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Geometrical approach to the swinging pendulum dynamics
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Abstract

This paper shows how geometrical tools can describe a two degrees-of-freedom mechanical system (a swinging pendulum). First a
brief introduction to the subject of geometrodynamics is given and then the fundamental quantities of the technique are found. Next
the Jacobi–Levi–Civita equation is explicitely obtained and transformed to a scalar differential equation that is numerically solved.
Qualification of regular and chaotic dynamics of our investigated system is illustrated and discussed.
� 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Riemannian formulation of dynamics makes use of possi-
bility of studying the instability of system motions through
the instability properties of geodesics in a suitable manifold.
It is believed that geometrical approach may provide a good
explanation of the onset of chaos in Hamiltonian systems as
an alternative point of view. This technique has been recently
applied to study chaos in Hamiltonian systems [1–4], how-
ever other mechanical systems can be also analysed in this
manner e.g. systems with velocity-dependent potentials that
are described by Finslerian geometry. The most important
tool in this approach is the Jacobi–Levi–Civita (JLC) equa-
tion which describes how nearby geodesics locally scatter.
The instability properties are completely determined by cur-
vature properties of the underlying manifold due to the
occurrence of the Riemann tensor in the JLC equation.
Analysing the JLC equation we observe that manifolds with
negative curvature induce chaos, however a chaotic behav-
iour may occur in systems with positive curvature manifolds
due to curvature fluctuations along geodesics [1,2,5,6]. Since a
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generic Riemannian space consists of the ambient space and
a metric tensor, so in order to apply this technique we need to
define these quantities. We have a few choices at our dis-
posal. We can use configuration space endowed with a
Jacobi metric, enlarged space-time manifold with an Eisen-
hart metric or tangent bundle of a configuration manifold
with a Sasaki metric. However, no matter the ambient space
we choose for geometrization, the geodesics projected onto
the configuration space of a system have to correspond the
trajectories of an investigated system. In other words, the
geodesics equations should give us the equations of motion.
It should be emphasised that this technique does not provide
a new method of solving differential equations. It provides a
qualitative description of the behaviour of systems using for-
malism of differential geometry (Riemannian geometry in
this case). This method is still under development and other
types of spaces are sought for a purpose of geometrization.
So far, Hamiltonian systems with many degrees-of-freedom
have been investigated with the use of this approach [1–3,6].
However, Hamiltonian systems with a few degrees-of-free-
dom are not investigated so often as the previous ones in this
manner except in paper [4] that deals with a two degrees-of-
freedom system (Hénon–Heiles’ model). Note that Hénon–
Heiles’ model dynamics is described by a Hamiltonian with
rights reserved.
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a coordinate-independent kinetic energy term. In our paper,
we analyse a two degrees-of-freedom system (the swinging
pendulum) of the coordinate-dependent kinetic energy
term.

1.1. The Jacobi metric and Jacobi–Levi–Civita equation

Below, we introduce basic tools for geometrization. Let
us consider a conservative system with N degrees-of-free-
dom, which is described by the following Lagrangian:

L ¼ T � V ¼ 1

2
almðxÞ _xl _xm � V ðxÞ; where _xl � dxl

dt
. ð1Þ

For this conservative system Hamilton’s principle can be
cast in Maupertuis’ principle:

dS ¼ d
Z

oL
o _xl

_xl dt ¼ 0. ð2Þ

It is well-known that equations of motion can be obtained
using the rules of variational calculus for the functional S.
We have the analogous situation in Riemannian geometry,
where geodesics equations are obtained from:

d
Z

ds ¼ 0; ð3Þ

where ds is arc length. Hence, we can identify these two sit-
uations in the following way:

d
Z

ds ¼ dS ¼ 0. ð4Þ

The kinetic energy T is a homogeneous function of degree
two in the velocities, hence:

oL
o _xl

_xl ¼ 2T . ð5Þ

Using the above result and substituting it to (2), we get
Maupertuis’ principle:

dS ¼ d
Z

2T dt ¼ 0. ð6Þ

Making use of (4) and the fact that the system is conserva-
tive, one can easy verify that:

