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1 Introduction

First, let us briefly discuss the Kirchhoff approximation [1]. Consider the governing equations

of nonlinear beam vibration in the following form:
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þ @
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� @

@x
ðThÞ ¼ 0; ð1Þ

qF
@2U

@t2
� @T

@x
¼ 0; ð2Þ

where M ¼ EIj, e ¼ @U
@x
þ 0:5 @W

@x

� �2
, j ¼ @h

@x
, T ¼ EFe, E is Young’s modulus, F, I are the area

and the static moment of transversal beam cross section, respectively, U, W are the longitudinal

and normal beam displacements, q is the density of beam material, t is the time, and x is the

spatial coordinate.

Below, we consider two cases of boundary conditions in the axial direction:

U ¼ 0 for x ¼ 0; L or ð3Þ

T ¼ 0 for x ¼ 0; L: ð4Þ

Boundary conditions in the direction normal to the beam axis do not essentially influence our

further consideration, and we take

W ¼ @
2W

@x2
¼ 0 for x ¼ 0;L: ð5Þ

The Kirchhoff hypothesis is that the axial inertial term in Eq. (2) can be neglected. Then one

obtains

@T

@x
¼ 0;

i:e:; e ¼ @U

@x
þ 0:5

@W

@x

� �2

¼ N � const: ð6Þ

Upon integration of relation (6) with boundary conditions (3) we have
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N ¼ 1

2L

ZL
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dx;

and Eq. (1) is given in the form
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@4W

@x4
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dx

0

@

1

A @2W
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¼ 0: ð7Þ

Equation (6) describes the approximate Kirchhoff model.

It is worth noting that in Kirchhoff’s original paper [2] Eq. (6) is not presented. Kirchhoff

[2, pp. 443–444] in spite of neglecting the longitudinal inertial term in Eq. (2) has also omitted

the second term in Eq. (1), and the original ‘Kirchhoff equation’ has the form

qF
@2W

@t2
� EF

2L

ZL

0

@W

@x

� �2

dx
@2W

@x2
¼ 0:

For axial boundary conditions (4) one obtains N ¼ 0, and Eq. (1) can be linearized

qF
@2W

@t2
þ EI

@4W

@x4
¼ 0:

Equation (7) is widely applicable in today’s nonlinear mechanics. It enables, in particular, a

construction of normal forms of nonlinear vibrations of the continuous system for boundary

conditions (5) separating space and time variables in the following way [3]:

W ¼ TðtÞ sin mpx

L
: ð8Þ

For clamped edges, when boundary conditions (4) are substituted by the following ones:

W ¼ @W

@x
¼ 0 for x ¼ 0;L;

normal forms of nonlinear vibrations can be constructed using the method of Bolotin [4]. In

addition, Eq. (7) is applied also to solve more complex problems [5]–[8]. However, in all known

examples we cannot find any limitations explicitly given and associated withKirchhoff hypothesis.

2 When the Kirchhoff equation can be used

To estimate the application area of Eq. (6) we transform Eqs. (1) and (2) into the dimensionless

form
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where

w ¼ W=h; u ¼ UL=h2; n ¼ x=L; s ¼
ffiffiffiffiffiffi
EI
p

t
ffiffiffiffiffiffi
qF

p
L

� �.
; h ¼ ðI=FÞ1=2; a ¼ h=L:

ð11Þ
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Parameter a is small for real structures. Does it mean, however, that the corresponding term in

Eq. (10) can always be neglected? No, because A. Gol’denviezer [9] (see also [4], [10], and [11])

shows, that in addition to inclusion of variations of terms occurring in the analyzed equation,

one has to take into account also variations of their derivatives. To be more precise, let us

analyze the following functions:

F1ðnÞ ¼ sinðnÞ; F2ðnÞ ¼ a sinðn=aÞ:

For small a ða<<1Þ one obtains F1 � F2, but F1xx � F2. So, in the analysis one has to take

into account the so-called indices of the variation of functions u and w [4], [9]–[11], of the form

Fn� a�cF; Fs� a�dF:

Let us estimate variations of the functions F1 and F2. For F1 we get c ¼ 0, whereas for F2 we

have c ¼ 1.

So, the variation of functions u and w with respect to the variables n and s can be estimated

using the parameters c and d.
Note that the small parameter a in Eq. (10) appears in a dynamical term. A competition with

respect to time and space variation occurs due to nonlinearity. If time variation of a solution

being sought is remarkably larger than that of space variation, then the first term in Eq. (10)

cannot be neglected. Assume that the solution consists of the terms

w ¼ A sinðmpnÞ sinðatÞ þ B sinððmþ 1ÞpnÞ sinðbtÞ; ð12Þ

where m� 1, a; b� 1.

