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We have analytically predicted homoclinic bifurcations in a class of double self-excited
Duffing-type oscillators using the Melnikov-Gruendler approach. Both stick-slip and
smooth chaotic behaviors predicted analytically have been confirmed by numerical sim-
ulations.
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1. Introduction

Although the Melnikov method is merely approximative, it is one of few methods, which
allow to predict analytically chaos occurrence. Moreover, it can be applied to a relatively
large class of dynamical systems.

To sum up, one needs to say that both the classical Melnikov method and its general-
ization in the form of the Melnikov-Gruendler method found their application in analysis
of dynamical systems. The main advantages of both methods cover

(i) possibility of obtaining analytical results,
(ii) possibility of applying the Melnikov method in dynamical systems, whose el-

ements are characterized by arbitrary but integrable characteristics (including
discontinuous ones in a finite number of points like, e.g., friction characteris-
tics),

(iii) high efficiency of verification of numerically generated results,
(iv) possibility of examination of strongly nonlinear systems.

Both methods are not ideal, because they have the following defects:
(i) possibility of applying only to systems, characterized by a specific phase portrait

(homoclinic orbits of a critical saddle point),
(ii) each is an approximative method, which uses a small parameter,

(iii) a system, when there is no perturbation, should be integrable,
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(iv) it is possible to predict values of the parameters, causing only the so-called ho-
moclinic chaos,

(v) complexity of mathematical calculations.
Despite the aforementioned imperfections, on the current level of science develop-

ment, the Melnikov method has been accepted by the scientific community and it has
been a useful tool to perform advanced investigations in nonlinear dynamics, including
deterministic chaos.

Holmes and Marsden [19] applied the Melnikov method to study continuous systems
of infinite degrees of freedom governed by partial differential equations.

Bulsara et al. [11] applied the Melnikov method to a system with stochastic excitation
of probability distribution of finite mean value and variation. A formula, defining the
Melnikov function, has been derived for a considered system in a form of probability
distribution (random variable) and its mean value. The obtained analytical results were
compared with numerical simulations, performed for a system of the Duffing oscillator,
mathematical pendulum, and an abstract system, while high compliance of predictions
and numerical experiments was achieved.

Oscillative systems are a subclass of dynamical systems. In [4] one derived formulas,
determining the Melnikov function for oscillators (in particular for mechanical systems)
in a simpler classical form. The proposed approach allows to simplify calculations, needed
to determine conditions of homoclinic bifurcation occurrence in oscillative dynamical
systems.

Taki [27] applied the Melnikov method to a bistable optical system, which is character-
ized by two homoclinic orbits connected with the same saddle point, while one of them
is contained in the other. A criterion of the homoclinic chaos for one of the orbits was
numerically determined on the basis of the formula describing the Melnikov function. A
criterion corresponding to the second orbit was not considered, since it predicted chaos
occurrence for relatively large values of the parameter of the considered dynamical system
which should be relatively small by the assumption. The obtained results were compared
with the numerical simulations and high compliance was achieved between the Melnikov
method predictions of chaotic motions and the simulations.

Holmes and Marsden [19] applied the method to a periodically driven beam, which
underwent buckling. By applying the Galerkin method, they obtained an equivalent
mathematical model in a form of the Duffing oscillator.

Mielke and Holmes [21] applied the Melnikov method to examine a problem of buck-
ling of a strongly curved rod. In the work, a special attention has been paid to possibility
of chaos occurrence in systems, in which there are at least two heteroclinic orbits, al-
though the Melnikov function does not possess single roots. It is possible when stable and
unstable differentiable manifolds of the same saddle point (which belongs to different ho-
moclinic orbits when there is no perturbation), as a result of appearance of perturbation
and split of the homoclinic orbits, will form a chaotic attractor intersecting themselves by
infinite countable number of times but they will not intersect simultaneously with other
manifolds of the second equilibrium point. By the above, the Melnikov function evalu-
ated along the heteroclinic orbit, being a measure of distance between nonintersecting
manifolds, will not possess roots. Thus, it was proved that in some dynamical systems
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there exists a possibility of the chaos occurrence although the Melnikov method shows
regular motions occurrence.

Moon and Li [24] considered a dependence of a fractal structure of a basin of attrac-
tion on the occurrence of homoclinic bifurcation on the example of the Duffing oscillator.
One determined, with the help of the Melnikov method, a limiting value of parameters of
the considered system. At these parameters, the Melnikov method predicts the occurrence
of a chaotic attractor. Next, one made graphs, in which basins of attractions for several
selected values of the parameters were marked. By the comparison of the obtained results,
in the above described way, it follows that the structure of basin of attraction boundary
stays in connection with occurrence of homoclinic bifurcation and chaos.

Moon and Holmes [22, 23] examined a system of an elastic and harmonically ex-
cited pendulum of uniformly distributed mass in a form of steel flat bar of small thick-
ness which is located in a specific magnetic field. By applying the Galerkin method to
a system, governed by partial differential equations, one obtained a discrete mathemati-
cal model of the examined system in a form of the Duffing equation. In further analysis
of the examined system, one applied the classical Melnikov method, whose results were
compared with laboratory investigations. One applied the classical Melnikov method to
further analysis of the examined system. Its results were compared with laboratory in-
vestigations. One applied the spectral analysis to detect chaotic motions. A quantitative
divergence was noted between predictions, following from the Melnikov method, and
experimental investigations at qualitative compliance. Generally, a larger amplitude of
external excitation turned out to be necessary to make deterministic chaos arise in the
examined system than it was predicted by the Melnikov method. It follows from the cited
works that a better approximation than the one of the Melnikov method was obtained by
Holmes [18]. However, one needs to approach to the mentioned results critically, since
one used the Fourier transform to detect chaotic motions instead of using the Lyapunov
exponents. Methodological imperfections could have been a reason of incorrect identifi-
cation of weak chaos as regular motions for smaller values of the external excitation, and
consequently to distort the results.

Guckenheimer and Holmes [17] applied the Melnikov method to determine limiting
parameters of a harmonically driven damped Duffing oscillator at which the homoclinic
bifurcation occurs. One determined conditions of occurrence of subharmonic vibrations
in the parameters space on the example of harmonically driven damped oscillator. Thus,
the Melnikov method was applied to a system, possessing heteroclinic orbits in the phase
plane (they are homoclinic orbits on a cylindric phase plane).

Koch and Leven [20] applied the Melnikov method to examine a parametrically driven
mathematical pendulum. The Melnikov function and criterion of homoclinic and sub-
harmonic bifurcation were determined for the considered system. The numerical inves-
tigations confirmed the occurrence of tangency of stable and unstable orbits for critical
parameters.

In [10] the Melnikov method was used as a detector of “global homoclinic structures.”
One tried to find the influence on the form of frequency spectrum of time course, gen-
erated by the Duffing system. As a result of the performed investigations, one succeeded
in confirming numerically the obtained linear form, of course, of the averaged spectral
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graph analytically (the Fourier integral transformation applied) for several arbitrarily se-
lected values of the parameters.

Salam [26] used the Melnikov method to study non-Hamiltonian dissipative systems
on the example of a strongly damped mathematical pendulum at relatively small time-
periodic external excitation and constant driving torque. One showed in a numerical way
that the system without excitation possesses a heteroclinic orbit and its decay into stable
and unstable differentiable manifolds caused by a relatively small excitation was shown.
Moreover, one determined the appropriate Melnikov function. Predictions based on the
Melnikov method were numerically confirmed for several selected parameters values of a
given system.

Some self-excited systems with dry friction are included in a group of discontinuous
systems with a delayed argument. The Melnikov method has been applied to nonsmooth
systems with a delayed argument, on the example of a self-excited, relatively weak driven
(quasi-autonomous) Duffing oscillator of one degree of freedom with polynomial fric-
tion [1], for the first time applied in [4]. In this work, one defined the Melnikov function
for oscillators of one degree of freedom, simultaneously describing both types of motions:
stick and slip. Taking into account only one criterion of chaos was a defect of this method,
though one could have expected two such criteria. In [5], due to the application of the
Melnikov method, one proved analytically that there can occur chaotic attractors in self-
excited autonomous systems (with zero initial excitation) with dry friction. Hence, with
the help of the Melnikov method, one verified a phenomenon of deterministic chaos,
known from the numerical and laboratory [6, 25] investigations of Galvanetto et al. [12],
in self-excited systems with dry friction without external excitation in the case of one
degree of freedom. The results, obtained by means of the Melnikov method, have been
analytically and numerically confirmed in [3].

Among other things, on the basis of [2, 5], an interesting application of the Melnikov
method to a rotary pin-sleeve system was presented in [7]. One considered a physical-
mathematical model covering the influence of warmth, emitted during the dry friction
process, on the friction force, however one performed only numerical analysis of the Mel-
nikov function due to its “rather complex form.”

The Melnikov method, despite its numerous applications in the classical form, pos-
sesses an essential defect: the method can be applied to mechanical systems of one degree
of freedom with excitation. This defect is absent in the Melnikov-Gruendler method.

Guckenheimer and Holmes [17] were the first, who determined a set of parameters
of relatively weak perturbed Hamiltonian system of two degrees of freedom, at which
homoclinic bifurcation occurs on the basis of the KAM theorem.

Another possibility is the approach, based on the assumption that if a mechanical sys-
tem of a finite number of degrees of freedom is an integrable system (possesses, e.g., cyclic
coordinates), then it is described by the Routh equation [9]. If the number of first inte-
grals allows the Routh equation to satisfy the assumptions of the Melnikov method, then
it is possible to apply the classical Melnikov method to a system of a larger number of
degrees of freedom. In the case when the number of first integrals is unknown, one needs
to apply the Melnikov-Gruendler method [14], which is an extension of the Melnikov
method to non-Hamiltonian dynamical systems of an arbitrary finite number of degrees
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Figure 2.1. Model of the considered system.

of freedom. For some types of systems (symmetry of variational equations on a homo-
clinic orbit, no coupling, etc.), formulas determining chaos criteria can be simplified.

The Melnikov-Gruendler method, in contrast to the classical Melnikov method, is not
widely known. It was applied in [14] to consider small vibrations of a spherical pendulum
subjected to magnetic field with a relatively small and then large viscous damping (non-
Hamiltonian system). Moreover, one applied the Melnikov-Gruendler method to several
possessing physical interpretation and abstract dynamical systems [15, 16], in order to
detect deterministic chaos and analyze structural changes of homoclinic orbits.

The reference [5] played a key role during the attempt to apply the Melnikov-Gruend-
ler method to self-excited systems with polynomial friction of two degrees of freedom [8],
however the obtained results did not reflect complexity of the multidimensional problem
entirely, by making use of only a few percents of the Melnikov-Gruendler method capa-
bilities. By this reason, one can say that the problem of homoclinic chaos occurrence in
two-degree-of-freedom systems with dry friction has not been examined by means of the
Melnikov-Gruendler method so far.

2. Analytical prediction of chaos

A Duffing-type 2-DOF mechanical system with discontinuities is analyzed (see Figure
2.1). It consists of two masses m lying on a rigid belt moving at constant speed v̂. It is as-
sumed that between both masses the belt polynomial-type friction occurs. Masses m are
coupled by springs with stiffness satisfying the following conditions: k0(−z) = −k0(z).
Each of the masses is linked to a basis by nonlinear elastic elements of Duffing-type char-
acteristics as well as elements modeling internal aerodynamic and hydrodynamic friction.
One of the masses is driven harmonically with frequency Ω and relatively small amplitude
Γ. It is assumed that all frictional forces are relatively small, which is formally exhibited
by an introduction of small (perturbation) parameter ε.

Dimensional equations of motion have the form

mz̈1− k · z1 + k1 · z3
1 + εc1

(
z1, ż1

)
+ k0

(
z1− z2

)
+ εθ

(
ż1− v̂

)= εΓcosΩτ,

mz̈2− k · z2 + k1 · z3
2 + εc2

(
z2, ż2

)− k0
(
z1− z2

)
+ εθ

(
ż2− v̂

)= 0,
(2.1)
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where dry friction characteristic is as follows:

θ(ż− v̂)= θ0 sgn(ż− v̂)− α̂(ż− v̂) + β̂(ż− v̂)3. (2.2)

Elements modeling internal aerodynamic and hydrodynamic friction are defined by
the formula cj(zj , ż j) = kj1zj + cj1ż j + cj2ż

2
j sgn ż j + cj3ż

3
j , j = 1,2. According to the in-

troduced general form, one may simultaneously analyze oscillations of various 2-DOF
mechanical systems. This is easily realized by a proper choice of parameters. For exam-
ple, in order to study a self-excited 2-DOF Duffing-type oscillator with polynomial-type

friction, one has to assign nonzero values of θ0, α̂, β̂, whereas kj1, cj1, cj2, cj3 should be

equal to zero. On the other hand, taking θ0, α̂, β̂, kj1, cj1, cj3 equal to zero and assuming
cj2 �= 0, it is possible to predict thresholds of chaos in our 2-DOF mechanical system with
aerodynamic friction, and so forth. Since the studied system has two degrees of freedom,
the Melnikov-Gruendler approach is applied to study homoclinic chaos occurrence.

Introducing the variables

z1 = x1

√
k

k1
, z2 = x2

√
k

k1
, τ = t

√
m

k1
, (2.3)

the following nondimensional equations are obtained:

ẍ1− x1 + x3
1 + a · k0

(
b · (x1− x2

))= ε(γ cosωt− δ1
(
x1, ẋ1

)−T(ẋ1− v∗
))

,

ẍ2− x2 + x3
2 − a · k0

(
b · (x1− x2

))=−ε(T(ẋ2− v∗
)

+ δ2
(
x2, ẋ2

))
,

(2.4)

where

T
(
ẋ− v∗

)= T0 sgn
(
ẋ− v∗

)−α(ẋ− v∗)+β
(
ẋ− v∗

)3
, (2.5)

δj
(
xj , ẋ j

)= αj1xj + δj1ẋ j + δj2ẋ2
j sgn

(
ẋ j
)

+ δj3ẋ3
j . (2.6)

In the above, the following notation is applied: a=(1/k)
√
k1/k, b=√k/k1, γ=Γ(

√
k1/k),

ω =Ω
√
m/k and v∗ = v̂

√
mk1/k, T0 = (θ0/k)

√
k1/k, α = α̂

√
mk, β = β̂k2/mk1

√
mk, αj1 =

kj1/
√
mk, δj1 = cj1/

√
mk, δj2 = (cj2/m)

√
k/k1, δj3 = (cj3/k1)(k/m)3/2.

The analyzed system is given in the first-order ODEs form

ẋ1 = v1,

v̇1 = x1− x3
1 − a · k0

(
b · (x1− x2

))
+ ε
(
γ cosωt− δ1

(
x1,v1

)−T(v1− v∗
))

,

ẋ2 = v2,

v̇2 = x2− x3
2 + a · k0

(
b · (x1− x2

))− ε(T(v2− v∗
)

+ δ2
(
x2,v2

))
.

(2.7)

For ε = 0, one gets

ẍ1− x1 + x3
1 + a · k0

(
b · (x1− x2

))= 0,

ẍ2− x2 + x3
2 − a · k0

(
b · (x1− x2

))= 0,
(2.8)
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or equivalently

ẋ1 = v1,

v̇1 = x1− x3
1 − a · k0

(
b · (x1− x2

))
,

ẋ2 = v2,

v̇2 = x2− x3
2 + a · k0

(
b · (x1− x2

))
.

(2.9)

Since the analyzed system has an equilibrium in the origin of phase coordinates, the
following homoclinic solution is assumed:

q0
(
x1,x2

)
(t)= (Ar(Bt),Ar(Bt)

)
, (2.10)

where r(t)= sech(t). Constants A and B are defined by a substitution of the homoclinic
orbit into (2.8) from the following algebraic equation:

sech(Bt)
(
1−B2 +

(
A2− 2B2)sech2(Bt)

)= 0. (2.11)

Assuming B = 1 and substituting it into (2.11), one obtains

A=±√2. (2.12)

Furthermore, we assume that the critical point being the origin of our coordinates
system is associated with a homoclinic solution of the form

q0
(
x1,x2

)
(t)= (Ar(Bt),−Ar(Bt)). (2.13)

Constants A and B are determined in a way similar to the previous one (substituting
the homoclinic orbit equation into (2.8)):

a · k0
(
2Ab sech(Bt)

)
+Asech(Bt)

(
B2− 1 +

(
A2− 2B2)sech2(Bt)

)= 0. (2.14)

Since this equation is satisfied for k0(z)= k0 · z, hence

Asech(Bt)
(
B2− 1 + 2ak0b+

(
A2− 2B2)sech2(Bt)

)= 0. (2.15)

Taking B =±√1− 2abk0 (abk0 < 1/2), one gets

A2− 2
(
1− 2abk0

)= 0, (2.16)

and finally

A=±
√

2
(
1− 2abk0

)
, abk0 <

1
2
. (2.17)
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Note that irrespective of the coupling characteristic k0(z1 − z2) there are two homo-
clinic orbits associated with the considered equilibrium and defined by the formula

q01,2
(
x1, ẋ1,x2, ẋ2

)
(t)=

⎛⎜⎜⎜⎜⎜⎜⎝
±√2r(t)

±√2ṙ(t)

±√2r(t)

±√2ṙ(t)

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.18)

Furthermore, for stiffness of the coupling element defined by formula k0(z) = k0 · z,
two further homoclinic orbits occur for abk0 < 1/2 defined as follows:

q03,4
(
x1, ẋ1,x2, ẋ2

)
(t)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±
√

2
(
1− 2abk0

)
r
(√

1− 2abk0t
)

±
√

2
(
1− 2abk0

)
ṙ
(√

1− 2abk0t
)

∓
√

2
(
1− 2abk0

)
r
(√

1− 2abk0t
)

∓
√

2
(
1− 2abk0

)
ṙ
(√

1− 2abk0t
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, abk0 <

1
2
. (2.19)

Next, we compute the quantities necessary for direct application of the Melnikov-
Gruendler method. Linearization of system (2.8) in the vicinity of a saddle-type equi-
librium yields

ẍ1 +

(
− 1 + 3x2

10 + a
dk0
(
b · (x1− x2

))
dx1

∣∣∣∣
x1=x10,x2=x20

)
x1

+ a
dk0
(
b · (x1− x2

))
dx2

∣∣∣∣
x1=x10,x2=x20

· x2 = 0,

ẍ2 +

(
− 1 + 3x2

20− a
dk0
(
b · (x1− x2

))
dx2

∣∣∣∣
x1=x10,x2=x20

)
x2

− adk0
(
b · (x1− x2

))
dx1

∣∣∣∣
x1=x10,x2=x20

· x1 = 0.