2T dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE � V ðxÞÞalmðxÞdxl dxm

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
glmðxÞdxl dxm

q
¼ ds;

ð7Þ
where E is the total energy. Hence, we find the metric ten-
sor which is referred as the Jacobi metric:

glmðxÞ ¼ 2ðE � V ðxÞÞalmðxÞ. ð8Þ

Note, that the substitution E � V = T made here is essen-
tial. As we said earlier, the geometry used in this approach
is a Riemannian one hence a metric tensor should not be
velocity-dependent. However, the kinetic energy is veloc-
ity-dependent by definition and that is why we must put
E � V(x) instead of T in (8).
Now, we present a brief derivation of the main tool of
this approach, namely the Jacobi–Levi–Civita equation
[1–4]. Let us define a congruence of geodesics as a family
of geodesics fxuðsÞ ¼ xðs; uÞ : u 2 Rg. The geodesics are
parametrized by a parameter u whereas s is arc length.
Let JðsÞ ¼ d

du denote a tangent vector at u (s is fixed). J(s)
is called a Jacobi vector that can locally measure the dis-
tance between two nearby geodesics. Since d

ds is tangent to
a geodesic, we get:

rs
d

ds
¼ 0; where rs � r d

ds
. ð9Þ

It is easy to verify that:

rs
d

du
¼ ru

d

ds
. ð10Þ

Hence, we obtain:

r2
s

d

du
¼ rsru

d

ds
. ð11Þ

Let us introduce the Riemann curvature tensor [4]:

R
d

ds
;

d

du

� �
d

ds
¼ rsru

d

ds
�rurs

d

ds
�r d

ds;
d

du½ �
d

ds
. ð12Þ

Making use of (9) and the fact that
d

ds
;

d

du

� �
¼ 0 we get:

R
d

ds
;

d

du

� �
d

ds
¼ rsru

d

ds
. ð13Þ

Substituting the obtained result to (11), we find:

r2
s

d

du
þ R

d

du
;

d

ds

� �
d

ds
¼ 0; ð14Þ

where we use the antisymmetry of the Riemann curvature
tensor with respect to its first two arguments. The obtained
equation is called Jacobi–Levi–Civita equation and it de-
scribes the evolution of geodesics separation along geode-
sic. In order to make any further calculation Eq. (14) will
be expressed in local coordinate system later on.

2. The analysed system

In this paper we consider a two degrees-of-freedom, con-
servative mechanical system which consists of elastic swing-
ing pendulum with nonlinear stiffness (see Fig. 1). The
nonlinearity of the spring has the form:

kðyÞ ¼ k1ðy þ ystÞ þ k2ðy þ ystÞ
3
; ð15Þ

where yst is a position of the mass at rest. The Lagrangian
describing the dynamics of our system has the form:

L ¼ 1

2
mð_r2 þ r2 _u2Þ � k1

2
ðr � l0Þ2 �

k2

4
ðr � l0Þ4 þmgr cos u.

ð16Þ



Fig. 1. The investigated system.
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From Euler–Lagrange equations one can easily obtain:

€r ¼ r _u2 � k1

m ðr � l0Þ � k2

m ðr � l0Þ3 þ g cos u;

€u ¼ � 2
r _r _u� g

r sin u:

(
ð17Þ

In order to obtain dimensionless equations we apply the
following substitutions:

z ¼ r � l0

l
� z0; z0 ¼

yst

l
; a ¼ k2l3

mg
;

b2 ¼ k1l
mg

; t! t

ffiffiffi
g
l

r
. ð18Þ

Hence, we get:

€z ¼ ð1þ zÞ _u2 � b2ðzþ z0Þ � aðzþ z0Þ3 þ cos u;

€u ¼ � 2
1þz _z _u� 1

1þz sin u;

(
ð19Þ

where the corresponding dimensionless Lagrangian reads:fL ¼ _z2 þ ð1þ zÞ2 _u2 � b2ðzþ z0Þ2 �
a
2
ðzþ z0Þ4

þ 2ð1þ zÞ cos u. ð20Þ
1 Einstein’s summation convention is used in the paper.
2 The quantity Jn should not be confused with n-power of J.
3. Geometrization

