and
non-linear dynamics, the mentioned research subject has
been analysed also by the authors in the papers mentioned
above and in Ref. [15], but only for classical types of
boundary conditions applied to a plate contour. This paper
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extends a general approach presented in earlier authors’
works for flexible plates with non-homogeneous boundary
conditions along their contour.
2. Mathematical model, boundary and initial conditions

The well-known T. von Kármán equations governing
dynamics of flexible isotropic plates subjected to a longitu-
dinal load action are analysed in the following form:

o2w
ot2
¼ � 1

12ð1� m2Þr
2r2wþ Lðw; F Þ � P x

o2w
ox2
þ q;

r2r2F ¼ � 1

2
Lðw;wÞ;

ð1Þ

where q, Px denote transversal and longitudinal loads,
respectively, and m is the Poisson’s coefficient (m = 0.3).

Boundary conditions applied for the area {0 6 x, y 6 1}
used in this work for x = 0; 1 (x M y) read

(i) simple (ball) support on flexible and unstretched in
tangential plane ribs
w ¼ o
2w

ox2
¼ F ¼ o

2F
ox2
¼ 0; ð2Þ
(ii) moving clamping with support on flexible and
unstretched in tangential plane ribs
w ¼ ow
ox
¼ F ¼ o

2F
ox2
¼ 0: ð3Þ
In what follows, various combinations of boundary con-
ditions (2) and (3) not only along the whole plate but also
along its one or few sides are considered. A compatibility
condition formulated in corners and in points of boundary
condition change along the contour side and associated
with the boundary conditions (2) and (3) reads

o
2w

oxoy
¼ 0: ð4Þ

Initial conditions satisfy the boundary conditions (2)
and (3), i.e.,

wjt¼0 ¼ u1ðx; yÞ;
ow
ot

�
�
�
�
t¼0

¼ u2ðx; yÞ: ð5Þ

In order to choose initial conditions for a case of
non-homogeneous boundary conditions, the following
approach is applied. The ‘set-up’ method is used for given
boundary condition subjected to an action of small trans-
versal load and the damping e = ecr. The critical value of
damping of the surrounding medium corresponds to the
forcing value required for achieving a stationary regime
through the deflection function within a small time inter-
val. The value of loading q is chosen in a way to keep a
deflection value in the plate center less than 10�3. The
obtained deflection fields serve as an initial state in order
to investigate non-linear vibrations for the case of non-
homogeneous boundary conditions along a contour and
an action of the longitudinal load only Px (q = 0).
3. Method of solution

In order to solve dynamical system (1), the algorithm
based on combination of finite-difference method and the
fourth-order Runge–Kutta method are used. Derivatives
with respect to spatial variables are approximated through
finite-difference relation of order O(h4). It allows for reduc-
tion of partial differential equations (1)–(5) into the system
of linear algebraic equations with respect to the function F

(see (7)) and to the system of ordinary differential equations
with respect to deflection w (see (6)). The system (7) on
each step in time is solved using the upper relaxation
method, whereas the system (6) is solved by applying the
fourth-order Runge–Kutta method. The difference equa-
tions read

d2wij

dt2
þ e

dwij

dt
¼ �fA1ðwijÞ þ B1ðwij; F ijÞg þ qij; ð6Þ

D1ðF ijÞ ¼ E1ðwijÞ; ð7Þ

and the difference operators have the following form:

A1ðwijÞ ¼
1

12ð1� m2Þ ðk
�2Lx4 wij þ 2Lx2x2 wij þ k2Ly4 wijÞ;

B1ðwij; F ijÞ ¼ Lx2 wijðLy2 F ij � P xÞ þ Ly2 wijLx2 F ij

� 2Lx2y2 wijLx2y2 F ij;

E1ðwijÞ ¼ �Lx2 wijLy2 wij þ ½Lxywij�2;
D1ðF ijÞ ¼ 12ð1� m2ÞA1ðF ijÞ:

ð8Þ

The difference form of boundary conditions w = 0,
o2w
ox2 ¼ 0 for x = 1 and for the out-contour (i + 1, j),
(i + 2, j) nodes have the following form:

wiþ1;j ¼
1

11
½�6wi�1;j þ 4wi�2;j þ wi�3;j�;

wiþ2;j ¼
1

11
½�80wi�1;j � 75wi�2;j þ 16wi�3;j�:

Analogically, the boundary condition w = 0, ow
ox ¼ 0 for

x = 1 have the following difference form:

wiþ1;j ¼
1

3
½18wi�1;j � 6wi�2;j þ wi�3;j�;

wiþ2;j ¼
1

3
½120wi�1;j � 45wi�2;j þ 8wi�3;j�:

One may formulate boundary conditions for the stress
function F. Let us apply the unique form of out of contour
nodes in the following form:

U iþ1;j ¼
1

a1

½a2U i�1;j � a3U i�2;j þ Ui�3;j�;

U iþ2;j ¼
1

a1

½a4U i�1;j þ a5U i�2;j þ a6Ui�3;j�;
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where the coefficients aiði ¼ 1; 6Þ are defined fully with re-
spect to the boundary conditions type. It is worth noticing
that the mentioned representation of the boundary condi-
tions allows to solve not only the boundary value problems
of types (2) and (3), but also non-homogeneous one, i.e.,
their combinations along a plate contour. In this case the
appropriate compatibility conditions are attached to the
system of difference equations. Points where a change of
boundary conditions occurs are always located in the mesh
nodes.

Recall that, in general, while solving initial boundary
value problems of mathematical physics, an important
problem associated with a choice of an approximation
order of difference scheme occurs. Solving the problems
through a difference method one uses a second-order
approximation in time of a differential equation and asso-
ciated initial conditions. It can be increased up to the
fourth-order, if one applies the method of straight lines
and when the fourth-order Runge–Kutta method is used
to solve the differential difference equations. In the latter
case, an initial condition (ow/ot = u2(x,y)) is given in exact
manner. Since an approximation with respect to spatial
coordinates x and y is of order O(jhj4), larger mesh can
be used in order to achieve the required accuracy.

The last factor allows to decrease essentially the order of
the system of differential difference equations, which is very
important during solving multidimensional problems. This
remark stays in agreement with hyperbolic type equations,
i.e., equations governing dynamics of strings, membranes
and plates. Investigations have been carried out for various
model problems. As a result, the following main conclusion
has been achieved: the most optimal method is that of
straight lines (with an application of approximation with
respect to spatial coordinates O(jhj4)) matched with the
fourth-order Runge–Kutta method.

On the other hand, while solving a system of linear dif-
ference equations of a high order with a matrix possessing
large zero elements, a problem of an appropriate algorithm
choice appears.

Notice that one is going to choose the method character-
ized by a minimal time of solutions of the stated problem in
comparison with other ones. In order to achieve an optimal
choice of the algorithms they are compared due to the num-
ber Q(e0) of arithmetical actions required to find solutions
of the considered problems with a priori given accuracy.

Our numerical tests show that in order to solve a system
of high order difference equations, the most efficient
method is the upper relaxation method. It is more econom-
ical and effective than the Gauss method, at least in the case
of our investigated plate.

The choice of h in respect to spatial coordinates and a
step in time s in the Runge–Kutta method is realized
through the Runge principle. The experiments carried out
yield the step h = 1/8 and s = 0.00025 owing to the fact
that for time step s = 0.00025, the values of the stress func-
tions obtained on a previous time stop serve as a good
initial approximation for the next computational layer.
The iterational parameter x can be practically equal to
one, i.e., Seidel method can be applied.

The reliability of the results is verified through the com-
parison with solutions of the series of non-linear problems
of theory of plates achieved by other authors, with solu-
tions of test and modal problems and through checking
convergence in relation to the number of mesh points used
for spatial coordinates. The comparison of the results
obtained through finite-difference methods approximations
of order O(h4) and O(h2) is carried out. Reliability of the
results in dynamical problem with non-homogeneous
boundary conditions along a contour is verified through
a good agreement of solutions obtained due to ‘set-up’
method and due to static methods for the same boundary
conditions applied.

4. Results

In what follows, eight types of different boundary value
problems (denoted 1–8) are studied.