(2.20)

The linearized (variational) motion equations along two orbits (2.18) are defined by
the formulas

ẍ1 +
(
6sech2 t− 1 + c

)
x1− cx2 = 0,

ẍ2 +
(
6sech2 t− 1 + c

)
x2− cx1 = 0,

(2.21)

where

c = adk0
(
b · (x1− x2

))
dx1

∣∣∣∣
x1=x2

=−adk0
(
b · (x1− x2

))
dx2

∣∣∣∣
x1=x2

, (2.22)
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or in the equivalent form

ẋ1 = v1,

v̇1 =−
(
6sech2 t− 1 + c

)
x1 + cx2,

ẋ2 = v2,

v̇2 =−
(
6sech2 t− 1 + c

)
x2 + cx1.

(2.23)

Subtraction of (2.21) gives

ÿ +
(
6sech2 t− b2)

y = 0, (2.24)

where y = x1− x2, b
2 = 1− 2c. Note that the obtained second-order differential equation

has time-dependent coefficient. In order to solve it, the following theorem is applied [13].

Theorem 2.1. Let u= u(t) be a general solution to the associated equation

d2u

dt2
= [g(t) +h

]
u (2.25)

and let f = f (t) be a particular solution to the above equation for a certain h= h1, then a
generalize solution of the linear homogeneous second-order ODE

d2y

dt2
=
[
f (t)

d2

dt2

(
1
f (t)

)
+h+h1

]
y (2.26)

is given by the formula

y = u′(t)−u(t)
f ′(t)
f (t)

(2.27)

for h �= h1.

Taking (g(t) = −2sech2 t, h1 = 4, h = b
2
, f (t) = cosh2 t), the associated equation is

defined as follows:

ü+
(
2sech2 t− b2)

u= 0, (2.28)

which has also time-dependent coefficient. In order to solve it again, Theorem 2.1 is ap-

plied (we take now g(t)≡ 0, h1 = 1, h= b2
, f (t)= cosh t). Solving the obtained equation

of the form

d2u

dt2
= b2

u, (2.29)

one gets

u= C3e
bt −C4e

−bt, (2.30)
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where C3 and C4 are the constants of integrations. A general solution of adjoint equation
is

u= C3e
bt(bt− tgh t)−C4e

−bt(bt+ tgh t), (2.31)

and hence

y = C1e
bt
(
2 + b

2− 3sech2 t− 3b tgh t
)

−C2e
−bt(2 + b

2− 3sech2 t+ 3b tgh t
)
.

(2.32)

Since b
2 = 1− 2c, the following general solution of (2.24) is obtained:

y(t)= C3ys3 +C4ys4

= C3e
√

1−2ct
(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)

+C4e
−√1−2ct

(
− 2

3
c+
(√

1− 2c+ tgh t
)

tgh t
)

,

(2.33)

where ys3 and ys4 are the particular solutions.
Summation of (2.21) gives

ẍ+
(
6sech2 t− 1

)
x = 0, (2.34)

where x = x1 + x2. Observe that this is a particular case of (2.24) for c = 0. Using (2.33),
the following solution is obtained:

x(t)= Cṙ(t), (2.35)

where C denotes the constant of integration. The second linearly independent integral is
found using Lagrange’s method of constant variation. Assuming

x(t)= C(t)ṙ(t) (2.36)

and substituting the obtained formulas into (2.34), one gets

2Ċr̈ + C̈ṙ =−C...
r − (6sech2 t− 1

)
Cṙ = ẍ+

(
6sech2 t− 1

)
x. (2.37)

Owing to (2.34), the following equation is obtained:

2Ċr̈ + C̈ṙ = 0, (2.38)

which has the following general solution:

C(t)= C2 +C1

(
3
2
t− ctgh t+

1
4

sinh2t
)

, (2.39)
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where C1 and C2 are the integration constants. Finally, a general solution of (2.34) is as
follows:

x(t)= C1xs1 +C2xs2 = C1

(
3
2
t− ctgh t+

1
4

sinh2t
)

sech t tgh t+C2 sech t tgh t. (2.40)

Since y = x1− x2 and x = x1 + x2, a solution to (2.21) is a linear combination defined
by the following formulas:

x1 = 1
2

(x+ y), x2 = 1
2

(x− y). (2.41)

System (2.21) has the following fundamental matrix of solutions:

γ(t)=

⎡⎢⎢⎢⎢⎢⎢⎣
ys1 xs1 ys2 xs2

ẏs1 ẋs1 ẏs2 ẋs2

−ys1 xs1 −ys2 xs2

− ẏs1 ẋs1 − ẏs2 ẋs2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(t)exp
(√

1− 2ct
)

Q(t)ṙ(t) P(−t)exp
(−√1− 2ct

)
ṙ(t)(

P(t)exp
(√

1− 2ct
))• (

Q(t)ṙ(t)
)• (

P(−t)exp
(−√1− 2ct

))•
r̈(t)

−P(t)exp
(√

1− 2ct
)

Q(t)ṙ(t) −P(−t)exp
(−√1− 2ct

)
ṙ(t)

−(P(t)exp
(√

1− 2ct
))• (

Q(t)ṙ(t)
)• −(P(−t)exp

(−√1− 2ct
))•

r̈(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.42)

where Q(t)= (3/2)t− ctgh t+ (1/4)sinh2t and P(t)=−(2/3)c− (
√

1− 2c− tgh t)tgh t.
Linearized (variational) equations of motion along both orbits (2.19) are governed by

the following equations:

ẍ1 +
(
6(1− 2c)sech2 (√1− 2ct

)
+ c− 1

)
x1− cx2 = 0,

ẍ2 +
(
6(1− 2c)sech2 (√1− 2ct

)
+ c− 1

)
x2− cx1 = 0,

(2.43)

where c = abk0 = k0/k < 1/2. The equivalent first-order ODEs are

ẋ1 = v1,

v̇1 =−
(
6(1− 2c)sech2 (√1− 2ct

)− 1 + c
)
x1 + cx2,

ẋ2 = v2,

v̇2 =−
(
6(1− 2c)sech2 (√1− 2ct

)− 1 + c
)
x2 + cx1.

(2.44)

Solving (2.43) and after summing them, one obtains

ẍ+
(
6(1− 2c)sech2 (√1− 2ct

)− 1
)
x = 0, (2.45)
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where x = x1 + x2. Owing to introduction of a new independent variable by formula χ =√
1− 2ct, (ẍ = x′′χ̇2), one has

x′′ +
(

6sech2 χ− 1
1− 2c

)
x = 0, (2.46)

where x′′ = d2x/dχ2.
Note that the obtained equation is analogous to (2.24) assuming b−2 = 1− 2c. Apply-

ing (2.32), one obtains

x(χ)= 3C1e
χ/
√

1−2c

(
3− 4c

3(1− 2c)
− sech2 χ− tghχ√

1− 2c

)

+ 3C2e
−χ/√1−2c

(
3− 4c

3(1− 2c)
− sech2 χ+

tghχ√
1− 2c

)
.

(2.47)

Since χ =√1− 2ct, a solution to (2.45) is given by the formula

x(t)= C1xs1 +C2xs2

= C1e
t

(
3− 4c

3(1− 2c)
− sech2 (√1− 2ct

)− tgh
(√

1− 2ct
)

√
1− 2c

)

+C2e
−t
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)

+
tgh
(√

1− 2ct
)

√
1− 2c

)
.

(2.48)

Subtraction of both sides of (2.43) yields

ÿ +
(
6(1− 2c)sech2 (√1− 2ct

)− 1 + 2c
)
y = 0, (2.49)

where y = x1− x2. Changing the independent variable by formula χ =√1− 2ct, one ob-
tains

y′′ +
(
6sech2 χ− 1

)
y = 0, (2.50)

where y′′ = d2y/dχ2.
Observe that an analogous equation is governed by (2.34). Using (2.40) and taking

into account χ =√1− 2ct, we have

y(t)= C1ys1 +C2ys2

= C1

(
3
2

√
1− 2ct− ctgh

√
1− 2ct+

1
4

sinh
(
2
√

1− 2ct
))

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)

+C2 sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
.

(2.51)
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Since y = x1− x2 and x = x1 + x2 are also solutions, a solution of system (2.43) is their
linear combination, that is,

x1 = 1
2

(x+ y), x2 = 1
2

(x− y). (2.52)

The system of (2.44) has the fundamental matrix defined as

γ(t)=

⎡⎢⎢⎢⎢⎢⎢⎣
ys1 xs1 ys2 xs2

ẏs1 ẋs1 ẏs2 ẋs2

−ys1 xs1 −ys2 xs2

− ẏs1 ẋs1 − ẏs2 ẋs2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

etR
(√

1−2ct
)

Q
(√

1−2ct
)
ṙ
(√

1−2ct
)

e−tR
(−√1− 2ct

)
ṙ
(√

1−2ct
)

(
etR
(√

1−2ct
))• (

Q
(√

1−2ct
)
ṙ
(√

1−2ct
))• (

e−tR
(−√1−2ct

))•
r̈
(√

1−2ct
)

−etR(√1−2ct
)

Q
(√

1−2ct
)
ṙ
(√

1−2ct
) −e−tR(−√1−2ct

)
ṙ
(√

1−2ct
)

−(etR(√1−2ct
))• (

Q
(√

1−2ct
)
ṙ
(√

1−2ct
))• −(e−tR(−√1−2ct

))•
r̈
(√

1−2ct
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.53)

where Q(t) = (3/2)t − ctgh t + (1/4)sinh2t and R(t) = (3 − 4c)/3(1 − 2c) − sech2(t) −
tgh(t)/

√
1− 2c.

Next, we consider system (2.4) for ε > 0. A perturbation vector associated with homo-
clinic orbits (2.18) and sign “+” is as follows:

h
(
q01, t

)=
⎡⎢⎢⎢⎢⎢⎢⎣

0

γ cosωt− δ1
(
x10, ẋ10

)−T(ẋ01− v∗
)

0

−T(ẋ02− v∗
)− δ2

(
x20, ẋ20

)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.54)

Substituting the first column of the fundamental solution matrix (2.42) by vector
h(q01, t), one obtains the matrix whose determinant is

K1
(
t, t0
)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Q(t)ṙ(t) P(−t)exp
(−√1−2ct

)
ṙ(t)

γ cosω
(
t+t0

)−δ1
(
x10, ẋ10

)−T(ẋ01−v∗
) (

Q(t)ṙ(t)
)• (

P(−t)exp
(−√1−2ct

))•
r̈(t)

0 Q(t)ṙ(t) −P(−t)exp
(−√1−2ct

)
ṙ(t)

−T(ẋ02−v∗
)−δ2

(
x20, ẋ20

) (
Q(t)ṙ(t)

)• −(P(−t)exp
(−√1−2ct

))•
r̈(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.55)
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Its development with respect to the first column gives

K1
(
t, t0
)= 2P(−t)exp

(−√1− 2ct
)

× (γ cosω
(
t+ t0

)− δ1
(
x10, ẋ10

)
+ δ2

(
x20, ẋ20

)−T(ẋ01− v∗
)

+T
(
ẋ02− v∗

))
.

(2.56)

Since in the considered case x01 = x02, one gets

K1
(
t, t0
)= 2P(−t)exp

(−√1− 2ct
)(
γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

))
.
(2.57)

Substitution of the second column of the fundamental matrix solution (2.42) by vector
h(q01, t) gives a matrix whose determinant is

K2(t, t0)

=

∣∣∣∣∣∣∣∣∣∣
P(t)exp(D) 0 P(−t)exp(−D) ṙ(t)

(P(t)exp(D))• γ cosω(t+t0)− δ1(x10, ẋ10)−T(ẋ01−v∗) (P(−t)exp(−D))• r̈(t)
−P(t)exp(D) 0 −P(−t)exp(−D) ṙ(t)
−(P(t)exp(D))• −T(ẋ02− v∗)− δ2(x20, ẋ20) −(P(−t)exp(−D))• r̈(t)

∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.58)

Its development with respect to the second column gives

K2
(
t, t0
)= 2A

(
γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)
− δ2

(
x20, ẋ20

)−T(ẋ01− v∗
)−T(ẋ02− v∗

))
ṙ(t),

(2.59)

where (see Theorem 2.1)

A=
∣∣∣∣∣ P(t)exp

(√
1 + 2at

)
P(−t)exp

(−√1− 2at
)(

P(t)exp
(√

1 + 2at
))• (

P(−t)exp
(−√1− 2at

))•
∣∣∣∣∣= const. (2.60)

Since x01 = x02, one gets

K2
(
t, t0
)= 2A

(
γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)− δ2
(
x10, ẋ10

)− 2T
(
ẋ01− v∗

))
ṙ(t). (2.61)

Substituting the third column of the fundamental solution matrix (2.42) by vector
h(q01, t), one obtains a matrix whose determinant is

K3
(
t, t0
)

=

∣∣∣∣∣∣∣∣∣∣∣

P(t)exp
(√

1−2ct
)

Q(t)ṙ(t) 0 ṙ(t)(
P(t)exp

(√
1−2ct

))• (
Q(t)ṙ(t)

)•
γcosω

(
t+t0

)−δ1
(
x10, ẋ10

)−T(ẋ01−v∗
)

r̈(t)

−P(t)exp
(√

1−2ct
)

Q(t)ṙ(t) 0 ṙ(t)

−(P(t)exp
(√

1−2ct
))• (

Q(t)ṙ(t)
)• −T(ẋ02−v∗

)−δ2
(
x20, ẋ20

)
r̈(t)

∣∣∣∣∣∣∣∣∣∣∣
.

(2.62)
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Development with respect to the third column provides

K3
(
t, t0
)=−2P(t)exp

(√
1− 2ct

)
×(γ cosω

(
t+t0

)−δ1
(
x10, ẋ10

)−δ2
(
x20, ẋ20

)−T(ẋ01−v∗
)−T(ẋ02−v∗

))
.
(2.63)

Since x01 = x02, one obtains

K3
(
t, t0
)=−2

(
γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)
− δ2

(
x10, ẋ10

)− 2T
(
ẋ01− v∗

))
P(t)exp

(√
1− 2ct

)
.

(2.64)

Substituting the fourth column of the fundamental solution matrix (2.42) by vector
h(q01, t), a new matrix is obtained, whose determinant is as follows:

K4(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣

P(t)exp(D) Q(t)ṙ(t) P(−t)exp(−D) 0

(P(t)exp(D))• (Q(t)ṙ(t))• (P(−t)exp(−D))• γ cosω(t+t0)−δ1(x10, ẋ10)−T(ẋ01−v∗)

−P(t)exp(D) Q(t)ṙ(t) −P(−t)exp(−D) 0

−(P(t)exp(D))• (Q(t)ṙ(t))• −(P(−t)exp(−D))• −T(ẋ02− v∗)− δ2(x20, ẋ20)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.65)

Development with respect to the fourth column gives | limt→±∞K4(t, t0)| =∞.
A similar procedure is applied for sign “−”, where the perturbation vector is as follows:

h
(
q02, t

)=
⎡⎢⎢⎢⎢⎢⎢⎣

0

γ cosωt+ δ1
(
x10, ẋ10

)−T(− ẋ01− v∗
)

0

−T(− ẋ02− v∗
)

+ δ2
(
x20, ẋ20

)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.66)

Substituting the first column of the fundamental solution matrix (2.42) by vector
h(q02, t), one obtains a matrix whose determinant is given below:

K1−
(
t, t0
)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Q(t)ṙ(t) P(−t)exp
(−√1−2ct

)
ṙ(t)

γcosω
(
t+t0

)
+δ1

(
x10, ẋ10

)−T(−ẋ01−v∗
) (

Q(t)ṙ(t)
)• (

P(−t)exp
(−√1−2ct

))•
r̈(t)

0 Q(t)ṙ(t) −P(−t)exp
(−√1−2ct

)
ṙ(t)

−T(−ẋ02−v∗
)

+δ2
(
x20, ẋ20

) (
Q(t)ṙ(t)

)• −(P(−t)exp
(−√1−2ct

))•
r̈(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.67)
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Development with respect to the first column of the determinant yields

K1−
(
t, t0
)= 2P(−t)exp

(−√1− 2ct
)

× (γ cosω
(
t+ t0

)
+ δ1

(
x10, ẋ10

)− δ2
(
x20, ẋ20

)
−T(− ẋ01− v∗

)
+T
(− ẋ02− v∗

))
.

(2.68)

In our case x01 = x02 and therefore

K1−
(
t, t0
)= 2P(−t)exp

(−√1− 2ct
)(
γ cosω

(
t+ t0

)
+ δ1

(
x10, ẋ10

)− δ2
(
x10, ẋ10

))
.

(2.69)

Substitution of the second column of the solution matrix (2.42) by vector h(q02, t)
gives the following determinant:

K2−(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(t)exp(D) 0 P(−t)exp(−D) ṙ(t)

(P(t)exp(D))• γcosω(t+t0) + δ1(x10, ẋ10)−T(−ẋ01−v∗) (P(−t)exp(−D))• r̈(t)

−P(t)exp(D) 0 −P(−t)exp(−D) ṙ(t)

−(P(t)exp(D))• −T(−ẋ02−v∗) + δ2(x20, ẋ20) −(P(−t)exp(−D))• r̈(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.70)

Development with respect to the second column gives

K2−
(
t, t0
)= 2A

(
γ cosω

(
t+ t0

)
+ δ1

(
x10, ẋ10

)
+ δ2

(
x20, ẋ20

)−T(− ẋ01− v∗
)−T(− ẋ02− v∗

))
ṙ(t),

(2.71)

where

A=
∣∣∣∣∣∣
P(t)exp

(√
1 + 2at

)
P(−t)exp

(−√1− 2at
)

(
P(t)exp

(√
1 + 2at

))• (
P(−t)exp

(−√1− 2at
))•
∣∣∣∣∣∣= const. (2.72)

Since x01 = x02, therefore

K2−
(
t, t0
)= 2A

(
γ cosω

(
t+ t0

)
+ δ1

(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

)− 2T
(− ẋ01− v∗

))
ṙ(t).