As the Riemannian space manifold we choose a config-
uration manifold endowed with a Jacobi metric g. In our
case the Jacobi metric has the following form:

g ¼ 4ðE�VÞ
1 0

0 ð1þ zÞ2
� �

; ð21Þ

where V is dimensionless potential:

V ¼ b2ðzþ z0Þ2 þ
a
2
ðzþ z0Þ4 � 2ð1þ zÞ cos u ð22Þ

and E is total energy of the system.
In order to find JLC equation, first we have to find coef-

ficients of the Riemann curvature tensor. It is easy to verify
that connection coefficients have the following form:
C1
11 ¼ �

1

2W

oV

oz
; C1

12 ¼ �
1

2W

oV

ou
; ð23Þ

C1
22 ¼ �

1

2W
2ð1þ zÞW� ð1þ zÞ2 oV

oz

� �
;

C2
11 ¼

1

2Wð1þ zÞ2
oV

ou
; ð24Þ

C2
12 ¼

1

2Wð1þ zÞ2
2ð1þ zÞW� ð1þ zÞ2 oV

oz

� �
;

C2
22 ¼ �

1

2W

oV

ou
. ð25Þ

where W ¼ E�V. Since the Riemannian space manifold
is two-dimensional, there is only one nonzero coefficient
of the Riemann curvature tensor. It has the following form:

R2121 ¼ 2
o2V

ou2
þ 2

W

oV

ou

� �2

þ 2ð1þ zÞ2 o2V

oz2

þ 2ð1þ zÞ oV
oz
þ 2
ð1þ zÞ2

W

oV

oz

� �2

. ð26Þ

Let us choose special base vectors {E1,E2}, such that
E1 ¼ d

ds and

gðE1;E2Þ ¼ 0; gðE2;E2Þ ¼ 1. ð27Þ
In other words the base is formed by the orthonormal set
of vectors. In local coordinate system these base vectors
have the form1

Ei ¼ Y j
i ej; where i ¼ 1; 2 ð28Þ

and

Y 1
1 Y 2

1

Y 1
2 Y 2

2

 !
¼

dz
ds

du
ds

ð1þ zÞdu
ds
� 1

1þ z
dz
ds

0BB@
1CCA; e1 ¼

o

oz
; e2 ¼

o

ou
.

ð29Þ
The Jacobi vector in this base reads2 J = JnEn. Substituting
this into the JLC Eq. (14) we get

r2
s ðJ nEnÞ þ RðJ nEn;E1ÞE1 ¼ 0. ð30Þ

Since E1 is tangent to the geodesics, one gets

d2J n

ds2
En þ J iRðEi;E1ÞE1 ¼ 0. ð31Þ

Since R(En,E1)E1 is a vector, so it can be decomposed in
the orthonormal base as follows:

RðEi;E1ÞE1 ¼
X2

n¼1

gðRðEi;E1ÞE1;EnÞEn. ð32Þ

We put sum explicitely here because i indices are on the
same level so we cannot apply Einstein’s summation con-
vention. Substituting (32) to (31) one gets

d2J n

ds2
þ J igðRðEi;E1ÞE1;EnÞ ¼ 0; where n ¼ 1; 2. ð33Þ



3 It should be emphasised that X is not periodic in general.
4 We have a similar situation in computation of Lyapunov exponents

where tangent dynamics is involved.
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Due to the antisymmetry of the Riemann tensor the follow-
ing equation is obtained

d2J n

ds2
þ J 2gðRðE2;E1ÞE1;EnÞ ¼ 0. ð34Þ

Making use of (28) one finds

gðRðE2;E1ÞE1;EnÞ ¼ RklijY k
nY l

1Y i
2Y j

1. ð35Þ
Taking into account (29) two uncoupled equations JLC
equations are obtained:

d2J 1

ds2
¼ 0;

d2J 2

ds2
þ R2121

det g
J 2 ¼ 0:

8>><>>: . ð36Þ

Actually, we are only interested in the evolution of J2 along
geodesics because this component of Jacobi vector is a
coefficient standing by the vector that is orthogonal to
the tangent direction of geodesics. Hence, from now on
we consider only the following equation:

d2J 2

ds2
þ R2121

det g
J 2 ¼ 0. ð37Þ

Due to the dimension of the Riemannian space manifold
we find

R2121

det g
¼ 1

2
R; ð38Þ

where R is a scalar curvature. In our case, the scalar curva-
ture R takes the form

R ¼ 2R2121

det g
¼ 1

8W2ð1þ zÞ2

� o
2V

ou2
þ 1

W

oV

ou

� �2

þ ð1þ zÞ2 o
2V

oz2
þ ð1þ zÞ oV

oz

 !