Since on the right-hand side of Eq. (10) the square term occurs, upon a substitution of

relation (12) one obtains

C sinðpnÞ sinððaþ bÞtÞ:

This term exhibits slow variations in space and fast variations in time. For some defined

values of a and b, the first term of Eq. (9) will be of the same order as the second term.

Therefore, our task is to find variations with respect to n and s, where the first term of Eq. (10)

is small in comparison with the second one, and other terms keep the same order. Conse-

quently, our problem is reduced to that of a routine asymptotic analysis [4], [9]–[11].

In Eq. (9) the first and second terms should be of the same order, and hence c ¼ d. On the right-

hand side of Eq. (9) there are terms with variation in time of the order 4c (due to the square term)

and with variation in space equal to 0. Therefore, there are components of the first term of Eq. (9)

of order �4cþ 1, whereas in the second term of Eq. (9) the components of the order �2c appear.
The Kirchhoff approximation can be applied when either �4kþ 1<� 2c or c<0:5. If boundary

conditions (5) enabling for variable separation (8) are given, the following estimation holds:

mp < ðI=ðFL2ÞÞ1=4:

Consequently, a direct application of Eq. (6) for an arbitrary change of space coordinate is not

allowed.

3 Modified Kirchhoff equation

It should be emphasized that Eqs. (1) and (2) are obtained owing to the assumption of

smallness of the rotation angle h. Consider now a general case, when the rotation angle can be

arbitrary. The governing equations are as follows:

Improved Kirchhoff equation
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¼ 0; ð13Þ
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where M ¼ EIj; e ¼ 1þ 2 @U
@x
þ @U

@x

� �2þ @W
@x

� �2Þ1=2 � 1; T ¼ EFe; j ¼ @h
@x
;

�

h ¼ arctan
@W

@x

�
1þ @U

@x

� �� �
:

Substitution of dimensionless terms (11) to Eqs. (13) and (14) gives

@2w

@s2
þ @
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a�3e sin hþ a�1 @j

@n
cos h

� �
¼ 0; ð15Þ
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¼ 0; ð16Þ

h ¼ arctan a
@w

@n

�
1þ a2 @u

@n

� �� �
; ð17Þ

e ¼ 1þ a2ð2 @u

@n
þ a2 @u

@n

� �2

þ @w

@n

� �2
 ! !1=2

�1: ð18Þ

Neglecting the terms of a2 order in comparison to 1 and taking into account that h has also

order a and e has the order of a2; Eqs. (16)–(18) give

@

@n
e cos h ¼ 0;

i:e:; e cos h ¼ N � const:; ð19Þ

@2w
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þ @

@n
@j1

@n
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þ a�2N

@2w

@n2
¼ 0; ð20Þ

where:

h ¼ arctan a
@w

@n
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; e ¼ 1þ a2ð2 @u

@n
þ @w

@n

� �2
 ! !1=2

�1; ð21Þ

j1 ¼
@2w

@n2
1þ a2 @w

@n

� �2
" #�1

: ð22Þ

Assuming that conditions (3) are satisfied, one may obtain the quantity N of the following

form:

N ¼ ða=bÞ �1þ 1þ a2b

a2

Z1

0

@w

@n

� �2
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0

@

1

A

1=2
0
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1
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a ¼
Z1

0

cos�1 h dn; b ¼
Z1

0

cos�2 h dn; cos h ¼ 1þ a2 @w

@n

� �2
" #�1=2

: ð24Þ
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Equation (20) [with conditions (21)–(24)] is called the generalized Kirchhoff equation.

Unfortunately, there is no possibility to integrate it exactly. However, a decreasing equation

order gives an opportunity for an efficient application of various numerical methods. Note that

assuming small values of rotational angles, Eq. (20) is transformed into the classical Kirchhoff

equation (7).

4 Conclusions

The Kirchhoff approach is associated with neglecting of some terms in an initial equation.

However, it is necessary to estimate an order of the neglected terms to get appropriate results.

New terms introduced may have the same order as those neglected within the Kirchhoff ap-

proach. The following recipe is recommended: more terms are introduced into a starting

equation before applying the Kirchhoff approach, and then a successive asymptotic splitting is

carried out. As a result the correct simplified equations are obtained.

Note that Eq. (7) is often considered as a certain mathematical object being isolated from any

physical links. It may happen that it is used beyond its domain of application. It is clear that

although the obtained results are mathematically correct, they are false from the mechanical

point of view.
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