(2.73)
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Substituting the third column of the fundamental solution matrix (2.42) by vector
h(q02, t) gives the following determinant:

K3−
(
t, t0
)

=

∣∣∣∣∣∣∣∣∣∣∣∣

P(t)exp
(√

1−2ct
)

Q(t)ṙ(t) 0 ṙ(t)(
P(t)exp

(√
1−2ct

))• (
Q(t)ṙ(t)

)•
γcosω

(
t+t0

)
+δ1

(
x10, ẋ10

)−T(−ẋ01−v∗
)

r̈(t)

−P(t)exp
(√

1−2ct
)

Q(t)ṙ(t) 0 ṙ(t)

−(P(t)exp
(√

1−2ct
))• (

Q(t)ṙ(t)
)• −T(−ẋ02−v∗

)
+δ2

(
x20, ẋ20

)
r̈(t)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.74)

Similarly, development with respect to the third column yields

K3−
(
t, t0
)=−2P(t)exp

(√
1− 2ct

)
× (γ cosω

(
t+t0

)
+δ1

(
x10, ẋ10

)
+δ2

(
x20, ẋ20

)−T(−ẋ01−v∗
)−T(−ẋ02− v∗

))
,

(2.75)

and for x01 = x02 we have

K3−
(
t, t0
)=−2P(t)exp

(√
1− 2ct

)
× (γ cosω

(
t+ t0

)
+ δ1

(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

)− 2T
(− ẋ01− v∗

))
.

(2.76)

When substituting the fourth column of the fundamental solution matrix (2.42) by
vector h(q02, t), one gets a matrix with the following determinant:

K4−(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

P(t)exp(D) Q(t)ṙ(t) P(−t)exp(−D) 0

(P(t)exp(D))• (Q(t)ṙ(t))• (P(−t)exp(−D))• γ cosω(t+t0)+δ1(x10, ẋ10)−T(−ẋ01−v∗)
−P(t)exp(D) Q(t)ṙ(t) −P(−t)exp(−D)t) 0

−(P(t)exp(D))• (Q(t)ṙ(t))• −(P(−t)exp(−D))• −T(−ẋ02−v∗)+δ2(x20, ẋ20)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.77)

Development with respect to the fourth column gives | limt→±∞K4−(t, t0)| =∞.
Perturbation vector along homoclinic orbits (2.19) for sign “+” is as follows:

h
(
q03, t

)=
⎡⎢⎢⎢⎢⎢⎢⎣

0

γ cosω
(
t+ t0

)− δ1
(
x10, ẋ10

)−T(ẋ01− v∗
)

0

−T(ẋ02− v∗
)− δ2

(
x20, ẋ20

)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.78)



18 Stick-slip chaos in a self-excited oscillator

Substitution of the first column of the fundamental solution matrix (2.53) by vector
h(q03, t) gives the following determinant:

L1(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣

0 Q(D)ṙ(D) e−tR(−D) ṙ(D)

γ cosω(t+ t0)− δ1(x10, ẋ10)−T(ẋ01− v∗) (Q(D)ṙ(D))• (e−tR(−D))• r̈(D)

0 Q(D)ṙ(D) −e−tR(−D) ṙ(D)

−T(ẋ02− v∗)− δ2(x20, ẋ20) (Q(D)ṙ(D))• −(e−tR(−D))• r̈(D)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.79)

Development with respect to the first column gives

L1
(
t, t0
)= 2e−tR

(−√1− 2ct
)

× (γ cosω
(
t+ t0

)− δ1
(
x10, ẋ10

)
+ δ2

(
x20, ẋ20

)−T(ẋ01− v∗
)

+T
(
ẋ02− v∗

))
,

(2.80)

and because x01 =−x02, one gets

L1
(
t, t0
)= 2e−tR

(−√1− 2ct
)

× (γ cosω
(
t+ t0

)− δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

)−T(ẋ01− v∗
)

+T
(− ẋ01− v∗

))
.

(2.81)

Substitution of the second column of the fundamental solution matrix (2.53) by the
vector h(q03, t) gives a matrix and the associated determinant of the form

L2(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣

etR(D) 0 e−tR(−D) ṙ(D)

(etR(D))• γ cosω(t+ t0)− δ1(x10, ẋ10)−T(ẋ01− v∗) (e−tR(−D))• r̈(D)

−etR(D) 0 −e−tR(−D) ṙ(D)

−(etR(D))• −T(ẋ02− v∗)− δ2(x20, ẋ20) −(e−tR(−D))• r̈(D)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.82)

Development with respect to the second column gives

L2
(
t, t0
)= 2A

(
γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)
− δ2

(
x20, ẋ20

)−T(ẋ01− v∗
)−T(ẋ02− v∗

))
ṙ
(√

1− 2ct
)
.

(2.83)
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Since x01 =−x02, one gets

L2
(
t, t0
)= 2Aṙ

(√
1− 2ct

)
× (γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

)−T(ẋ01− v∗
)−T(− ẋ01− v∗

))
.

(2.84)

Substitution of the third column of the fundamental solution matrix (2.53) by vector
h(q03, t) gives the following determinant:

L3(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣

etR(D) Q(D)ṙ(D) 0 ṙ(D)

(etR(D))• (Q(D)ṙ(D))• γ cosω(t+ t0)− δ1(x10, ẋ10)−T(ẋ01− v∗) r̈(D)

−etR(D) Q(D)ṙ(D) 0 ṙ(D)

−(etR(D))• (Q(D)ṙ(D))• −T(ẋ02− v∗)− δ2(x20, ẋ20) r̈(D)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.85)

Development with respect to the third column gives

L3
(
t, t0
)=−2

(
γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)− δ2
(
x20, ẋ20

)
−T(ẋ01− v∗

)−T(ẋ02− v∗
))
etR
(√

1− 2ct
)
.

(2.86)

Since x01 =−x02, one gets

L3
(
t, t0
)=−2etR

(√
1− 2ct

)
× (γ cosω

(
t+ t0

)− δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

)−T(ẋ01− v∗
)−T(− ẋ01− v∗

))
.

(2.87)

Substituting the fourth column of the fundamental solution matrix (2.53) by vector
h(q03, t), a matrix with the following determinant is obtained:

L4(t, t0)

=

∣∣∣∣∣∣∣∣∣∣∣∣

etR(D) Q(D)ṙ(D) e−tR(−D) 0

(etR(D))• (Q(D)ṙ(D))• (e−tR(−D))• γcosω(t+t0)−δ1(x10, ẋ10)−T(ẋ01−v∗)

−etR(D) Q(D)ṙ(D) −e−tR(−D) 0

−(etR(D))• (Q(D)ṙ(D))• −(e−tR(−D))• −T(ẋ02− v∗)− δ2(x20, ẋ20)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.88)

Development with respect to the third column gives | limt→±∞L4(t, t0)| =∞.
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The perturbation vector along homoclinic orbits (2.19) for interior sign is as follows:

h
(
q04, t

)=
⎡⎢⎢⎢⎢⎣

0
γ cosω

(
t+ t0

)
+ δ1

(
x10, ẋ10

)−T(− ẋ01− v∗
)

0
−T(− ẋ02− v∗

)
+ δ2

(
x20, ẋ20

)
⎤⎥⎥⎥⎥⎦ . (2.89)

Substituting the first column of the fundamental solution matrix (2.53) by vector
h(q04, t) gives the following determinant:

L1−(t, t0)

=

∣∣∣∣∣∣∣∣∣∣
0 Q(D)ṙ(D) e−tR(−D) ṙ(D)

γ cosω(t+ t0) + δ1(x10, ẋ10)−T(−ẋ01− v∗) (Q(D)ṙ(D))• (e−tR(−D))• r̈(D)
0 Q(D)ṙ(D) −e−tR(−D) ṙ(D)

−T(−ẋ02− v∗) + δ2(x20, ẋ20) (Q(D)ṙ(D))• −(e−tR(−D))• r̈(D)

∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.90)

Owing to the first column development, we get

L1−
(
t, t0
)= 2e−tR

(−√1− 2ct
)

×(γ cosω
(
t+t0

)
+δ1

(
x10, ẋ10

)−δ2
(
x20, ẋ20

)−T(− ẋ01−v∗
)

+T
(− ẋ02−v∗

))
,

(2.91)

and because x01 =−x02, we have

L1−
(
t, t0
)= 2e−tR

(−√1− 2ct
)

× (γ cosω
(
t+ t0

)
+ δ1

(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

)−T(− ẋ01− v∗
)

+T
(
ẋ01− v∗

))
.

(2.92)

Substituting the second column of (2.53) by h(q04, t), we obtain

L2−(t, t0)

=

∣∣∣∣∣∣∣∣∣∣
etR(D) 0 e−tR(−D) ṙ(D)

(etR(D))• γ cosω(t+ t0) + δ1(x10, ẋ10)−T(−ẋ01− v∗) (e−tR(−D))• r̈(D)
−etR(D) 0 −e−tR(−D) ṙ(D)
−(etR(D))• −T(−ẋ02− v∗) + δ2(x20, ẋ20) −(e−tR(−D))• r̈(D)

∣∣∣∣∣∣∣∣∣∣
,

where D =√1− 2ct.

(2.93)
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Development with respect to the second column gives

L2−
(
t, t0
)= 2Aṙ

(√
1− 2ct

)
×(γ cosω

(
t+t0

)
+δ1

(
x10, ẋ10

)
+δ2

(
x20, ẋ20

)−T(− ẋ01−v∗
)−T(− ẋ02−v∗

))
.

(2.94)

Since x01 =−x02, one gets

L2−
(
t, t0
)= 2Aṙ

(√
1− 2ct

)
× (γ cosω

(
t+ t0

)
+ δ1

(
x10, ẋ10

)− δ2
(
x10, ẋ10

)−T(−ẋ01− v∗
)−T(ẋ01− v∗

))
.

(2.95)

Substituting the third column of the fundamental solution matrix (2.53) by vector
h(q04, t) yields a matrix and then the determinant

L3−(t, t0)

=

∣∣∣∣∣∣∣∣∣
etR(D) Q(D)ṙ(D) 0 ṙ(D)

(etR(D))• (Q(D)ṙ(D))• γ cosω(t+ t0) + δ1(x10, ẋ10)−T(−ẋ01− v∗) r̈(D)
−etR(D) Q(D)ṙ(D) 0 ṙ(D)
−(etR(D))• (Q(D)ṙ(D))• −T(−ẋ02− v∗) + δ2(x20, ẋ20) r̈(D)

∣∣∣∣∣∣∣∣∣ ,

where D =√1− 2ct.

(2.96)

A similar operation with respect to the third column gives

L3−
(
t, t0
)=−2etR

(√
1− 2ct

)
×(γ cosω

(
t+t0

)
+δ1

(
x10, ẋ10

)
+δ2

(
x20, ẋ20

)−T(− ẋ01−v∗
)−T(− ẋ02−v∗

))
(2.97)

and owing to x01 =−x02, one gets

L3−
(
t, t0
)=−2etR

(√
1− 2ct

)
×(γ cosω

(
t+t0

)
+δ1

(
x10, ẋ10

)− δ2
(
x10, ẋ10

)−T(− ẋ01− v∗
)−T(ẋ01− v∗

))
.

(2.98)

Application of the described algorithm to column four gives

L4−(t, t0)

=

∣∣∣∣∣∣∣∣∣
etR(D) Q(D)ṙ(D) e−tR(−D) 0

(etR(D))• (Q(D)ṙ(D))• (e−tR(−D))• γ cosω(t+t0)+δ1(x10, ẋ10)−T(−ẋ01−v∗)
−etR(D) Q(D)ṙ(D) −e−tR(−D) 0
−(etR(D))• (Q(D)ṙ(D))• −(e−tR(−D))• −T(−ẋ02− v∗) + δ2(x20, ẋ20)

∣∣∣∣∣∣∣∣∣,
where D =√1− 2ct,

(2.99)

and | limt→±∞L4−(t, t0)| =∞.
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According to (2.57), the Melnikov function has the following form:

M1
(
t0
)=M11

(
t0
)

+M12, (2.100)

where

M11
(
t0
)= 2γ

∫∞
0
P(−t)exp

(−√1− 2ct
)

cosω
(
t+ t0

)
dt

= 2γ
∫∞

0

(
− 2

3
c+
(√

1− 2c+ tgh t
)

tgh t
)

exp
(−√1− 2ct

)
cosω

(
t+ t0

)
dt,

M12 = 2
∫∞

0

(− δ1
(
x10(t), ẋ10(t)

)
+ δ2

(
x10(t), ẋ10(t)

))
P(−t)exp

(−√1− 2ct
)
dt

= 2
∫∞

0

(− δ1
(
x10(t), ẋ10(t)

)
+ δ2

(
x10(t), ẋ10(t)

))
×
(
− 2

3
c+
(√

1− 2c+ tgh t
)

tgh t
)

exp
(−√1− 2ct

)
dt.

(2.101)

On the other hand,

M11
(
t0
)=M111

(
t0
)−M112

(
t0
)
, (2.102)

where

M111
(
t0
)= 2γ cosωt0

∫∞
0

(
− 2

3
c+
(√

1− 2c+ tgh t
)

tgh t
)

exp
(−√1− 2ct

)
cosωtdt,

M112
(
t0
)= 2γ sinωt0

∫∞
0

(
− 2

3
c+
(√

1− 2c+ tgh t
)

tgh t
)

exp
(−√1− 2ct

)
sinωtdt.

(2.103)

Upon integration we get

M111
(
t0
)= 1

6
γ cos

(
ωt0
)( 12

√
1− 2c

1− 2c+ω2
+

12ω2

1− 2c+ω2
+

8a
√

1− 2c
1− 2c+ω2

− 3ωi ·ψ
(

1
4

(√
1− 2c−ωi))+ 3ωi ·ψ

(
1
4

(√
1− 2c+ωi

))

+ 3ωi ·ψ
(

1
4

(
2+
√

1−2c−ωi))−3ωi ·ψ
(

1
4

(
2+
√

1−2c+ωi
)))

,

M312
(
t0
)= 1

6
γω sin

(
ωt0
)( 12

√
1− 2c

1− 2c+ω2
− 12

1− 2c+ω2
− 8a

1− 2c+ω2

+ 3 ·ψ
(

1
4

(√
1− 2c−ωi))+ 3 ·ψ

(
1
4

(√
1− 2c+ωi

))

− 3 ·ψ
(

1
4

(
2+
√

1−2c−ωi))−3 ·ψ
(

1
4

(
2+
√

1−2c+ωi
)))

,

(2.104)
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where ψ(z) denotes the “digamma” function. It is defined as ψ(z) = Γ′(z)/Γ(z), where
Γ(z) is the Euler function. Since ψ(z)= ψ(z), one gets

M111
(
t0
)= γ cos

(
ωt0
)( (6− 4c)

√
1− 2c+ 6ω2

3
(
1− 2c+ω2

)
−ω

(
Imψ

(
1
4

(√
1− 2c+ωi

))− Imψ
(

1
4

(
2 +
√

1− 2c+ωi
))))

,

M112
(
t0
)= γ sin

(
ωt0
)(6

(√
1− 2c− 1

)− 4c
3
(
1− 2c+ω2

)
+ Reψ

(
1
4

(√
1− 2c+ωi

))−Reψ
(

1
4

(
2 +
√

1− 2c+ωi
)))

.

(2.105)

Substituting the above formulas into (2.102), we get

M11
(
t0
)= γ(A1 cosωt0−A2 sinωt0

)= Ãsin
(
ωt0− κ

)
, (2.106)

where

A1 = (6− 4c)
√

1− 2c+ 6ω2

3
(
1− 2c+ω2

) −ω
(

Imψ
(

1
4

(√
1−2c+ωi

))−Imψ
(

1
4

(
2+
√

1−2c+ωi
)))

A2 = 5
(√

1− 2c− 1
)

+ 4c
3
(
1− 2c+ω2

) + Reψ
(

1
4

(√
1− 2c+ωi

))−Reψ
(

1
4

(
2 +
√

1− 2c+ωi
))
(2.107)

and Ã= γ
√
A2

1 +A2
2, tgκ= A1/A2.

Expression M12(t0) is defined as follows:

M12 =M121−M122−M123−M124, (2.108)

where

M121=2
√

2
(
α21−α11

)∫∞
0

sech(t)
(
− 2

3
c+
(√

1− 2c+ tgh t
)

tgh t
)

exp
(−√1− 2ct

)
dt,

M122=2
√

2
(
δ21−δ11

)∫∞
0

sech(t)tgh(t)
(
− 2

3
c+
(√

1−2c+tgh t
)

tgh t
)

exp
(−√1−2ct

)
dt,

M123=4
(
δ22−δ12

)∫∞
0

sech2(t)tgh2(t)
(
− 2

3
c+
(√

1−2c+tgh t
)

tgh t
)

exp
(−√1−2ct

)
dt,

M124=4
√

2
(
δ23−δ13

)∫∞
0

sech3(t)tgh3(t)
(
−2

3
c+
(√

1−2c+tgh t
)

tgh t
)

exp
(−√1−2ct

)
dt.