þ 1

8W3

oV

oz

� �2

. ð39Þ

Let us go back to the JLC equation

d2J 2

ds2
þ 1

2
J 2RðsÞ ¼ 0. ð40Þ

The above equation is a differential equation with respect
to the arc length s. In order to make further calculation
we have to transform this equation into a differential equa-
tion with respect to time t. The metric used in this paper is
the Jacobi metric, so we have

ds ¼ 2Wdt. ð41Þ
Making use of the above identity we get the desired differ-
ential equation with respect to time

d2J 2

dt2
�

_W

W

dJ 2

dt
þ 2W2RJ 2 ¼ 0. ð42Þ

To obtain an oscillator equation we apply the substitution
[4]:
J 2 ¼ Je
1
2

R
_W
W dt ¼ J

ffiffiffiffiffiffi
W
p

. ð43Þ
The quantity W is never negative since its values equal the
kinetic energy by definition, so

ffiffiffiffiffiffi
W
p

always exists. Hence
we find the oscillator equation:

€J þ 1

2
J

€W

W
þ 4W2R� 3

2

_W

W

 !2
0@ 1A ¼ 0. ð44Þ

Observe that
ffiffiffiffiffiffi
W
p

6 E so we can examine only J instead of
J2. Eq. (44) is an oscillator equation with time-dependent
frequency:

X ¼ 1

2

€W

W
þ 4W2R� 3

2

_W

W

 !2
0@ 1A. ð45Þ

Thus, the analysis of behaviour of the system is trans-
formed to the analysis of solutions of the following
equation:

€J þ XJ ¼ 0. ð46Þ
As we mentioned earlier, the above equation is an oscilla-
tor equation with time-dependent frequency X. Note that
the frequency is not explicitely time-dependent.3 However,
it consists of functions of positions and velocities of the
spring mass that are time-dependent. Hence, in order to
solve (46) we must know the solutions of dynamics equa-
tions4 (19). In what follows the JLC equation is numeri-
cally solved, some numerical results are illustrated and
discussed.

4. Numerical results

In order to solve numerically Eq. (46) we put the following
values of the parameters: (a = 2,b = 1), (a = 0.1,b = 0.2)
and (a = 1,b = 2). The results are displayed in four figures
for each case (except the last case, where six figures are pre-
sented). The first figure shows the projection of the phase tra-
jectories onto ðz; _zÞ subspace. The second one presents a
corresponding Poincaré section or another projection onto
ðu; _uÞ subspace. Next figures present the evolution of J, lnjJj.

Our first case is a quasiperiodic one (see Fig. 2). It is easy
to see that J evolves rapidly and fluctuates along the trajec-
tory. The rate of the growth is presented in next figure,
where lnjJj is put on the vertical axis. The second case is
a weak-chaotic one (see Fig. 3). Observe that behaviour
of J is similar to the previous one (see Fig. 2), i.e. J evolves
rapidly as well. Hence, it is rather hard to distinguish
between these two cases. In the last case we have a qualita-
tively different situation (see Fig. 4). One can observe
that the evolution of J is bounded and resembles the vibra-
tions with amplitude modulation. Such evolution of J

should indicates that a behaviour of the system is regular.



Fig. 2a. Projection ðz; _zÞ for a = 2, b = 1, z(0) = 0.2, _zð0Þ ¼ 0:4,
u(0) = 1.7, _uð0Þ ¼ 0:8.

Fig. 2b. Poincaré map ðz; _zÞ for a = 2, b = 1, z(0) = 0.2, _zð0Þ ¼ 0:4,
u(0) = 1.7, _uð0Þ ¼ 0:8.