Problem 1. Part of the contour {0 6 x 6 0.5; y = 1} sat-
isfies condition (3), whereas the remaining contour part sat-
isfies condition (2). Problem 2. One square side of the plate,
i.e., {0 6 x 6 1; y = 1} satisfies condition (4), whereas the
other parts satisfy condition (2). Problem 3. Part of the
boundary, namely {0 6 x 6 1; y = 1}{x = 1; 0.5 6 y 6 1}
satisfies condition (3), whereas the remaining contour part
satisfies condition (2). Problem 4. Two square sides, namely
{0 6 x 6 1; y = 1}{x = 1; 0 6 y 6 1} satisfy condition (3),
and the remaining contour part satisfies condition (2).
Problem 5. Part of the contour, i.e., {0 6 x 6 1; y = 1}
{x = 1; 0 6 y 6 1}{0.5 6 x 6 1; y = 0} satisfies condition
(3), and the rest of the contour satisfies condition (2). Prob-

lem 6. Three sides of the square, i.e., {0 6 x 6 1; y = 1}
{x = 1; 0 6 y 6 1} {0 6 x 6 1; y = 0} satisfy condition
(3), and the remaining contour part satisfies condition (2).
Problem 7. Part of the boundary, i.e., {x = 0; 0.56 y6 1}
satisfies condition (2), and the remaining contour part sat-
isfies condition (3). Problem 8. Boundary conditions (3) are
satisfied along the whole contour plate.

Our main research interest is focused on various scenar-
ios of the investigations of vibrations of square plates made
from an isotropic material with non-homogeneous bound-
ary conditions subjected to an action of longitudinal
impact pulse Px = Pk = const. The damping coefficient
e = 0 is taken in the system we consider (1), i.e., we analyse
a conservative problem. It is worth noticing that for all
eight problems considered, the scenario characterizing
transition into dynamical instability is practically the same.

Recall that in 1978 Feigenbaum detected the universal
constant value responsible for transition to chaos through
a sequence of period doubling bifurcations associated with
one dimensional maps of the form xn+1 = f(xn,P0). A class
of the considered functions should be smooth and non-sin-
gular, and f(x) should be approximated through quadratic
terms in vicinity of its maximum. The mentioned maps are
parabolic, and they describe unique (but not self-unique)
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transformations into itself. Observe that in our investiga-
tions we have not used the mapping xn+1 = f(xn,P0), but
the Feigenbaum constant has been found numerically. To
achieve this goal, the following algorithm has been applied:
(1) initial conditions of the analysed problem are defined
through the ‘set-up’ method; (2) period of free vibrations
T0 is found numerically; (3) a sequence of {Pk} associated
with the occurrence of period doubling bifurcations
{T0,2T0,4T0,8T0, . . .} is obtained numerically.
Fig. 1. Computational results a
It is clear that while increasing k, the ratio (Pk+1 � Pk)/
(Pk+2 � Pk+1) should tend to the constant value of
d = 4.669201. . . Analysis of the obtained results yields a
conclusion that for all analysed cases d � 4.66.

In order to carefully analyse transitions from quasi-peri-
odic to chaotic vibrations, as well as to analyse various
mechanisms of transition between system dynamical
states we have applied different vibration characteristics
like phase and modal portraits, Fast Fourier Transform
ssociated with Problem 1.
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(FFT), power spectra, and Poincaré maps. In Figs. 1–3
some of the mentioned characteristics are reported for
Problems 1, 5 and 6, as well as time histories w(t) for the
values of Pk for which period doubling bifurcations occur.

Our investigations show that an increase of Pk causes an
occurrence of a broadband frequency spectrum. Ampli-
tudes of this ‘noisy’ frequency spectrum essentially depend
on the applied boundary conditions (Figs. 2 and 3). If
instead of three-dimensional phase portrait one considers
its projection onto the plane wt(w), then a broadband char-
acteristic is obtained. This can be also interpreted as noisy
chaos with respect to both frequency spectrum and phase
portrait projection into a plane.

Among others, the essential influence of the boundary
conditions on the amount of bifurcations has been detected
(Table 1). For instance, Problems 1–5, 7 are associated with
eight bifurcations, Problem 6 is associated with seven per-
iod doubling bifurcations, whereas Problem 8 corresponds
to nine period doubling bifurcations. It should be empha-
sized that a percentage of the plate contour clamping from
an interval of 62.5–100% essentially influences the number
of bifurcations as well as the character of the amplitude
‘noisy’ components.
Fig. 2. Computational results
Observe that an increase of Pk on amount of 1 · 10�4 just
after achieving of P �k yields the first ‘stiff’ stability loss.
Namely, a change of vibrations form, phase portrait, period
of vibrations, as well as the increase of vibrational amplitude
of an order amount are observed. The behaviour described
so far occurs on a very small interval of Pk variation.