(2.109)
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Upon integration we have

M121 =
√

2
3

(
α21−α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

,

M122 =−2
√

2
3

(
δ11− δ21

)
,

M123 =− 4
(
δ22− δ12

)
3
(
1 + (1/2)

√
1− 2c

)(
2 + (1/2)

√
1− 2c

)(
3 + (1/2)

√
1− 2c

)
×
(
− 4
(
3−2c+3

√
1−2c

)
F
(

6,1+
1
2

√
1−2c;4 +

1
2

√
1−2c,−1

)
+

3+2c
4+(1/2)

√
1−2c(

4
(
2 +
√

1− 2c
)
F
(

6,2 +
1
2

√
1− 2c;5 +

1
2

√
1− 2c,−1

)

+
−3− 2a+ 3

√
1− 2c

5 + (1/2)
√

1− 2c
F
(

6,3 +
1
2

√
1− 2c;6 +

1
2

√
1− 2c,−1

)))
,

M124 =− 1024
√

2
(
δ23− δ13

)(
3+
√

1− 2c
)(

5+
√

1−2c
)(

7+
√

1−2c
)(

9+
√

1−2c
)(

11+
√

1−2c
)(

13+
√

1−2c
)

×
((

3a
(
73 + 9

√
1− 2c

)− 252
(
1 +
√

1− 2c
)− 2c2)

F
(

8,
1
2

(
3 +
√

1− 2c
)
;
1
2

(
11 +

√
1− 2c

)
;−1

)

+ 2(3 + 2c)
(
20− c+ 8

√
1− 2c

)
F
(

8,
1
2

(
5 +
√

1− 2c
)
;
1
2

(
13 +

√
1− 2c

)
;−1

)

+
(
(12+5a)

(− 1+
√

1−2c
)−2a2)F(8,

1
2

(
7+
√

1−2c
)
;
1
2

(
15+

√
1−2c

)
;−1

))
,

(2.110)

where F(a,b;c;d) denotes the hypergeometric function defined as

F(a;b;c;z)= Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− 2t)−adt. (2.111)

One gets

M12 =
√

2
3

(
α21−α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

+
2
√

2
3

(
δ11− δ21

)−M123−M124.

(2.112)
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Substituting (2.106) and (2.112) into (2.100), we have

M1
(
t0
)= Ãsin

(
ωt0− κ

)
+

2
√

2
3

(
δ11− δ21

)−M123−M124

+

√
2

3

(
α21−α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

.

(2.113)

Finally, the following chaos criterion is obtained:

Ã >

∣∣∣∣∣2
√

2
3

(
δ11− δ21

)−M123−M124

+

√
2

3

(
α21−α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))∣∣∣∣∣.

(2.114)

According to (2.61), the Melnikov function is

M2
(
t0
)=M21

(
t0
)−M22−M23, (2.115)

where

M21
(
t0
)= 2Aγ

∫∞
−∞

ṙ(t)cosω
(
t+ t0

)
dt =−2Aγ

∫∞
−∞

sech t tgh t cosω
(
t+ t0

)
dt,

M22 = 2A
∫∞
−∞

(
δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

))
ṙ(t)dt,

M23 = 4A
∫∞
−∞

T
(
ẋ01− v∗

)
ṙ(t)dt =−4A

∫∞
−∞

T
(
ẋ01− v∗

)
sech t tgh t dt.

(2.116)

Formula M21(t0) is as follows:

M21
(
t0
)=−M211

(
t0
)

+M212
(
t0
)
, (2.117)

where

M211 = 2Aγ cosωt0

∫∞
−∞

sech t tgh t cosωtdt = 0,

M212 = 2Aγ sinωt0

∫∞
−∞

sech t tgh t sinωtdt = 2πAγω sech
(
πω

2

)
sinωt0.

(2.118)

Substituting the obtained formulas into (2.117), one gets

M21
(
t0
)=M212

(
t0
)= 2πAγω sech

(
πω

2

)
sinωt0. (2.119)

Integral M22 is defined in the following way:

M22 =−M221 +M222 +M223 +M224, (2.120)



26 Stick-slip chaos in a self-excited oscillator

where

M221 = 2
√

2A
(
α11 +α21

)∫∞
−∞

sech2(t)tgh(t)dt,

M222 = 2
√

2A
(
δ11 + δ21

)∫∞
−∞

sech2(t)tgh2(t)dt,

M223 = 4A
(
δ12 + δ22

)∫∞
−∞

sech3(t)tgh3(t)sgn
(

sech(t)tgh(t)
)
dt,

M224 = 4
√

2A
(
δ13 + δ23

)∫∞
−∞

sech4(t)tgh4(t)dt.

(2.121)

Upon integration we get

M221 = 0,

M222 = 2
√

2
3

A
(
δ11 + δ21

)
tgh3 (√at)∣∣∞−∞ = 4

√
2

3
A
(
δ11 + δ21

)
,

M223 = 8A
(
δ12 + δ22

)∫∞
0

sech3(t)tgh3(t)dt

= 8A
(
δ12 + δ22

)(1
5

sech5(t)− 1
3

sech3(t)
)∣∣∣∣∞

0
= 16

15
A
(
δ12 + δ22

)
,

M224 = 16
35

√
2A
(
δ13 + δ23

)
,

(2.122)

and hence

M22 = 4A

(√
2

3

(
δ11 + δ21

)
+

4
15

(
δ12 + δ22

)
+

4
35

√
2
(
δ13 + δ23

))
. (2.123)

Taking into account friction characteristics defined by (2.5), one gets

M23 =−M231−M232 +M233 +M234 +M235, (2.124)

where

M231 = 4AT0

∫∞
−∞

sgn
(
ẋ01(t)− v∗

)
sech t tgh t dt, (2.125)

M232 = 4A
(
v∗ −βv3

∗
)∫∞

−∞
sech t tgh t dt dt, (2.126)

M233 = 4
√

2A
(
3βv2

∗ −α
)∫∞

−∞
sech2 t tgh2 t dt, (2.127)

M234 = 12
√

2Aβv∗
∫∞
−∞

sech3 t tgh3 t dt, (2.128)

M235 = 4
√

2Aβ
∫∞
−∞

sech4 t tgh4 t dt. (2.129)
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Note that the value of integralM231 depends on the sign ofΔ= 1− 2v2∗. So, we consider
first the case Δ < 0. In this case, sgn(ẋ01(t)− v∗)=−1 and

M231 =−4AT0

∫∞
−∞

sech t tgh t dt = 0. (2.130)

In the second case, that is, for Δ≥ 0, one gets

M231 = 4AT0

(
−
∫ t1
−∞

sech t tgh t dt+
∫ t2
t1

sech t tgh t dt−
∫∞
t2

sech t tgh t dt

)
, (2.131)

where t1, t2 are defined by

t1 = −1√
1− 2c

arcsech

√√√√1
2

+

√
1
4
− v2∗

2(1− 2c)2
,

t2 = −1√
1− 2c

arcsech

√√√√1
2

+

√
1
4
− v2∗

2(1− 2c)2
.

(2.132)

Upon integration we have

M231 = 4AT0

(
sech t

∣∣t1−∞ − sech t
∣∣t2
t1

+ sech t
∣∣∞
t2

)
= 8AT0

(
sech t1− sech t2

)
, (2.133)

and one finds

M231 = 8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ . (2.134)

The main result of our first part consideration is

M231 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

,

0 for v∗ ≥
√

2
2
.

(2.135)

Observe that

M232 =M234 = 0, (2.136)



28 Stick-slip chaos in a self-excited oscillator

and that

M233 = 4
√

2
3

A
(
3βv2

∗ −α
)

tgh3 t
∣∣∣∣∞
−∞

, (2.137)

and hence one gets

M233 = 8
√

2
3

A
(
3βv2

∗ −α
)
. (2.138)

Integral M235 gives

M235 = 4
√

2Aβ
35

(
6 + cosh(2t)

)
sech2 t tgh5 t

∣∣∣∣∞
−∞

, (2.139)

and therefore

M235 = 16
√

2Aβ
35

. (2.140)

Substituting (2.135), (2.136), (2.138), and (2.140) into (2.124), we have

M23 = 8
√

2
3

A
(
3βv2

∗ −α
)

+
16
√

2Aβ
35

−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

,

0 for v∗ ≥
√

2
2
.

(2.141)

Substitution of (2.119), (2.123), and (2.141) into (2.115) gives the following Melnikov
function:

M2
(
t0
)= 2πAγω sech

(
πω

2

)
sinωt0

− 4A
(√

2
3

(
δ11 + δ21

)
+

4
15

(
δ12 + δ22

)
+

4
35

√
2
(
δ13 + δ23

))

− 8
√

2
3

A
(
3βv2

∗ −α
)− 16

√
2Aβ

35

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

,

0 for v∗ ≥
√

2
2
.

(2.142)
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Intersection condition of stable and unstable manifolds is as follows:

2πγω|A|sech
(
πω

2

)

>

∣∣∣∣∣∣∣∣∣∣
−4A

(√
2

3

(
δ11 + δ21

)
+

4
15

(
δ12 + δ22

)
+

4
35

√
2
(
δ13 + δ23

))

− 8
√

2
3

A
(
3βv2

∗ −α
)− 16

√
2Aβ

35

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

0 for v∗ ≥
√

2
2

∣∣∣∣∣∣∣∣∣∣∣
.

(2.143)

According to (2.64) the Melnikov function is defined in the following way:

M3
(
t0
)=−M31

(
t0
)

+M32 +M33, (2.144)

where

M31
(
t0
)= 2γ

∫ 0

−∞
P(t)exp

(√
1− 2ct

)
cosω

(
t+ t0

)
dt

= 2γ
∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
cosω

(
t+ t0

)
dt,

M32 = 2
∫ 0

−∞

(
δ1
(
x10(t), ẋ10(t)

)
+ δ2

(
x10(t), ẋ10(t)

))
P(t)exp

(√
1− 2ct

)
dt,

M33 = 4
∫ 0

−∞
T
(
ẋ01− v∗

)
P(t)exp

(√
1− 2ct

)
dt

= 4
∫ 0

−∞
T
(
ẋ01− v∗

)(− 2
3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt.

(2.145)

Formula M31(t0) is

M31
(
t0
)=M311

(
t0
)−M312

(
t0
)
, (2.146)
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where

M311
(
t0
)= 2γ cosωt0

∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
cosωtdt,

M312
(
t0
)= 2γ sinωt0

∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
sinωtdt.

(2.147)

Upon integration we have

M311
(
t0
)= 1

6
γ cos

(
ωt0
)( (12− 8c)

√
1− 2c+ 12ω2

1− 2c+ω2

− 3ωi ·ψ
(

1
4

(√
1− 2c−ωi))+ 3ωi ·ψ

(
1
4

(√
1− 2c+ωi

))

+ 3ωi ·ψ
(

1
4

(
2+
√

1−2c−ωi))−3ωi ·ψ
(

1
4

(
2+
√

1−2c+ωi
)))

,

M312
(
t0
)=−1

6
γ cos

(
ωt0
)(12

(√
1− 2c− 1

)
+ 8c

1− 2c+ω2

+ 3 ·ψ
(

1
4

(√
1− 2c+ωi

))
+ 3 ·ψ

(
1
4

(√
1− 2c−ωi))

− 3 ·ψ
(

1
4

(
2+
√

1−2c+ωi
))−3 ·ψ

(
1
4

(
2+
√

1−2c−ωi))).
(2.148)

Since ψ(z)= ψ(z), one gets

M311
(
t0
)= γ cos

(
ωt0
)( (6− 4c)

√
1− 2c+ 6ω2

3
(
1− 2c+ω2

)
−ω

(
Imψ

(
1
4

(√
1−2c+ωi

))−Imψ
(

1
4

(
2+
√

1−2c+ωi
))))

,

M312
(
t0
)=−γ sin

(
ωt0
)(6

(√
1− 2c− 1

)
+ 4c

3
(
1− 2c+ω2

)
+ Reψ

(
1
4

(√
1− 2c+ωi

))−Reψ
(

1
4

(
2 +
√

1− 2c+ωi
)))

.

(2.149)

Observe that the following relations hold M311(t0) =M111(t0), M312(t0) = −M112(t0).
Substituting the obtained formulas into (2.146), one gets

M31
(
t0
)= γ(A1 cosωt0 +A2 sinωt0

)= Ãsin
(
ωt0 + κ

)
, (2.150)
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where

A1= (6−4c)
√

1−2c+6ω2

3
(
1−2c+ω2

) −ω
(

Imψ
(

1
4

(√
1−2c+ωi

))−Imψ
(

1
4

(
2+
√

1−2c+ωi
)))

,

A2= 5
(√

1− 2c− 1
)

+ 4c
3
(
1− 2c+ω2

) + Reψ
(

1
4

(√
1− 2c+ωi

))−Reψ
(

1
4

(
2 +
√

1− 2c+ωi
))

,

(2.151)

and Ã= γ
√
A2

1 +A2
2, tgκ= A1/A2.

Formula M32(t0) is defined as follows:

M32 =M321−M322−M323−M324, (2.152)

where

M321 = 2
√

2
(
α11 +α21

)∫ 0

−∞
sech(t)P(t)exp

(√
1− 2ct

)
dt,

M322 = 2
√

2
(
δ11 + δ21

)∫ 0

−∞
sech(t)tgh(t)P(t)exp

(√
1− 2ct

)
dt,

M323 = 4
(
δ12 + δ22

)∫ 0

−∞
sech2(t)tgh2(t)sgn

(
sech(t)tgh(t)

)
P(t)exp

(√
1− 2ct

)
dt,

M324 = 4
√

2
(
δ13 + δ23

)∫ 0

−∞
sech(t)3 tgh3(t)P(t)exp

(√
1− 2ct

)
dt.

(2.153)

Computations give

M321 =
√

2
3

(
α21 +α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

,

M322 =−2
√

2
3

(
δ11 + δ21

)
,

M323 =− 128
(
δ22 + δ12

)
3
(
2 +
√

1− 2c
)(

4 +
√

1− 2c
)(

6 +
√

1− 2c
)(

8 +
√

1− 2c
)(

10 +
√

1− 2c
)

×
((

6a
(
46 + 7

√
1− 2c

)− 297
(
1 +
√

1− 2c
)− 4c2)

F
(

6,
1
2

(
2 +
√

1− 2c
)
;
1
2

(
8 +
√

1− 2c
)
;−1

)

+ (3 + 2c)
((

42− 4c+ 24
√

1− 2c
)
F
(

6,
1
2

(
4 +
√

1− 2c
)
;
1
2

(
10 +

√
1− 2c

)
;−1

)

+
(
3
(−1+

√
1−2c

)−2a
)

+F
(

6,
1
2

(
6+
√

1−2c
)
;
1
2

(
12+

√
1−2c

)
;−1
)))

,
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M324 =− 1024
√

2
(
δ23 + δ13

)(
3+
√

1−2c
)(

5+
√

1−2c
)(

7+
√

1−2c
)(

9+
√

1−2c
)(

11+
√

1−2c
)(

13+
√

1−2c
)

×
((

3a
(
73 + 9

√
1− 2c

)− 252
(
1 +
√

1− 2c
)− 2c2)

F
(

8,
1
2

(
3 +
√

1− 2c
)
;
1
2

(
11 +

√
1− 2c

)
;−1

)
+ 2(3 + 2c)

(
20− c+ 8

√
1− 2c

)
F
(

8,
1
2

(
5 +
√

1− 2c
)
;
1
2

(
13 +

√
1− 2c

)
;−1

)
+
(
(12+5a)

(− 1+
√

1−2c
)−2a2)F(8,

1
2

(
7+
√

1−2c
)
;
1
2

(
15+

√
1−2c

)
;−1
))

,

(2.154)

and hence

M32 =
√

2
3

(
α21 +α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

+
2
√

2
3

(
δ11 + δ21

)−M323−M324.

(2.155)

According to (2.5), one gets

M33 =M331 +M332−M333−M334−M335, (2.156)

where the following notation is applied:

M331 = 4T0

∫ 0

−∞
sgn
(
ẋ− v∗

)(− 2
3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt,

M332 = 4v∗
(
1−βv2

∗
)∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt,

M333 = 4
√

2
(
3βv2

∗ −α
)∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
sech t tgh t dt,

M334 = 24βv∗
∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
sech2 t tgh2 t dt,

M335 = 8
√

2β
∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
sech3 t tgh3 t dt.

(2.157)

For v∗ >
√

2/2, integral M331 is defined as follows:

M331 =−4T0

∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt. (2.158)
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Looking for a primary function, we have

M̃331 = 4T0

∫ (
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt

= 4T0e
√

1−2ct
(
3− 2c− 3

√
1− 2c tgh t

)
3
√

1− 2c
,

(2.159)

and hence

M331 =−M̃331
∣∣0
−∞ =−

4T0e
√

1−2ct
(
3− 2c− 3

√
1− 2c tgh t

)
3
√

1− 2c

∣∣∣∣0

−∞
=−4T0(3− 2c)

3
√

1− 2c
.

(2.160)

For v∗ >
√

2/2, one obtains

M331 =−M̃331
∣∣t1−∞ + M̃331

∣∣t2
t1
− M̃331

∣∣0
t2
= 2
(
M̃331

(
t2
)− M̃331

(
t1
))− M̃331(0), (2.161)

where t1, t2 are defined as earlier. According to the latter formulas and (2.159), one gets

M331 =−4T0

⎛⎝ 3− 2c
3
√

1− 2c
+ 2

(
3− 2c

3
√

1− 2c
+
√

1− x1

)( √
x1

1 +
√

1− x1

)√1−2c

−2

(
3− 2c

3
√

1− 2c
+
√

1− x2

)( √
x2

1 +
√

1− x2

)√1+2c
⎞⎠ .

(2.162)

Since 1− x1,2 = x2,1, one gets

M331 =−4T0

⎛⎝ 3− 2c
3
√

1− 2c
+ 2

(
3− 2c

3
√

1− 2c
+
√
x2

)( √
x1

1 +
√
x2

)√1−2c

−2

(
3− 2c

3
√

1− 2c
+
√
x1

)( √
x2

1 +
√
x1

)√1−2c
⎞⎠ .

(2.163)

This part of our consideration provides the following main result:

M331 =−4T0
3− 2c

3
√

1− 2c
−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8T0

⎛⎝( 3− 2c
3
√

1− 2c
+
√
x2

)( √
x1

1 +
√
x2

)√1−2c

−
(

3− 2c
3
√

1− 2c
+
√
x1

)( √
x2

1 +
√
x1

)√1−2c
⎞⎠ for v∗ <

√
2

2
,

0 for v∗ ≥
√

2
2
.