Fig. 2c. Evolution of J for a = 2, b = 1, z(0) = 0.2, _zð0Þ ¼ 0:4,
u(0) = 1.7, _uð0Þ ¼ 0:8.

Fig. 2d. Evolution of lnjJj for a = 2, b = 1, z(0) = 0.2, _zð0Þ ¼ 0:4,
u(0) = 1.7, _uð0Þ ¼ 0:8.

Fig. 3a. Projection ðz; _zÞ for a = 1, b = 2, z(0) = 0.2, _zð0Þ ¼ 2:4,
u(0) = 0.7, _uð0Þ ¼ 0:4.
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Fig. 3b. Poincaré map ðz; _zÞ for a = 1, b = 2, z(0) = 0.2, _zð0Þ ¼ 2:4,
u(0) = 0.7, _uð0Þ ¼ 0:4.
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Fig. 4a. Projection ðz; _zÞ for a = 0.1, b = 0.2, z(0) = 0, _zð0Þ ¼ 0:1,
u(0) = 0, _uð0Þ ¼ 0:03.

Fig. 4b. Poincaré map ðz; _zÞ for a = 0.1, b = 0.2, z(0) = 0, _zð0Þ ¼ 0:1,
u(0) = 0, _uð0Þ ¼ 0:03.

Fig. 4c. Projection ðu; _uÞ for a = 0.1, b = 0.2, z(0) = 0, _zð0Þ ¼ 0:1,
u(0) = 0, _uð0Þ ¼ 0:03.

Fig. 4d. Poincaré map ðu; _uÞ for a = 0.1, b = 0.2, z(0) = 0, _zð0Þ ¼ 0:1,
u(0) = 0, _uð0Þ ¼ 0:03.

Fig. 3d. Evolution of lnjJj for a = 1, b = 2, z(0) = 0.2, _zð0Þ ¼ 2:4,
u(0) = 0.7, _uð0Þ ¼ 0:4.

Fig. 3c. Evolution of J for a = 1, b = 2, z(0) = 0.2, _zð0Þ ¼ 2:4, u(0) = 0.7,
_uð0Þ ¼ 0:4.
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Fig. 4e. Evolution of J for a = 0.1, b = 0.2, z(0) = 0, _zð0Þ ¼ 0:1,
u(0) = 0, _uð0Þ ¼ 0:03.

Fig. 4f. Evolution of lnjJj for a = 0.1, b = 0.2, z(0) = 0, _zð0Þ ¼ 0:1,
u(0) = 0, _uð0Þ ¼ 0:03.
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However, we can observe (see Fig. 4a–d) in phase portraits
and Poincaré sections that we have rather quasiperiodic
behaviour than periodic one. In order to explain this fact
we must take a look at the ðz; _zÞ and ðu; _uÞ Poincaré sec-
tions and phase portraits. One can observe that the phase
trajectories do not penetrate the whole energy surface.
The phase trajectories are bounded to a small region (see
the scale in Fig. 4a–d). Hence, there cannot be any rapid
growth of J (see Fig. 4e).

5. Conclusions

In this paper we have shown how geometrical approach
governs behaviour of a two degrees-of-freedom Hamilto-
nian system (the swinging pendulum) as an alternative
way. Our results indicate that in some cases it is rather dif-
ficult to distinguish between chaotic and quasiperiodic
behaviour of the system. However, it is expected that this
situation will improve for systems with many degrees-of-
freedom, where some averaging methods can be applied
[2]. Notice that some averaging methods can be applied
to systems of lower dimensions [7].

The lack of possibility of distinguishing between cha-
otic and quasiperiodic cases can be caused by the fact
that our system possesses two degrees-of-freedom. Hence,
the kinetic energy can be close to zero and it can cause
the rapid growth of the frequency X. Moreover, we
showed that quasiperiodic behaviour can give a steady
evolution of J as well, that is expected for rather a peri-
odic behaviour. Taking into account these facts, the geo-
metrical approach should be further investigated,
especially for systems with coordinate-dependent kinetic
energy terms.
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