Further increase of the parameter Pk forces the system
to exhibit a stiff stability loss with a deflection increase in
amount of 103 times (Fig. 4 contains results associated with
Problem 1). This means that the system jumps into another
equilibrium state. New vibrations that occur possess large
amplitude and take place around a new equilibrium posi-
tion. A typical chaotic interlacing of the curves in the phase
portrait is observed, Poincaré pseudo-maps are character-
ized by a chaotic points distribution, whereas one may also
observe a broadband threshold on the FFT diagram. The
latter observations can be associated with the so-called
final chaotic state of the analysed system.

The systems of Eqs. (1) can be cast into the following
form:

d2w
dt2
þ L1ðwÞ ¼ 0; ð9Þ
associated with Problem 5.



Fig. 3. Computational results associated with Problem 6.

Table 1
Number of bifurcations versus contour clamping type

Problem number Contour clamping (%) Bifurcation number

1 12.5 8
2 25 8
3 37.5 8
4 50 8
5 62.5 8
6 75 7
7 87.5 8
8 100 9
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where L1(w) is a non-linear differential operator associated
with spatial coordinates (x,y). Assume that a solution wt to
Eq. (9) is found with a help of one of the existing methods.
Consider now a small perturbation dw of the solution wt in
time instant t. Then one may write

w ¼ wt þ dw; ð10Þ
which satisfies Eq. (9). Substituting (10) into (9), one gets

d2dw
dt2
þ Lðwt þ dwÞ � L1ðwtÞ ¼ 0: ð11Þ
Notice that Eq. (11) is a non-linear one with respect to
perturbations, and its variable coefficients wt are defined
through a solution carried out for each point of the initial
equation (9). Owing to small perturbations in Eq. (11), one
may retain only linear terms, i.e., finally the following sec-
ond-order differential equation is analysed:
d2dw
dt2
þ x2dw ¼ 0: ð12Þ

Its solution follows:

dwðtÞ ¼ H cosðtxþ uÞ if x2 > 0; ð13Þ
dwðtÞ ¼ Ht þ R if x2 ¼ 0; ð14Þ
dwðtÞ ¼ Het

ffiffiffiffiffiffiffi
�x2
p

þ Ret
ffiffiffiffiffiffiffi
�x2
p

if x2 < 0; ð15Þ

where H and R are the integration constants.

5. Concluding remarks

With the above formulas, one may conclude that if all
x2 > 0, then the solution is stable, and the associated per-
turbation is a combination of two harmonic components
with the frequency x. In all other cases the solution is
unstable, i.e., perturbations increase in an exponential
manner. The latter observation leads to the following con-
clusion: having a spectrum of small perturbations in each
point of the analysed system, one may decide on stability
or instability of solution in three points.

It is obvious that in the instant of stiff stability loss the
small perturbations, which are clearly visible in our numer-
ical experiment, possess imaginary parts of squared fre-
quencies, and hence they are responsible for dynamical
stability loss of the system.

The variation of Px on amount of 1 · 10�4 causes a stiff
stability loss of our system. The existence of chaotic vibra-
tions is also observed here. Birth and death of some
sequences of cycles are observed, as well as series of Andro-
nov–Hopf bifurcations appear. Time interval associated



Fig. 4. Computational results associated with Problem 1 (Pk = 4.2324).
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with the occurrence of stiff stability loss is the largest one in
this case, i.e., while changing slowly the parameter Px, a
stiff stability loss is observed. On the other hand, time inter-
val required for achieving stability loss decreases with the
increase of Px.

Furthermore, one may find threshold of Px when stabil-
ity loss occurs in practice suddenly, and the so-called final
chaotic state is observed.

On the other hand, one may conclude that even for P cr
x

corresponding to time interval tcr, if a researcher is inter-
ested in time interval (t 6 tcr), a dynamical stability loss is
not important for the considered time interval. In other
words, unrequired large perturbations of the fundamental
motion can appear only after t > tcr. Furthermore, control-
ling the series of Andronov–Hopf bifurcations, one may
avoid an occurrence of stiff stability loss.
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