(2.164)

Formula M232 is defined in the following way:

M332 = 4v∗
(
1−βv2∗

)(
3− 2c− 3

√
1− 2c tgh t

)
exp

(√
1− 2ct

)
3
√

1− 2c

∣∣∣∣0

−∞
, (2.165)
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and hence

M332 = 4v∗
(
1−βv2∗

)
(3− 2c)

3
√

1− 2c
. (2.166)

On the other hand, integral M333 is as follows:

M333 = 4
√

2
3

(
3βv2

∗ −α
)(− 2 + sech2 t+

√
1− 2c tgh t

)
exp

(√
1− 2ct

)
sech t

∣∣∣∣0

−∞
,

(2.167)

and hence

M333 = 4
√

2
3

(
3βv2

∗ −α
)
. (2.168)

Formula M334 is defined as follows:

M334 = 256βv∗(
2 +
√

1− 2c
)(

4 +
√

1− 2c
)(

6 +
√

1− 2c
)(

8 +
√

1− 2c
)(

10 +
√

1− 2c
)

×
((

4c2 +297
(
1+
√

1−2c
)

+6c
(
46+7

√
1−2c

))
F
(

6,1+
1
2

√
1−2c;4+

1
2

√
1−2c;−1

)

+ (−2c− 3)

((
42− 4c+ 24

√
1− 2c

)
F
(

6,2 +
1
2

√
1− 2c;5 +

1
2

√
1− 2c;−1

)

+
(− 2c− 3 + 3

√
1− 2c

)
F
(

6,3 +
1
2

√
1− 2c;6 +

1
2

√
1− 2c;−1

)))
.

(2.169)

Integral M335 is given below:

M335 =− 2048
√

2β(
3+
√

1−2c
)(

5+
√

1−2c
)(

7+
√

1−2c
)(

9+
√

1−2c
)(

11+
√

1−2c
)(

13+
√

1−2c
)

×
((

2c2 + 252
(
1 +
√

1− 2c
)− 3c

(
73 + 9

√
1− 2c

))
F
(

8,
1
2

(
3 +
√

1− 2c
)
;
1
2

(
11 +

√
1− 2c

)
;−1

)

+ 2(−2c− 3)
((

20− c+ 8
√

1− 2c
)
F
(

8,
1
2

(
5 +
√

1− 2c
)
;
1
2

(
13 +

√
1− 2c

)
;−1

)
+
(
2c2(−5c− 12)

(− 1 +
√

1− 2c
))

F
(

8,
1
2

(
7 +
√

1− 2c
)
;
1
2

(
15 +

√
1− 2c

)
;−1

)))
.

(2.170)
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Substitution of (2.163), (2.166), and (2.168) into (2.156) gives

M33 = 4(3 + 2c)
3
√

1 + 2c

(
v∗
(
1−βv2

∗
)−T0

)− 4
√

2
3

(
3βv2

∗ −α
)

−M334−M335−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8T0

⎛⎝( 3 + 2c
3
√

1 + 2c
+
√
x2

)(
1 +
√
x2√

x1

)−√1+2c

−
(

3 + 2c
3
√

1 + 2c
+
√
x1

)(
1 +
√
x1√

x2

)−√1+2c
⎞⎠ for v∗ <

√
2

2
,

0 for v∗ ≥
√

2
2
.

(2.171)

Substituting (2.150), (2.155), and (2.171) into (2.144), we can define the following
Melnikov function:

M3
(
t0
)=−Ãsin

(
ωt0 + κ

)
+

4(3−2c)
3
√

1−2c

(
v∗
(
1−βv2

∗
)−T0

)
+

2
√

2
3

(
δ11 + δ21 + 2

(
3βv2

∗−α
))

+

√
2

3

(
α21 +α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

−M323−M324

−M334−M335−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8T0

⎛⎝( 3− 2c
3
√

1− 2c
+
√
x2

)( √
x1

1 +
√
x2

)√1−2c

−
(

3− 2c
3
√

1− 2c
+
√
x1

)( √
x2

1 +
√
x1

)√1−2c
⎞⎠ for v∗ <

√
2

2
,

0 for v∗ ≥
√

2
2
.

(2.172)

The condition of stable and unstable manifolds intersection is defined by the formula

Ã >

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4(3− 2c)
3
√

1− 2c

(
v∗
(
1−βv2

∗
)−T0

)
+

2
√

2
3

(
δ11 + δ21 + 2

(
3βv2

∗ −α
))

+

√
2

3

(
α21 +α11

)(
3
√

1−2c−cψ
(

1
4

(
1+
√

1−2c
))

+cψ
(

1
4

(
3+
√

1−2c
)))−M323−M324
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−M334−M335−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8T0

⎛⎝( 3− 2c
3
√

1− 2c
+
√
x2

)( √
x1

1 +
√
x2

)√1−2c

−
(

3− 2c
3
√

1− 2c
+
√
x1

)( √
x2

1 +
√
x1

)√1−2c
⎞⎠

for v∗ <
√

2
2

0 for v∗ ≥
√

2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.173)

The Melnikov function, according to (2.69), is defined in the following way:

M1−
(
t0
)=M11−

(
t0
)−M12−, (2.174)

where

M11−
(
t0
)= 2γ

∫∞
0
P(−t)exp

(−√1− 2ct
)

cosω
(
t+ t0

)
dt,

M12− = 2
∫∞

0

(− δ1
(
x10(t), ẋ10(t)

)
+ δ2

(
x10(t), ẋ10(t)

))
P(−t)exp

(−√1− 2ct
)
dt.

(2.175)

Comparing the obtained formulas with (2.101), we get

M11−
(
t0
)=M11

(
t0
)
,

M12− =M12.
(2.176)

Taking into account (2.106) and (2.112) in (2.174), we have

M1
(
t0
)= Ãsin

(
ωt0− κ

)− 2
√

2
3

(
δ11− δ21

)
+M123 +M124

−
√

2
3

(
α21−α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

.

(2.177)

The criterion of chaos occurrence is governed by the following inequality:

Ã >

∣∣∣∣∣− 2
√

2
3

(
δ11− δ21

)
+M123 +M124

−
√

2
3

(
α21−α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))∣∣∣∣∣.

(2.178)

According to (2.73), the Melnikov function is

M2−
(
t0
)=M21−

(
t0
)

+M22− −M23−, (2.179)
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where

M21−
(
t0
)= 2Aγ

∫∞
−∞

ṙ(t)cosω
(
t+ t0

)
dt,

M22− = 2A
∫∞
−∞

(
δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

))
ṙ(t)dt,

M23− = 4A
∫∞
−∞

T
(− ẋ01− v∗

)
ṙ(t)dt =−4A

∫∞
−∞

T
(− ẋ01− v∗

)
sech t tgh t dt.

(2.180)

Comparison of the obtained formulas with (2.116) gives

M21−
(
t0
)=M21

(
t0
)
,

M22− =M22.
(2.181)

Using (2.5), the formula for M23− takes the form

M23− = −M231− −M232− −M233− +M234− −M235−, (2.182)

where the following notation is applied:

M231− = 4AT0

∫∞
−∞

sgn
(− ẋ01(t)− v∗

)
sech t tgh t dt, (2.183)

M232− = 4A
(
v∗ −βv3

∗
)∫∞

−∞
sech t tgh t dt dt, (2.184)

M233− = 4
√

2A
(
3βv2

∗ −α
)∫∞

−∞
sech2 t tgh2 t dt, (2.185)

M234− = 12
√

2Aβv∗
∫∞
−∞

sech3 t tgh3 t dt, (2.186)

M235− = 4
√

2Aβ
∫∞
−∞

sech4 t tgh4 t dt. (2.187)

Computing integral M231− for |v∗| >
√

2/2, one gets

M231− = −4AT0

∫∞
−∞

sech t tgh t dt = 0. (2.188)

In the case |v∗| ≤
√

2/2, we have

M231− = 4AT0

(
−
∫ t3
−∞

sech t tgh t dt+
∫ t4
t3

sech t tgh t dt−
∫∞
t4

sech t tgh t dt
)

, (2.189)

where t3 =−t2, t4 =−t1. Upon integration we have

M231− = 4AT0

(
sech t

∣∣t3−∞ − sech t
∣∣t4
t3

+ sech t
∣∣∞
t4

)
= 8AT0

(
sech t3− sech t4

)=−8AT0
(

sech t1− sech t2
)
,

(2.190)
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and hence

M231− = −M231 =−8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ . (2.191)

Finally, we obtain

M231− =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

,

0 for v∗ ≥
√

2
2
.

(2.192)

Observe that

M232− =M234− = 0, (2.193)

and comparing (2.185) and (2.187) with (2.127) and (2.129), respectively, one gets

M233− =M233 = 8
√

2
3

A
(
3βv2

∗ −α
)
,

M235− =M235 = 16
√

2Aβ
35

.

(2.194)

Substituting (2.192)–(2.194) into (2.182), we get

M23− = −8
√

2
3

A
(
3βv2

∗ −α
)− 16

√
2Aβ

35

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

,

0 for v∗ ≥
√

2
2
.

(2.195)

Substituting (2.119), (2.123), and (2.195) into (2.179), we get the following Melnikov
function:

M2−
(
t0
)=2πAγω sech

(
πω

2

)
sinωt0 +4A

(√
2

3

(
δ11 +δ21

)
+

4
15

(
δ12 +δ22

)
+

4
35

√
2
(
δ13 +δ23

))

+
8
√

2
3

A
(
3βv2

∗ −α
)

+
16
√

2Aβ
35

−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

,

0 for v∗ ≥
√

2
2
.

(2.196)
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Stable and unstable manifolds intersection is defined in the following way:

2πγω|A|sech
(
πω

2

)
>

∣∣∣∣∣∣∣∣∣∣∣
4A

(√
2

3

(
δ11 + δ21

)
+

4
15

(
δ12 + δ22

)
+

4
35

√
2
(
δ13 + δ23

))

+
8
√

2
3

A
(
3βv2

∗ −α
)

+
16
√

2Aβ
35

−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2
−
√√√√1

2
−
√

1
4
− v2∗

2

⎞⎟⎠ for v∗ <
√

2
2

0 for v∗ ≥
√

2
2

∣∣∣∣∣∣∣∣∣∣∣
.

(2.197)

The Melnikov function (taking into account (2.76)) is defined as follows:

M3−
(
t0
)=−M31−

(
t0
)−M32− +M33−, (2.198)

where

M31−
(
t0
)=M31

(
t0
)= 2γ

∫ 0

−∞
P(t)exp

(√
1− 2ct

)
cosω

(
t+ t0

)
dt,

M32− =M32 = 2
∫ 0

−∞

(
δ1
(
x10(t), ẋ10(t)

)
+ δ2

(
x10(t), ẋ10(t)

))
P(t)exp

(√
1− 2ct

)
dt,

M33− = −M33 = 4
∫ 0

−∞
T
(− ẋ01− v∗

)
P(t)exp

(√
1− 2ct

)
dt.

(2.199)

Using (2.5), formula M33− takes the form

M33− =M331− +M332− +M333− −M334− +M335−, (2.200)

where the following notation is applied:

M331− = 4T0

∫ 0

−∞
sgn
(− ẋ10(t)− v∗

)(− 2
3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt,

M332− = 4v∗
(
1−βv2

∗
)∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt,

M333− = 4
√

2
(
3βv2

∗−α
)∫ 0

−∞

(
− 2

3
c−(√1−2c−tgh t

)
tgh t

)
exp

(√
1−2ct

)
sech t tgh t dt,
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M334− = 24βv∗
∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
sech2 t tgh2 t dt,

M335− = 8
√

2β
∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
sech3 t tgh3 t dt.

(2.201)

Since for −∞ < t ≤ 0 we have sgn(−ẋ10(t)− v∗)=−1, one gets

M331− = −4T0

∫ 0

−∞

(
− 2

3
c− (√1− 2c− tgh t

)
tgh t

)
exp

(√
1− 2ct

)
dt. (2.202)

Integration gives

M331− =M331 =−4T0(3− 2c)
3
√

1− 2c
,

M332− =M332 = 4v∗
(
1−βv2∗

)
(3− 2c)

3
√

1− 2c
,

M333− =M333 = 4
√

2
3

(
3βv2

∗ −α
)
,

M334− =M334 = 256βv∗(
2 +
√

1− 2c
)(

4 +
√

1− 2c
)(

6 +
√

1− 2c
)(

8 +
√

1− 2c
)(

10 +
√

1− 2c
)

×
((

4c2 +297
(
1+
√

1−2c
)

+6c
(
46+7

√
1−2c

))
F
(
6,1+

1
2

√
1−2c;4+

1
2

√
1−2c;−1

)
+ (−2c− 3)

((
42− 4c+ 24

√
1− 2c

)
F
(

6,2 +
1
2

√
1− 2c;5 +

1
2

√
1− 2c;−1

)
+
(−2c−3+3

√
1−2c

)
F
(

6,3+
1
2

√
1−2c;6+

1
2

√
1−2c;−1

)))
,

M335− =M335

=− 2048
√

2β(
3+
√

1−2c
)(

5+
√

1−2c
)(

7+
√

1−2c
)(

9+
√

1−2c
)(

11+
√

1−2c
)(

13+
√

1−2c
)

×
((

2c2 + 252
(
1 +
√

1− 2c
)− 3c

(
73 + 9

√
1− 2c

))
F
(

8,
1
2

(
3 +
√

1− 2c
)
;
1
2

(
11 +

√
1− 2c

)
;−1

)
+ 2(−2c− 3)((

20− c+ 8
√

1− 2c
)
F
(

8,
1
2

(
5 +
√

1− 2c
)
;
1
2

(
13 +

√
1− 2c

)
;−1

)
+
(
2c2(−5c− 12)

(− 1 +
√

1− 2c
))

F
(

8,
1
2

(
7 +
√

1− 2c
)
;
1
2

(
15 +

√
1− 2c

)
;−1

)))
.

(2.203)

Substituting (2.203) into (2.200), one gets

M33 = 4(3− 2c)
3
√

1− 2c

(
v∗
(
1−βv2

∗
)−T0

)− 4
√

2
3

(
3βv2

∗ −α
)−M334−M335. (2.204)
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Substitution of (2.150), (2.155), and (2.204) into (2.144) gives the Melnikov function
defined as follows:

M3−
(
t0
)=−Ãsin

(
ωt0 +κ

)
+

4(3−2c)
3
√

1−2c

(
v∗
(
1−βv2

∗
)−T0

)
+

2
√

2
3

(
δ11 +δ21 +2

(
3βv2

∗−α
))

+

√
2

3

(
α21 +α11

)(
3
√

1−2c−cψ
(

1
4

(
1+
√

1−2c
))

+cψ
(

1
4

(
3+
√

1−2c
)))

−M323−M324−M334−M335.
(2.205)

The chaos criterion is

Ã >

∣∣∣∣∣4(3− 2c)
3
√

1− 2c

(
v∗
(
1−βv2

∗
)−T0

)
+

2
√

2
3

(
δ11 + δ21 + 2

(
3βv2

∗ −α
))

+

√
2

3

(
α21 +α11

)(
3
√

1− 2c− cψ
(

1
4

(
1 +
√

1− 2c
))

+ cψ
(

1
4

(
3 +
√

1− 2c
)))

−M323−M324−M334−M335

∣∣∣∣∣.
(2.206)

According to (2.81), the Melnikov function is

N1
(
t0
)=N11

(
t0
)−N12−N13 +N14, (2.207)

where

N11
(
t0
)= 2γ

∫∞
0
R
(−√1− 2ct

)
e−t cosω

(
t+ t0

)
dt

= 2γ
∫∞

0

(
3−4c

3(1−2c)
−sech2 (−√1−2ct

)− tgh
(−√1−2ct

)
√

1−2c

)
e−t cosω

(
t+t0

)
dt,

N12 = 2
∫∞

0

(
δ1
(
x10(t), ẋ10(t)

)− δ2
(
x10(t), ẋ10(t)

))
e−tR

(−√1− 2ct
)
dt,

N13 = 2
∫∞

0
e−tR

(−√1− 2ct
)
T
(
ẋ01− v∗

)
dt

= 2
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
T
(
ẋ01− v∗

)
dt,

N14 = 2
∫∞

0
e−tR

(−√1− 2ct
)
T
(− ẋ01− v∗

)
dt

= 2
∫∞

0
e−t
(

3−4c
3(1−2c)

−sech2 (−√1−2ct
)− tgh

(−√1−2ct
)

√
1−2c

)
T
(−ẋ01−v∗

)
dt.

(2.208)
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Formula N11(t0) is defined as follows:

N11
(
t0
)=N111

(
t0
)−N112

(
t0
)
, (2.209)

where

N111
(
t0
)=2γ cosωt0

∫∞
0

(
3−4c

3(1−2c)
−sech2 (−√1−2ct

)− tgh
(−√1−2ct

)
√

1−2c

)
e−t cosωtdt,

(2.210)

N112
(
t0
)=2γ sinωt0

∫∞
0

(
3−4c

3(1−2c)
−sech2 (−√1−2ct

)− tgh
(−√1−2ct

)
√

1−2c

)
e−t sinωtdt.

(2.211)

Upon integration we have

N112
(
t0
)= γ cosωt0

3(2c− 1)
√

1− 2c

(
− 2ω

(
(4c− 3)

√
1− 2c− 3(2c− 1)

)
1 +ω2

+
3
2
ω
√

1− 2c

×
(
ψ
(

1 +ωi
4
√

1− 2c

)
+ψ
(

1−ωi
4
√

1− 2c

)
−ψ

(
1
4

(
2 +

1 +ωi√
1− 2c

))

−ψ
(

1
4

(
2 +

1−ωi√
1− 2c

))))
.

(2.212)

Owing to the property ψ(z)= ψ(z), one gets

N111
(
t0
)= γ cosωt0

(
6
√

1− 2cω2− 2(4c− 3)
3(2c− 1)

(
1 +ω2

)
+

ω

2c− 1

(
Imψ

(
1 +ωi

4
√

1− 2c

)
− Imψ

(
1
4

(
2 +

1 +ωi√
1− 2c

))))
,

(2.213)

N112
(
t0
)= γ sinωt0

(
− 2ω

(
(4c− 3) + 3

√
1− 2c

)
3(2c− 1)

(
1 +ω2

)
+

ω

2c− 1

(
Reψ

(
1 +ωi

4
√

1− 2c

)
−Reψ

(
1
4

(
2 +

1−ωi√
1− 2c

))))
.

(2.214)

Substitution of the above formulas into (2.209) gives

N11
(
t0
)= γ(A1 cosωt0−A2 sinωt0

)= Ãsin
(
ωt0− κ

)
, (2.215)
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where

A1 = 6
√

1− 2cω2− 2(4c− 3)
3(2c− 1)

(
1 +ω2

) +
ω

2c− 1

(
Imψ

(
1 +ωi

4
√

1− 2c

)
− Imψ

(
1
4

(
2 +

1 +ωi√
1− 2c

)))
,

A2 =−2ω
(
(4c− 3) + 3

√
1− 2c

)
3(2c− 1)

(
1 +ω2

) +
ω

2c− 1

(
Reψ

(
1 +ωi

4
√

1− 2c

)
−Reψ

(
1
4

(
2 +

1−ωi√
1− 2c

)))
,

(2.216)

and Ã= γ
√
A2

1 +A2
2, tgκ= A1/A2.

The formula for N12 is as follows:

N12 =N121−N122−N123−N124, (2.217)

where

N121 = 2
√

2(1− 2c)
(
α11−α21

)∫∞
0

sech
(√

1− 2ct
)
e−tR

(−√1− 2ct
)
dt,

N122 = 2
√

2(1− 2c)
(
δ11− δ21

)∫∞
0

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
e−tR

(−√1− 2ct
)
dt,

N123 = 4(1− 2c)2(δ12− δ22
)

×
∫∞

0
sech2 (√1− 2ct

)
tgh2 (√1− 2ct

)
e−tR

(−√1− 2ct
)

sgn
(

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
))
dt,

N124 = 4
√

2(1− 2c)3(δ13− δ23
)∫∞

0
sech3 (√1− 2ct

)
tgh3 (√1− 2ct

)
e−tR

(−√1− 2ct
)
dt.

(2.218)

Computations yield

N121=
√

2
3(2c− 1)

(
α21−α11

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))
,

N122=−2
√

2(1− 2c)
3

(
δ11− δ21

)
,

N123=− 128(1− 2c)3/2
(
δ22− δ12

)
3
(
1 + 2

√
1− 2c

)(
1 + 4

√
1− 2c

)(
1 + 6

√
1− 2c

)(
1 + 8

√
1− 2c

)(
1 + 10

√
1− 2c

)
×
((− 6a

(
191 + 152

√
1− 2c

)
+ 297

(
1 +
√

1− 2c
)

+ 16
(
69 + 40

√
1− 2c

)
c2)

×F
(

6,
1
2

(
2 +

1√
1− 2c

)
;
1
2

(
8 +

1√
1− 2c

)
;−1

)
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+ (3 + 8c)

((− 6
(
4 + 7

√
1− 2c

)
+ 16c

(
3 + 5

√
1− 2c

))

×F
(

6,
1
2

(
4 +

1√
1− 2c

)
;
1
2

(
10 +

1√
1− 2c

)
;−1

)

+
(− 3 + 3

√
1− 2c+ 6c− 8c

√
1− 2c

)

F
(

6,
1
2

(
6 +

1√
1− 2c

)
;
1
2

(
12 +

1√
1− 2c

)
;−1

)))
,

N124=− 1024
√

2(1− 2c)3
(
δ23− δ13

)(
1+3

√
1−2c

)(
1+5

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3c

(
327 + 263

√
1− 2c

)
+
(
954 + 572

√
1− 2c

)
c2
)

×F
(

8,
1
2

(
3 +

1√
1− 2c

)
;
1
2

(
11 +

1√
1− 2c

)
;−1

)

+ 2(3 + 8c)
(− 8− 20

√
1− 2c+ 16c+ 39c

√
1− 2c

)
F
(

8,
1
2

(
5 +

1√
1− 2c

)
;
1
2

(
13 +

1√
1− 2c

)
;−1

)

+
(
12
(− 1 +

√
1− 2c

)− 53c
(− 1 +

√
1− 2c

)
+
(
− 58 + 60

√
1− 2c

)
c2
)

×F
(

8,
1
2

(
7 +

1√
1− 2c

)
;
1
2

(
15 +

1√
1− 2c

)
;−1

))
,

(2.219)

and hence

N12 =
√

2
3(2c− 1)

(
α21−α11

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))

+
2
√

2(1− 2c)
3

(
δ11− δ21

)−N123−N124.

(2.220)

According to (2.5), the formula for N13 is

N13 =N131 +N132−N133−N134−N135, (2.221)
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where

N131 = 2T0

∫∞
0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
sgn
(
ẋ01− v∗

)
dt,

N132 = 2
(
v∗ −βv3

∗
)∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
dt,

N133 = 2
√

2(1− 2c)
(
3βv2

∗ −α
)

×
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt,

N134 = 12(1− 2c)2βv∗

×
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N135 = 4
√

2(1− 2c)3β

×
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt.

(2.222)

Now, computing integral N131, it is easy to observe that for t1 < 0 and t2 < 0, we have
sgn(ẋ01− v∗)=−1 irrespective of the value of velocity v∗ for t ∈ (0,∞). This observation
leads to

N131 =−2T0

∫∞
0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
dt

=−
(

lim
t→∞N131(t)−N131(0)

)
= 2T0(4c− 3)

6c− 3
,

(2.223)
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where

N131(t)= 2T0e−t
(
3− 4c+ 3

√
1− 2c tgh

(√
1− 2ct

))
3(2c− 1)

. (2.224)

Integral N132 is

N132 = 2
(
v∗ −βv3

∗
)∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
dt

= 2(4c− 3)
6c− 3

(
v∗ −βv3

∗
)
.

(2.225)

On the other hand, integral N133 is equal to

N133 =
√

2(1− 2c)
(
3βv2∗ −α

)
6c− 3

× e−t sech3 (√1− 2ct
)(

sinh
(
2
√

1− 2ct
)

+ 2
√

1− 2ct cosh
(
2
√

1− 2ct
))∣∣∞

0 ,

(2.226)

and therefore

N133 = 2
3

√
2(1− 2c)

(
3βv2

∗ −α
)
. (2.227)

Integral N134 is defined as follows:

N134 = 384(1− 2c)2βv∗
3
√

1−2c
(
1+2

√
1−2c

)(
1+4

√
1−2c

)(
1+6

√
1−2c

)(
1+8

√
1−2c

)(
1+10

√
1−2c

)
×
((

297
(
1 +
√

1− 2c
)− 6

(
191 + 152

√
1− 2c

)
c+ 16

(
69 + 40

√
1− 2c

)
c2
)

×F
(

6,1 +
1

2
√

1− 2c
;4 +

1
2
√

1− 2c
;−1

)

− (8c− 3)
(− 6

(
4 + 7

√
1− 2c

)
+ 80c

(
1 +
√

1− 2c
))

·F
(

6,2 +
1

2
√

1− 2c
;5 +

1
2
√

1− 2c
;−1

)

+
(
3
(√

1− 2c− 1
)− 2c

(
4
√

1− 2c− 3
))
F
(

6,3 +
1

2
√

1− 2c
;6 +

1
2
√

1− 2c
;−1

))
,

(2.228)
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whereas integral M135 is

N135= 1024
√

2(1− 2c)3β(
1+3

√
1−2c

)(
1+5

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3

(
327 + 263

√
1− 2c

)
c+
(
954 + 572

√
1− 2c

)
c2)

×F
(

8,
1
2

(
3 +

1√
1− 2c

)
;
1
2

(
11 +

1√
1− 2c

)
;−1

)
− 2(8c− 3)

(− 8− 20
√

1− 2c+ 16c+ 39c
√

1− 2c
)

·F
(

8,
1
2

(
5 +

1√
1− 2c

)
;
1
2

(
13 +

1√
1− 2c

)
;−1

)
+
(
12
(√

1− 2c− 1
)− 53c

(√
1− 2c− 1

)
+ c2(60

√
1− 2c− 58

))
×F
(

8,
1
2

(
7 +

1√
1− 2c

)
;
1
2

(
15 +

1√
1− 2c

)
;−1

))
.

(2.229)

Substitution of the above formulas into (2.221) gives

N13 = 2(4c− 3)
6c− 3

(
v∗ −βv3

∗ +T0
)− 2

3

√
2(1− 2c)

(
3βv2

∗ −α
)−N134−N135. (2.230)

Applying (2.5), the formula for N14 takes the form

N14 =N141 +N142 +N143−N144 +N145, (2.231)

where

N141 = 2T0

∫∞
0
e−t
(

3− 4c
3(1− 2c)

−sech2 (−√1−2ct
)− tgh

(−√1−2ct
)

√
1−2c

)
sgn
(−ẋ01−v∗

)
dt,

N142 = 2
(
v∗ −βv3

∗
)∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
dt,

N143 = 2
√

2(1− 2c)
(
3βv2

∗ −α
)

×
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt,
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N144 = 12(1− 2c)2βv∗

×
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N145 = 4
√

2(1− 2c)3β

×
∫∞

0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt.

(2.232)

Integral N141 for |v∗| > (1− 2c)/
√

2 is defined as follows:

N141 =−2T0

∫∞
0
e−t
(

3− 4c
3(1− 2c)

− sech2 (−√1− 2ct
)− tgh

(−√1− 2ct
)

√
1− 2c

)
dt

=−
(

lim
t→∞N141(t)−N141(0)

)
= 2T0(4c− 3)

6c− 3
,

(2.233)

where

N141(t)= 2T0e−t
(
3− 4c+ 3

√
1− 2c tgh

(√
1− 2ct

))
3(2c− 1)

. (2.234)

In the second case, that is, for |v∗| < (1− 2c)/
√

2, one obtains

N141 = 2T0

(
−N141(t)

∣∣t3
0 +N141(t)

∣∣t4
t3
−N141(t)

∣∣∞
t4

)
=−2T0

(
2
(
N141

(
t3
)−N141

(
t4
))

+ lim
t→∞N141(t)−N141(0)

)
.

(2.235)

Taking into account (2.233), one obtains

N141 =−2T0

(
2
(
N141

(
t3
)−N141

(
t4
))− 4c− 3

6c− 3

)
. (2.236)

This part of our consideration provides the following main result:

N141 = 2T0(4c− 3)
6c− 3

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4T0
(
N141

(
t3
)−N141

(
t4
))

for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.237)

Taking into account (2.225), integral N142 is equal to

N142 =N132 = 2(4c− 3)
6c− 3

(
v∗ −βv3

∗
)
. (2.238)
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On the other hand, according to (2.227), integral N133 is as follows:

N143 =N133 = 2
3

√
2(1− 2c)

(
3βv2

∗ −α
)
. (2.239)

Taking into account (2.228), integral N144 is defined in the following way:

N144 = 12βv∗
360(2c− 1)

(
4725− 18216c+ 17536c2 + 30

√
1− 2c

(
189 + 8c(64c− 79)

))
×
(

30(2c− 1)
(
7695 + 4c

(− 13587 + 8c
(
4419 + 128c(16c− 39)

)))
− 4
√

1−2c
(
69255+c

(−555705+8c
(
209115+32c(4392c−8747)

)))
+(8c−3)

× (− 1485 + 8394c−15712c2 + 9728c3

+
√

1− 2c
(− 1485 + 4c

(
2751 + 16c(320c− 411)

)))
×F
(

1,1 +
1

2
√

1− 2c
;4 +

1
2
√

1− 2c
;−1

)
+ 2(3− 8c)2(8c− 5)

× (− 12 + 24c+
√

1− 2c(40c− 21)
) ·F(1,2 +

1
2
√

1− 2c
;5 +

1
2
√

1− 2c
;−1

)
+ (8c−3)

(
45+102c−896c2+1024c3+

√
1−2c

(−45+4c
(
207+16c(32c−39)

)))
×F
(

1,3 +
1

2
√

1− 2c
;6 +

1
2
√

1− 2c
;−1

))
.

(2.240)

According to (2.229), integral N145 is

N145= 1024
√

2(1− 2c)3β(
1+3

√
1−2c

)(
1+55

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3

(
327 + 263

√
1− 2c

)
c+
(
954 + 572

√
1− 2c

)
c2)

×F
(

8,
1
2

(
3 +

1
2
√

1− 2c

)
;
1
2

(
11 +

1
2
√

1− 2c

)
;−1

)
− 2(8c− 3)

(− 8− 20
√

1− 2c+ 16c+ 39c
√

1− 2c
)

·F
(

8,
1
2

(
5 +

1
2
√

1− 2c

)
;
1
2

(
13 +

1
2
√

1− 2c

)
;−1

)
+
(
12
(√

1− 2c− 1
)− 53c

(√
1− 2c− 1

)
+ c2(60

√
1− 2c− 58

))
×F
(

8,
1
2

(
7 +

1
2
√

1− 2c

)
;
1
2

(
15 +

1
2
√

1− 2c

)
;−1

))
.

(2.241)
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Substituting the above formulas into (2.231), one obtains

N14 = 2(4c− 3)
6c− 3

(
v∗ −βv3

∗ +T0
)

+
2
3

√
2(1− 2c)

(
3βv2

∗ −α
)−N144 +N145

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4T0
(
N141

(
t3
)−N141

(
t4
))

for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.242)

Substitution of the above formulas into (2.207) gives

N1
(
t0
)= Ãsin

(
ωt0− κ

)− 2
√

2(1− 2c)
3

(
δ11− δ21

)
+N123 +N124

−
√

2
3(2c−1)

(
α21−α11

)(
3
√

1−2c+cψ
(

1
4

(
1+

1√
1−2c

))
−cψ

(
1
4

(
3+

1√
1−2c

)))

+
4
3

√
2(1− 2c)

(
3βv2

∗ −α
)

+N134 +N135−N144 +N145

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4T0
(−N141

(
t3
)

+N141
(
t4
))

for v∗ <

√
1− 2c

2
,

0 for v∗ ≥
√

1− 2c
2

.

(2.243)

Finally, the next criterion of chaos is defined in the following way:

Ã >

∣∣∣∣∣∣∣∣∣∣
−2
√

2(1− 2c)
3

(
δ11− δ21

)
+N123 +N124

−
√

2
3(2c− 1)

(
α21−α11

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))

+
4
3

√
2(1− 2c)

(
3βv2

∗ −α
)

+N134 +N135−N144 +N145

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4T0
(−N141

(
t3
)

+N141
(
t4
))

for v∗ <

√
1− 2c

2

0 for v∗ ≥
√

1− 2c
2

∣∣∣∣∣∣∣∣∣∣∣
.

(2.244)

According to (2.84), the Melnikov function is

N2
(
t0
)=N21

(
t0
)−N22−N23−N24, (2.245)
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where

N21
(
t0
)= 2Aγ

∫∞
−∞

ṙ
(√

1− 2ct
)

cosω
(
t+ t0

)
dt

=−2Aγ
√

1− 2c
∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)

cosω
(
t+ t0

)
dt,

N22 = 2A
∫∞
−∞

(
δ1
(
x10, ẋ10

)− δ2
(
x10, ẋ10

))
ṙ
(√

1− 2ct
)
dt,

N23 = 2A
∫∞
−∞

ṙ
(√

1− 2ct
)
T
(
ẋ01− v∗

)
dt

=−2A
√

1− 2c
∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
T
(
ẋ01− v∗

)
dt,

N24 = 2A
∫∞
−∞

ṙ
(√

1− 2ct
)
T
(− ẋ01− v∗

)
dt

=−2A
√

1− 2c
∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
T
(− ẋ01− v∗

)
dt.

(2.246)

The formula for N21(t0) is as follows:

N21
(
t0
)=N211

(
t0
)−N212

(
t0
)
, (2.247)

where

N211
(
t0
)=−2Aγ

√
1− 2ccosωt0

∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)

cosωtdt,

N212
(
t0
)=−2Aγ

√
1− 2c sinωt0

∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)

sinωtdt.

(2.248)

Upon integration we have

N211
(
t0
)= 0,

N212
(
t0
)=− 2πAγω√

1− 2c
sech

(
πω

2
√

1− 2c

)
sinωt0.

(2.249)

Substitution of the above formulas into (2.247) gives

N21
(
t0
)= 2πAγω√

1− 2c
sech

(
πω

2
√

1− 2c

)
sinωt0. (2.250)

Formula N22 is defined by

N22 =−N221 +N222 +N223 +N224, (2.251)
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where

N221 = 2
√

2(1− 2c)A
(
α11−α21

)∫∞
−∞

sech2 (√1− 2ct
)

tgh
(√

1− 2ct
)
dt,

N222 = 2
√

2(1− 2c)A
(
δ11− δ21

)∫∞
−∞

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N223 = 4(1− 2c)2A
(
δ12− δ22

)
×
∫∞
−∞

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)

sgn
(

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
))
dt

= 8(1− 2c)2A
(
δ12− δ22

)∫∞
0

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt,

N224 = 4
√

2(1− 2c)3A
(
δ13− δ23

)∫∞
−∞

sech4 (√1− 2ct
)

tgh4 (√1− 2ct
)
dt.

(2.252)

Carrying out the computations, one gets

N221 = 0, N222 = 4A
√

2(1− 2c)
3

(
δ11− δ21

)
,

N223 = 16A(1− 2c)3/2

15

(
δ12− δ22

)
, N224 = 16

√
2A(1− 2c)5/2

15

(
δ13− δ23

)
.

(2.253)

Substitution of the above formulas into (2.251) gives

N22 = 4A
3

(√
2(1− 2c)

(
δ11− δ21

)
+

4
5

(1− 2c)3/2(δ12− δ22
)

+
4
√

2
5

(1− 2c)5/2(δ13− δ23
))
.

(2.254)

According to (2.5), the formula for N23 takes the form

N23 =−N231−N232 +N233 +N234 +N235, (2.255)

where

N231 = 2AT0

√
1− 2c

∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)

sgn
(
ẋ01− v∗

)
dt,

N232 = 2A
(
v∗ −βv3

∗
)√

1− 2c
∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt,

N233 = 2
√

2A
(
3βv2

∗ −α
)
(1− 2c)3/2

∫∞
−∞

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N234 = 12Aβv∗(1− 2c)5/2
∫∞
−∞

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt,

N235 = 4
√

2Aβ(1− 2c)7/2
∫∞
−∞

sech4 (√1− 2ct
)

tgh4 (√1− 2ct
)
dt.

(2.256)
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Integral N231 for |v∗| > (1− 2c)/
√

2 is defined in the following way:

N231 =−2AT0

√
1− 2c

∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt = 0. (2.257)

For |v∗| < (1− 2c)/
√

2, one has

N231 = 2AT0

√
1− 2c

(
−
∫ t1
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt

+
∫ t2
t1

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt

−
∫∞
t2

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt

)
.

(2.258)

Carrying out the integration, one gets

N231 = 2AT0

(
sech

(√
1− 2ct

)∣∣t1−∞ − sech
(√

1− 2ct
)∣∣t2

t1
+ sech

(√
1− 2ct

)∣∣∞
t2

)
= 4AT0

(
sech

(√
1− 2ct1

)− sech
(√

1− 2ct2
))

,
(2.259)

and hence

N231 = 4AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2(1− 2c)2
−
√√√√1

2
−
√

1
4
− v2∗

2(1− 2c)2

⎞⎟⎠ . (2.260)

The following main result of this part of consideration is reported:

N231 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4AT0

⎛⎜⎝
√√√√1

2
+

√
1
4
− v2∗

2(1−2c)2
−
√√√√1

2
−
√

1
4
− v2∗

2(1−2c)2

⎞⎟⎠ for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.261)

Observe that

N232 =N234 = 0. (2.262)

On the other hand, integral N233 is as follows:

N233 = 2
√

2
3

A
(
3βv2

∗ −α
)
(1− 2c)tgh3 (√1− 2ct

)∣∣∣∣∞
−∞
= 4

√
2

3
A(1− 2c)

(
3βv2

∗ −α
)
.

(2.263)
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Integral N235 is equal to

N235 = 4
√

2
35

Aβ(1− 2c)3(6 + cosh
(
2
√

1− 2ct
))

sech2 (√1− 2ct
)

tgh5 (√1− 2ct
)∣∣∣∣∞
−∞

,

(2.264)

and therefore

N235 = 16
√

2
35

Aβ(1− 2c)3. (2.265)

Substitution of the above formulas into (2.255) gives

N23 = 4
√

2
3

A
(
3βv2

∗ −α
)
(1− 2c) +

16
√

2
35

Aβ(1− 2c)3

−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4AT0

⎛⎜⎝
√√√√1

2
−
√

1
4
− v2∗

2(1−2c)2
−
√√√√1

2
+

√
1
4
− v2∗

2(1−2c)2

⎞⎟⎠ for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.266)

According to (2.5), N24 takes the form

N24 =−N241−N242−N243 +N244−N245, (2.267)

where

N241 = 2AT0

√
1− 2c

∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)

sgn
(− ẋ01− v∗

)
dt,

N242 = 2A
(
v∗ −βv3

∗
)√

1− 2c
∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt,

N243 = 2
√

2A
(
3βv2

∗ −α
)
(1− 2c)3/2

∫∞
−∞

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N244 = 12Aβv∗(1− 2c)5/2
∫∞
−∞

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt,

N245 = 4
√

2Aβ(1− 2c)7/2
∫∞
−∞

sech4 (√1− 2ct
)

tgh4 (√1− 2ct
)
dt.

(2.268)

Computing integral N241 for |v∗| > (1− 2c)/
√

2, one gets

N241 =−2AT0

√
1− 2c

∫∞
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt = 0. (2.269)
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In the second case, that is, for |v∗| < (1− 2c)/
√

2, one obtains

N241 = 2AT0

√
1− 2c

(
−
∫ t3
−∞

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt

+
∫ t4
t3

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt

−
∫∞
t4

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt

)
,

(2.270)

where t3, t4 are as follows:

t3 =−t2 = 1√
1− 2c

arc sech

√√√√1
2
−
√

1
4
− v2∗

2(1− 2c)2
,

t4 =−t1 = 1√
1− 2c

arc sech

√√√√1
2

+

√
1
4
− v2∗

2(1− 2c)2
.

(2.271)

Upon integration one has

N241 = 2AT0

(
sech

(√
1− 2ct

)∣∣t3−∞ − sech
(√

1− 2ct
)∣∣t4

t3
+ sech

(√
1− 2ct

)∣∣∞
t4

)
= 4AT0

(
sech

(√
1− 2ct3

)− sech
(√

1− 2ct4
))

,
(2.272)

and hence

N241 = 4AT0

⎛⎜⎝
√√√√1

2
−
√

1
4
− v2∗

2(1− 2c)2
−
√√√√1

2
+

√
1
4
− v2∗

2(1− 2c)2

⎞⎟⎠ , (2.273)

and finally

N241 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4AT0

⎛⎜⎝
√√√√1

2
−
√

1
4
− v2∗

2(1− 2c)2
−
√√√√1

2
+

√
1
4
− v2∗

2(1− 2c)2

⎞⎟⎠ for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.274)

Since

N242 =N244 = 0,

N243 =N233,

N245 =N235,

(2.275)
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and according to (2.267) one obtains

N24 =−4
√

2
3

A
(
3βv2

∗ −α
)
(1− 2c)− 16

√
2

35
Aβ(1− 2c)3

−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4AT0

⎛⎜⎝
√√√√1

2
−
√

1
4
− v2∗

2(1− 2c)2
−
√√√√1

2
+

√
1
4
− v2∗

2(1− 2c)2

⎞⎟⎠ for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.276)

Substituting (2.250), (2.254), (2.266), and (2.276) into (2.245), the following Melnikov
function is obtained:

N2
(
t0
)= 2πAγω√

1− 2c
sech

(
πω

2
√

1− 2c

)
sinωt0

− 4A
3

(√
2(1−2c)

(
δ11−δ21

)
+

4
5

(1−2c)3/2(δ12−δ22
)

+
4
√

2
5

(1−2c)5/2(δ13−δ23
))

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
−
√

1
4
− v2∗

2(1−2c)2
−
√√√√1

2
+

√
1
4
− v2∗

2(1−2c)2

⎞⎟⎠ for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.277)

The condition of stable and unstable manifolds intersection is

2π|A|γω√
1− 2c

sech
(

πω

2
√

1− 2c

)

>

∣∣∣∣∣∣∣∣∣∣∣
−4A

3

(√
2(1−2c)

(
δ11−δ21

)
+

4
5

(1−2c)3/2(δ12−δ22
)

+
4
√

2
5

(1−2c)5/2(δ13−δ23
))

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
8AT0

⎛⎜⎝
√√√√1

2
−
√

1
4
− v2∗

2(1−2c)2
−
√√√√1

2
+

√
1
4
− v2∗

2(1−2c)2

⎞⎟⎠ for v∗ <
1− 2c√

2

0 for v∗ ≥ 1− 2c√
2

∣∣∣∣∣∣∣∣∣∣∣
.

(2.278)

According to (2.87), the Melnikov function is defined as follows:

N3
(
t0
)=−N31

(
t0
)

+N32 +N33 +N34, (2.279)
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where

N31
(
t0
)= 2γ

∫ 0

−∞
R
(√

1− 2ct
)
et cosω

(
t+ t0

)
dt

= 2γ
∫ 0

−∞

(
3− 4c

3(1− 2c)
− sech2 (√1− 2ct

)− tgh
(√

1− 2ct
)

√
1− 2c

)
et cosω

(
t+ t0

)
dt,

N32 = 2
∫ 0

−∞

(
δ1
(
x10, ẋ10

)− δ2
(
x10, ẋ10

))
etR
(√

1− 2ct
)
dt,

N33 = 2
∫ 0

−∞
etR
(√

1− 2ct
)
T
(
ẋ01− v∗

)
dt

= 2
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
T
(
ẋ01− v∗

)
dt,

N34 = 2
∫ 0

−∞
etR
(√

1− 2ct
)
T
(− ẋ01− v∗

)
dt

= 2
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
T
(− ẋ01− v∗

)
dt.

(2.280)

Formula for N31(t0) is as follows:

N31
(
t0
)=N311

(
t0
)−N312

(
t0
)
, (2.281)

where

N311
(
t0
)= 2γ cosωt0

∫ 0

−∞

(
3− 4c

3(1− 2c)
− sech2 (√1− 2ct

)− tgh
(√

1− 2ct
)

√
1− 2c

)
et cosωtdt,

N312
(
t0
)= 2γ sinωt0

∫ 0

−∞

(
3− 4c

3(1− 2c)
− sech2 (√1− 2ct

)− tgh
(√

1− 2ct
)

√
1− 2c

)
et sinωtdt.

(2.282)

Comparing with (2.210) and taking into account (2.213), one gets

N311
(
t0
)=N111

(
t0
)=γ cosωt0

(
6
√

1− 2cω2− 2(4c− 3)
3(2c− 1)

(
1 +ω2

)
+

ω

2c− 1

(
Imψ

(
1 +ωi

4
√

1− 2c

)
−Imψ

(
1
4

(
2 +

1 +ωi√
1− 2c

))))
.

(2.283)
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Comparing with (2.211) and according to (2.214), one has

N312
(
t0
)=−N112

(
t0
)=−γ sinωt0

(
− 2ω

(
(4c− 3) + 3

√
1− 2c

)
3(2c− 1)

(
1 +ω2

)
+

ω

2c−1

(
Reψ

(
1+ωi

4
√

1−2c

)
−Reψ

(
1
4

(
2+

1−ωi√
1−2c

))))
.

(2.284)

Substituting the above formulas into (2.281), one obtains

N31
(
t0
)= γ(A1 cosωt0 +A2 sinωt0

)= Ãsin
(
ωt0 + κ

)
, (2.285)

where

A1 = 6
√

1− 2cω2− 2(4c− 3)
3(2c− 1)

(
1 +ω2

) +
ω

2c− 1

(
Imψ

(
1 +ωi

4
√

1− 2c

)
− Imψ

(
1
4

(
2 +

1 +ωi√
1− 2c

)))
,

A2 =−2ω
(
(4c− 3) + 3

√
1− 2c

)
3(2c− 1)

(
1 +ω2

) +
ω

2c− 1

(
Reψ

(
1 +ωi

4
√

1− 2c

)
−Reψ

(
1
4

(
2 +

1−ωi√
1− 2c

)))
,

(2.286)

and Ã= γ
√
A2

1 +A2
2, tgκ= A1/A2.

The formula for N32 is as follows:

N32 =N321−N322−N323−N324, (2.287)

where

N321 = 2
√

2(1− 2c)
(
α11−α21

)∫ 0

−∞
sech

(√
1− 2ct

)
etR
(√

1− 2ct
)
dt,

N322 = 2
√

2(1− 2c)
(
δ11− δ21

)∫ 0

−∞
sech

(√
1− 2ct

)
tgh
(√

1− 2ct
)
etR
(√

1− 2ct
)
dt,

N323 = 4(1− 2c)2(δ12− δ22
)∫ 0

−∞
sech2 (√1− 2ct

)
tgh2 (√1− 2ct

)
sgn
(

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
))
etR
(√

1− 2ct
)
dt

=−4(1− 2c)2(δ12− δ22
)∫ 0

−∞
sech2 (√1− 2ct

)
tgh2 (√1− 2ct

)
etR
(√

1− 2ct
)
dt,

N324 = 4
√

2(1− 2c)3(δ13− δ23
)∫ 0

−∞
sech3 (√1− 2ct

)
tgh3 (√1− 2ct

)
etR
(√

1− 2ct
)
dt.

(2.288)
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Computations yield

N321=
√

2
3(1− 2c)

(
α11−α21

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))
,

N322=−2
3

√
2(1− 2c)

(
δ11− δ21

)
,

N323= 128(1− 2c)3/2
(
δ22− δ12

)
3
(
1 + 2

√
1− 2c

)(
1 + 4

√
1− 2c

)(
1 + 6

√
1− 2c

)(
1 + 8

√
1− 2c

)(
1 + 10

√
1− 2c

)
×
((− 6a

(
191 + 152

√
1− 2c

)
+ 297

(
1 +
√

1− 2c
)

+ 16
(
69 + 40

√
1− 2c

)
c2)

×F
(

6,
1
2

(
2 +

1√
1− 2c

)
;
1
2

(
8 +

1√
1− 2c

)
;−1

)

+ (3 + 8c)

((− 6
(
4 + 7

√
1− 2c

)
+ 16c

(
3 + 5

√
1− 2c

))
×F
(

6,
1
2

(
4 +

1√
1− 2c

)
;
1
2

(
10 +

1√
1− 2c

)
;−1

)
+
(− 3 + 3

√
1− 2c+ 6c− 8c

√
1− 2c

)
F
(

6,
1
2

(
6 +

1√
1− 2c

)
;
1
2

(
12 +

1√
1− 2c

)
;−1

)))
,

N324 =− 1024
√

2(1−2c)3
(
δ23−δ13

)(
1+3

√
1−2c

)(
1+5

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3c

(
327 + 263

√
1− 2c

)
+
(
954 + 572

√
1− 2c

)
c2)

×F
(

8,
1
2

(
3 +

1√
1− 2c

)
;
1
2

(
11 +

1√
1− 2c

)
;−1

)
+ 2(3 + 8c)

(− 8− 20
√

1− 2c+ 16c+ 39c
√

1− 2c
)

F
(

8,
1
2

(
5 +

1√
1− 2c

)
;
1
2

(
13 +

1√
1− 2c

)
;−1

)
+
(
12
(− 1 +

√
1− 2c

)− 53c
(− 1 +

√
1− 2c

)
+
(− 58 + 60

√
1− 2c

)
c2)

×F
(

8,
1
2

(
7 +

1√
1− 2c

)
;
1
2

(
15 +

1√
1− 2c

)
;−1

))
.

(2.289)

Substitution of the above formulas into (2.287) gives

N32 =
√

2
3(1− 2c)

(
α11−α21

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))
+

2
3

√
2(1− 2c)

(
δ11− δ21

)−N323−N324.

(2.290)
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According to (2.5), one obtains

N33 =N331 +N332−N333−N334−N335, (2.291)

where

N331 = 2T0

∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
sgn
(
ẋ01− v∗

)
dt,

N332 = 2
(
v∗ −βv3

∗
)∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
dt,

N333 = 2
√

2(1− 2c)
(
3βv2

∗ −α
)

×
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt,

N334 = 12(1− 2c)2βv∗

×
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N335 = 4
√

2(1− 2c)3β

×
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt.

(2.292)

The formula N331 for |v∗| > (1− 2c)/
√

2 is

N331 =−2T0

∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
dt

=−N331(0) + lim
t→−∞N331(t)=−2T0(4c− 3)

6c− 3
,

(2.293)

where

N331(t)= 2T0et
(− 3 + 4c+ 3

√
1− 2c tgh

(√
1− 2ct

))
3(2c− 1)

. (2.294)
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In the second case, that is, for |v∗| < (1− 2c)/
√

2, one gets

N331 = 2T0

(
−N331(t)

∣∣t1−∞ +N331(t)
∣∣t2
t1
−N331(t)

∣∣0
t2

)
=−2T0

(
2
(
N331

(
t1
)−N331

(
t2
))

+N331(0)− lim
t→−∞N331(t)

)
.

(2.295)

The main result of these considerations is as follows:

N331 =−2T0(4c− 3)
6c− 3

−

⎧⎪⎪⎨⎪⎪⎩
4T0
(
N331

(
t1
)−N331

(
t2
))

for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.296)

Integral N332 is

N332 = 2
(
v∗ −βv3

∗
)∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
dt

= 2
(
v∗ −βv3∗

)
(4c− 3)

6c− 3
.

(2.297)

On the other hand, integral N333 is equal to

N333

=
√

2(1−2c)
(
3βv2∗−α

)
et sech3 (√1−2ct

)(
2
√

1−2ct cosh
(
2
√

1−2ct
)−sinh

(
2
√

1−2ct
))

6c− 3

∣∣∣∣0

−∞
,

(2.298)

and hence

N333 =−2
3

√
2(1− 2c)

(
3βv2

∗ −α
)
. (2.299)

Integral N334 is defined in the following way:

N334 = 384(1− 2c)2βv∗
3
√

1−2c
(
1+2

√
1−2c

)(
1+4

√
1−2c

)(
1+6

√
1−2c

)(
1+8

√
1−2c

)(
1+10

√
1−2c

)
×
((

297
(
1 +
√

1− 2c
)− 6

(
191 + 152

√
1− 2c

)
c+ 16

(
69 + 40

√
1− 2c

)
c2)

×F
(

6,1 +
1

2
√

1− 2c
;4 +

1
2
√

1− 2c
;−1

)
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− (8c− 3)
(− 6

(
4 + 7

√
1− 2c

)
+ 80c

(
1 +
√

1− 2c
))

·F
(

6,2 +
1

2
√

1− 2c
;5 +

1
2
√

1− 2c
;−1

)

+
(
3
(√

1− 2c− 1
)− 2c

(
4
√

1− 2c− 3
))
F
(

6,3 +
1

2
√

1−2c
;6 +

1
2
√

1−2c
;−1
))
.

(2.300)

Integral N335 is equal to

N335=− 1024
√

2(1− 2c)3β(
1+3

√
1−2c

)(
1+55

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3

(
327 + 263

√
1− 2c

)
c+
(
954 + 572

√
1− 2c

)
c2)

×F
(

8,
1
2

(
3 +

1√
1− 2c

)
;
1
2

(
11 +

1√
1− 2c

)
;−1

)
− 2(8c− 3)

(− 8− 20
√

1− 2c+ 16c+ 39c
√

1− 2c
)

·F
(

8,
1
2

(
5 +

1√
1− 2c

)
;
1
2

(
13 +

1√
1− 2c

)
;−1

)
+
(
12
(√

1− 2c− 1
)− 53c

(√
1− 2c− 1

)
+ c2(60

√
1− 2c− 58

))
×F
(

8,
1
2

(
7 +

1√
1− 2c

)
;
1
2

(
15 +

1√
1− 2c

)
;−1

))
.

(2.301)

Substitution of the above formulas into (2.291) gives

N33 = 2
3

√
2(1− 2c)

(
3βv2

∗ −α
)

+
2(4c− 3)

6c− 3

(
v∗ −βv3

∗ −T0
)−N334−N335

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4T0
(
N331

(
t1
)−N331

(
t2
))

for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.302)

Applying (2.5), the formula for N34 takes the form

N34 =N341 +N342 +N343−N344 +N345, (2.303)



J. Awrejcewicz and M. Holicke 63

where

N341 = 2T0

∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
sgn
(− ẋ01− v∗

)
dt,

N342 = 2
(
v∗ −βv3

∗
)∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)
dt,

N343 = 2
√

2(1− 2c)
(
3βv2

∗ −α
)

×
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
dt,

N344 = 12(1− 2c)2βv∗

×
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)

sech2 (√1− 2ct
)

tgh2 (√1− 2ct
)
dt,

N345 = 4
√

2(1− 2c)3β

×
∫ 0

−∞
et
(

3− 4c
3(1− 2c)

− sech2 (√1− 2ct
)− tgh

(√
1− 2ct

)
√

1− 2c

)

sech3 (√1− 2ct
)

tgh3 (√1− 2ct
)
dt.

(2.304)

For t3 > 0 and t4 > 0, integral N141 is defined as follows:

N341 =N331 =−N331(0) + lim
t→−∞N331(t)=−2T0(4c− 3)

6c− 3
. (2.305)

According to (2.297), integral N342 is

N342 =N332 = 2
(
v∗ −βv3∗

)
(4c− 3)

6c− 3
. (2.306)

On the other hand, according to (2.299), the integral for N343 is

N343 =N333 =−2
3

√
2(1− 2c)

(
3βv2

∗ −α
)
. (2.307)
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Taking into account (2.300), one obtains

N344 =N334

= 384(1− 2c)2βv∗
3
√

1−2c
(
1 + 2

√
1−2c

)(
1 + 4

√
1−2c

)(
1 + 6

√
1−2c

)(
1 + 8

√
1−2c

)(
1 + 10

√
1−2c

)
×
((

297
(
1 +
√

1− 2c
)− 6

(
191 + 152

√
1− 2c

)
c+ 16

(
69 + 40

√
1− 2c

)
c2)

×F
(

6,1 +
1

2
√

1− 2c
;4 +

1
2
√

1− 2c
;−1

)
− (8c− 3)

(− 6
(
4 + 7

√
1− 2c

)
+ 80c

(
1 +
√

1− 2c
))

·F
(

6,2 +
1

2
√

1− 2c
;5 +

1
2
√

1− 2c
;−1

)

+
(
3
(√

1− 2c− 1
)− 2c

(
4
√

1− 2c− 3
))
F
(

6,3 +
1

2
√

1−2c
;6 +

1
2
√

1−2c
;−1
))
.

(2.308)

According to (2.301), integral N345 is

N345=N335

=− 1024
√

2(1− 2c)3β(
1+3

√
1−2c

)(
1+55

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3

(
327 + 263

√
1− 2c

)
c+
(
954 + 572

√
1− 2c

)
c2)

×F
(

8,
1
2

(
3 +

1√
1− 2c

)
;
1
2

(
11 +

1√
1− 2c

)
;−1

)
− 2(8c− 3)

(− 8− 20
√

1− 2c+ 16c+ 39c
√

1− 2c
)

·F
(

8,
1
2

(
5 +

1√
1− 2c

)
;
1
2

(
13 +

1√
1− 2c

)
;−1

)
+
(
12
(√

1− 2c− 1
)− 53c

(√
1− 2c− 1

)
+ c2(60

√
1− 2c− 58

))
×F
(

8,
1
2

(
7 +

1√
1− 2c

)
;
1
2

(
15 +

1√
1− 2c

)
;−1

))
.

(2.309)

Substitution of the above formulas into (2.303) gives

N34 =−2
3

√
2(1− 2c)

(
3βv2

∗ −α
)

+
2(4c− 3)

6c− 3

(
v∗ −βv3

∗ −T0
)−N344 +N345, (2.310)
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whereas substitution of the above formulas into (2.279) gives

N3
(
t0
)=−Ãsin

(
ωt0 + κ

)
+

2
3

√
2(1− 2c)

(
δ11− δ21

)−N323−N324

+

√
2

3(1−2c)

(
α11−α21

)(
3
√

1−2c+cψ
(

1
4

(
1+

1√
1−2c

))
−cψ

(
1
4

(
3+

1√
1−2c

)))

+
4(4c− 3)

6c− 3

(
v∗ −βv3

∗ −T0
)−N334−N335−N344 +N345

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4T0
(
N331

(
t1
)−N331

(
t2
)

+N341
(
t3
)−N341

(
t4
))

for v∗ <
1− 2c√

2
,

0 for v∗ ≥ 1− 2c√
2
.

(2.311)

Finally, the following chaos criterion is obtained:

Ã >

∣∣∣∣∣∣∣∣
2
3

√
2(1− 2c)

(
δ11− δ21

)−N323−N324

+

√
2

3(1− 2c)

(
α11−α21

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))

+
4(4c− 3)

6c− 3

(
v∗ −βv3

∗ −T0
)−N334−N335−N344 +N345

−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4T0
(
N331

(
t1
)−N331

(
t2
))

for v∗ <
1− 2c√

2

0 for v∗ ≥ 1− 2c√
2

∣∣∣∣∣∣∣∣∣ .
(2.312)

According to (2.92), the Melnikov function is defined by

N1−
(
t0
)=N11−

(
t0
)

+N12− +N13− −N14−, (2.313)

where

N11−
(
t0
)=N11

(
t0
)= 2γ

∫∞
0
R
(−√1− 2ct

)
e−t cosω

(
t+ t0

)
dt,

N12− = 2
∫∞

0

(
δ1
(
x10, ẋ10

)
+ δ2

(
x10, ẋ10

))
e−tR

(−√1− 2ct
)
dt,

N13− =N13 = 2
∫∞

0
e−tR

(−√1− 2ct
)
T
(
ẋ01− v∗

)
dt,

N14− =N14 = 2
∫∞

0
e−tR

(−√1− 2ct
)
T
(− ẋ01− v∗

)
dt.

(2.314)
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The integral for N12− is defined as follows:

N12− =N121− −N122− −N123− −N124−, (2.315)

where

N121− = 2
√

2(1− 2c)
(
α11 +α21

)∫∞
0

sech
(√

1− 2ct
)
e−tR

(−√1− 2ct
)
dt,

N122− = 2
√

2(1− 2c)
(
δ11 + δ21

)∫∞
0

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
)
e−tR

(−√1− 2ct
)
dt,

N123− = 4(1− 2c)2(δ12 + δ22
)∫∞

0
sech2 (√1− 2ct

)
tgh2 (√1− 2ct

)
e−tR

(−√1− 2ct
)

sgn
(

sech
(√

1− 2ct
)

tgh
(√

1− 2ct
))
dt,

N124− = 4
√

2(1− 2c)3(δ13 + δ23
)∫∞

0
sech3 (√1− 2ct

)
tgh3 (√1− 2ct

)
e−tR

(−√1− 2ct
)
dt.

(2.316)

The computations give

N121− =
√

2
3(2c− 1)

(
α21 +α11

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))
,

N122− = −2
√

2(1− 2c)
3

(
δ11 + δ21

)
,

N123− = − 128(1− 2c)3/2
(
δ22 + δ12

)
3
(
1 + 2

√
1− 2c

)(
1 + 4

√
1− 2c

)(
1 + 6

√
1− 2c

)(
1 + 8

√
1− 2c

)(
1 + 10

√
1− 2c

)
×
((− 6a

(
191 + 152

√
1− 2c

)
+ 297

(
1 +
√

1− 2c
)

+ 16
(
69 + 40

√
1− 2c

)
c2)

×F
(

6,
1
2

(
2 +

1√
1− 2c

)
;
1
2

(
8 +

1√
1− 2c

)
;−1

)

+ (3 + 8c)

((− 6
(
4 + 7

√
1− 2c

)
+ 16c

(
3 + 5

√
1− 2c

))

×F
(

6,
1
2

(
4 +

1√
1− 2c

)
;
1
2

(
10 +

1√
1− 2c

)
;−1

)
+
(− 3 + 3

√
1− 2c+ 6c− 8c

√
1− 2c

)
F
(

6,
1
2

(
6 +

1√
1− 2c

)
;
1
2

(
12 +

1√
1− 2c

)
;−1

)))
,
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N124− =− 1024
√

2(1− 2c)3
(
δ23 + δ13

)(
1+3

√
1−2c

)(
1+5

√
1−2c

)(
1+7

√
1−2c

)(
1+9

√
1−2c

)(
1+11

√
1−2c

)(
1+13

√
1−2c

)
×
((

252
(
1 +
√

1− 2c
)− 3c

(
327 + 263

√
1− 2c

)
+
(
954 + 572

√
1− 2c

)
c2)

×F
(

8,
1
2

(
3 +

1√
1− 2c

)
;
1
2

(
11 +

1√
1− 2c

)
;−1

)

+ 2(3 + 8c)
(− 8− 20

√
1− 2c+ 16c+ 39c

√
1− 2c

)
F
(

8,
1
2

(
5 +

1√
1− 2c

)
;
1
2

(
13 +

1√
1− 2c

)
;−1

)

+
(
12
(− 1 +

√
1− 2c

)− 53c
(− 1 +

√
1− 2c

)
+
(− 58 + 60

√
1− 2c

)
c2)

×F
(

8,
1
2

(
7 +

1√
1− 2c

)
;
1
2

(
15 +

1√
1− 2c

)
;−1

))
,

(2.317)

and hence

N12− =
√

2
3(2c− 1)

(
α21 +α11

)(
3
√

1− 2c+ cψ
(

1
4

(
1 +

1√
1− 2c

))
− cψ

(
1
4

(
3 +

1√
1− 2c

)))

+
2
3

√
2(1− 2c)

(
δ11 + δ21

)−N123−N124.

(2.318)

Substitution of (2.215), (2.230), (2.242), and (2.318) into (2.313) yields

N1−
(
t0
)= Ãsin

(
ωt0− κ

)
+

2
3

√
2(1− 2c)

(
δ11 + δ21

)−N123−N124

+

√
2

3(2c−1)

(
α21 +α11

)(
3
√

1−2c+cψ
(

1
4

(
1+

1√
1−2c

))
−cψ

(
1
4

(
3+

1√
1−2c

)))

− 4
3

√
2(1− 2c)

(
3βv2

∗ −α
)−N134−N135 +N144−N145
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The criterion of chaos is defined by the following inequality:

Ã >

∣∣∣∣∣∣∣∣∣∣
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(2.320)

According to (2.95), the Melnikov function is

N2−
(
t0
)=N21−

(
t0
)

+N22− −N23− −N24−, (2.321)

where

N21−
(
t0
)=N21

(
t0
)= 2Aγ

∫∞
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ṙ
(√

1− 2ct
)
T
(
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dt,
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)
T
(− ẋ01− v∗

)
dt.

(2.322)

Substitution of (2.250), (2.254), (2.266), and (2.276) into (2.321) yields the next Mel-
nikov function defined in the following way:
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)= 2πAγω√
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2
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2
,
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2
.

(2.323)
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The condition of intersection of stable and unstable manifolds is as follows:
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(2.324)

According to (2.98), the Melnikov function has the following form:

N3−
(
t0
)=−N31−

(
t0
)−N32− +N33− +N34−, (2.325)

where
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(2.326)

Substitution of the above formulas into (2.325) gives
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(2.327)



70 Stick-slip chaos in a self-excited oscillator

21.510.5

v∗

0.5

1

1.5

2

2.5

3

ϕ

Figure 3.1. Thresholds of chaos γ = γ(v∗) for δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1;
v∗ = 0,2; ω= 1.

Finally, the chaos criterion is given by the following inequality:

Ã >
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(2.328)

3. Numerical simulations

In Figure 3.1, chaotic thresholds γ = γ(v∗) generated by chaos criteria governed by for-
mulas (2.115), (2.144), (2.174), (2.178), (2.198), and (2.207) and associated with collaps-
ing of the homoclinic orbits q01,2(t) governed by (2.18) are reported.

For the parameters δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α = 0,2; β = 0,1; v∗ = 0,2;
ω = 1, critical values of the parameter γ are as follows: γcr1 ≈ 0,071, γcr2 ≈ 0,47, γcr ≈
1,59, γcr4 ≈ 3,76. We assume that the coupling stiffness has the form either k0(z) = z5

or k0(z) = z3. In Figure 3.2, bifurcation diagrams of the investigated system in the case



J. Awrejcewicz and M. Holicke 71

3.63.22.82.421.61.20.80.4
γ

−1.6
−1.2
−0.8
−0.4

0.4
0.8
1.2
1.6

x1

(a)

3.63.22.82.421.61.20.80.4
γ

−1.6
−1.2
−0.8
−0.4

0.4
0.8
1.2
1.6

x2

(b)

Figure 3.2. Bifurcation diagrams for k0(z)= z5 and for δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2;
β = 0,1; v∗ = 0,2; ω= 1.

k0(z)= z5 and for δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1
are shown. Amplitude of excitation γ serves as the bifurcation parameter.

One may observe bifurcation in vicinity of the critical value γcr2, which takes place in
the interval (0,40,0,44). Figure 3.3 displays phase plots and Poincaré maps for k0(z) =
z5 and for γ = 0,40; δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α = 0,2; β = 0,1; v∗ = 0,2;
ω = 1. Regular dynamics is observed. Increase of the excitation amplitude up to γ = 0,44
remaining fixed other parameters results in occurrence of chaotic dynamics.

In Figure 3.4, phase plots and Poincaré maps for k0(z)= z5 and for γ = 0,44; δ1 = 0,1;
δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1 are shown.

The system moves in a chaotic manner and chaotic attractors with complex and stick-
slip structures are exhibited.

Let us analyze now dynamics of the investigated system for the coupling term k0(z)=
z3. Note that owing to the Melnikov-Gruendler approach applied to the Duffing oscilla-
tor, the same transition into chaos is now also predicted as it was for the case of k0(z)= z5.

In Figure 3.5, bifurcational diagrams for the parameter γ for the stiffness k0(z) = z3

and the fixed parameters δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2;
ω = 1 are shown.

It is confirmed that the homoclinic bifurcation takes place in the vicinity of γcr2. In
Figure 3.6, phase plots and Poincaré maps for k0(z)= z3 and for γ = 0,44; δ1 = 0,1; δ2 =
0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1 are reported.



72 Stick-slip chaos in a self-excited oscillator

1.61.20.80.4−0.4
x1

−1.6

−1.2

−0.8

−0.4

0.4

0.8

1.2

1.6

v1

(a)

1.61.20.80.4−0.4
x2

−1.6

−1.2

−0.8

−0.4

0.4

0.8

1.2

1.6

v2

(b)

Figure 3.3. Phase plots and Poincaré maps for k0(z)= z5 and for γ = 0,40; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1.

For γ = 0,44, the system moves on the periodic orbit with excitation frequency. In
Figure 3.7, phase plots and Poincaré maps for k0(z)= z3 and for γ = 0,48; δ1 = 0,1; δ2 =
0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1 are shown.

Increase of γ up to γ = 0,48 yields occurrence of a chaotic attractor.
In Figure 3.8, chaotic orbits yielded by destruction of the homoclinic orbits q01,2(t)

and q03,4(t) and obtained by (2.18) and (2.19), respectively, for the coupling k0(z)= z are
displayed.

In this case, additional critical values of the γ parameter are found: γcr6 ≈ 0,072, γcr7 ≈
1,19, γcr8 ≈ 1,32, γcr9 ≈ 1,48, γcr10 ≈ 1,54. They correspond to collapse of the homoclinic
orbits q03,4(t). In Figure 3.9, the associated bifurcational diagrams for k0(z)= z and δ1 =
0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1 are shown.

Since in the considered case we have ten different critical values of the parameter γ, one
may expect much more complex chaotic dynamics. In Figure 3.10, phase projections and
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Figure 3.4. Phase plots and Poincaré maps for k0(z)= z5 and for γ = 0,44; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1.
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Figure 3.5. Bifurcation diagrams for k0(z)= z3 and for δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2;
β = 0,1; v∗ = 0,2; ω= 1.
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Figure 3.6. Phase plots and Poincaré maps for k0(z)= z3 and for γ = 0,44; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1.

Poincaré maps of the studied for k0(z) = z and for γ = 0,60; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1 are shown.

In the beginning, the system moves in a periodic manner in the vicinity of one of its
equilibrium position. In Figure 3.11, phase plots and Poincaré maps for k0(z) = z and
for γ = 0,61; δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α = 0,2; β = 0,1; v∗ = 0,2; ω = 1 are
reported.

Increase of the control parameter γ up to γ = 0,61 results in a qualitative change of
the phase portraits. Amplitudes of oscillations increased, and the externally excited mass
moves between previous three equilibrium positions in a complex chaotic manner.

4. Concluding remarks

The carried out Melnikov-Gruendler method of analytical and numerical analysis of the
coupled self-excited oscillators included arbitrary type of coupling elements. In general,
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Figure 3.7. Phase plots and Poincaré maps for k0(z)= z3 and for γ = 0,48; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1.
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Figure 3.8. Chaotic thresholds for γ = γ(v∗), k0(z) = z and for δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3;
α= 0,2; β = 0,1; ω = 1.
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Figure 3.9. Bifurcational diagrams for k0(z)= z and for δ1 = 0,1; δ2 = 0,2; c = 0,3; T0 = 0,3; α= 0,2;
β = 0,1; v∗ = 0,2; ω= 1.

two homoclinic orbits exist which yield six chaos critera. Furthermore, depending on
the chosen type of coupling elements, one may also expect additional homoclinic orbits
associated with additionally found two more homoclinic orbits which yielded six more
chaotic thresholds. In result practically homogeneous wide chaotic zone occurred in the
bifurcation diagram with the existence of narrow periodic windows.
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Figure 3.10. Phase plots and Poincaré maps for k0(z)= z and for γ = 0,60; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1.
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Figure 3.11. Phase plots and Poincaré maps for k0(z)= z and for γ = 0,61; δ1 = 0,1; δ2 = 0,2; c = 0,3;
T0 = 0,3; α= 0,2; β = 0,1; v∗ = 0,2; ω = 1.
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