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1. Introduction

We start from the planar discontinuous system

ż = f+(z) + εg(z, t,ε) for y > 1,

ż = f−(z) + εg(z, t,ε) for y < 1,
(1.1)

where z = (x, y)∈R2, f±, g are C3-smooth, and g is 1-periodic in t. Here we set

q±(z, t,ε)= f±(z) + εg(z, t,ε). (1.2)

We suppose the following conditions:
(i) f−(0)= 0, and D f−(0) has no eigenvalues on the imaginary axis,

(ii) there are two solutions γ−(s), γ+(s) of ż = f−(z), y ≤ 1 defined on R− = (−∞,0],
R+ = [0,+∞), respectively, such that lims→±∞ γ±(s)= 0 and γ±(s)= (x±(s), y±(s))
with y±(0)= 1, x−(0) < x+(0). Moreover, f±(z)= ( f±1(z), f±2(z)) with f±1(x,1) >
0, f+2(x,1) < 0 for x−(0)≤ x ≤ x+(0). Furthermore, f−2(x,1) > 0 for x−(0)≤ x <
x+(0), f−2(x+(0),1)= 0, and ∂x f−2(x+(0),1) < 0.

Assumptions (i) and (ii) mean that (1.1) for ε = 0 has a sliding homoclinic solution γ,
created by γ±, to a hyperbolic equilibrium 0. We are interested in the bifurcation of γ to
bounded solutions on R of (1.1) under the perturbation εg(z, t,ε).
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The plan of the paper is as follows. In Section 2, we study (1.1) by using functional
methods based on [4] along with the implicit function theorem [5]. In Section 3, we gen-
eralize results of Section 2 to systems with multiple discontinuous levels. Final Section 4
is devoted to a concrete system of piece-vice linear systems with periodic perturbations.

Sliding periodic solutions of discontinuous differential equations are investigated in
[1–3] with both analytical and numerical methods. Qualitative properties of discontinu-
ous systems are studied in [6]. Bifurcations for planar discontinuous ordinary differential
systems with small periodic perturbations from homoclinic solutions transversally inter-
secting levels of discontinuity are studied in [7] to generalize the well-known Melnikov
method for a smooth case [4] to a discontinuous one. We note that bifurcations from
sliding homoclinic solutions, studied in this paper, are different to [4, 7].

2. Bifurcation result

In this section, we find conditions under which γ persists in (1.1) for ε �= 0 small. For this
purpose, we consider (1.1) as a system in R3 defined by

ż = f+(z) + εg(z, t,ε) for y > 1,

ż = f−(z) + εg(z, t,ε) for y < 1,

ṫ = 1,

(2.1)

while on y = 1 (cf. [1, 6]), we consider the system

ẋ = q+2(x,1, t,ε)
q+2(x,1, t,ε)− q−2(x,1, t,ε)

q+1(x,1, t,ε)

+
q−2(x,1, t,ε)

q−2(x,1, t,ε)− q+2(x,1, t,ε)
q−1(x,1, t,ε),

(2.2)

where q± = (q±1,q±2). We first study the system

ż = f−(z) + εg(z, t,ε) for y ≤ 1,

ṫ = 1, y(0)= 1, t(0)= α, s≤ 0.
(2.3)

Lemma 2.1. For any ε small, there is a unique bounded solution z−(s,ε,α) of (2.3) on R−,
which is near to γ−(s).

Proof. We consider the Banach space

X = {v = (x(s), y(s)
)∈ Cb

(
R−,R2) | y(0)= 0

}
(2.4)

with the usual sup-norm ‖ · ‖. We put z = γ− + v into (2.3) to get

v̇ =D f−
(
γ−(s)

)
v+

{
f−
(
γ−(s) + v

)− f−
(
γ−(s)

)−D f−
(
γ−(s)

)
v
}

+ εg
(
γ−(s) + v,s+α,ε

)
,

v2(0)= 0,
(2.5)
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where v = (v1,v2). Next, the system

v̇ =D f−
(
γ−(s)

)
v (2.6)

has an exponential dichotomy on R− (cf. [4]), that is, there are positive constants K , a
and a projection P :R2 →R2 such that

∥
∥V−(s)PV−(θ)−1

∥
∥≤ Ke−a(s−θ) for θ ≤ s≤ 0,

∥
∥V−(s)(I−P)V−(θ)−1

∥
∥≤ Kea(s−θ) for s≤ θ ≤ 0,

(2.7)

whereV−(s),V−(0)= I is the fundamental matrix solution of (2.6). Moreover, since γ̇−(s)
solves (2.6), and it is bounded on R−, and γ̇−(0) is transversal to the x-axis, we can sup-
pose (cf. [4]) that Im(I−P)=Rγ̇−(0) and ImP is the x-axis. Then, (2.5) can be rewritten
as a fixed point problem

v(s)=
∫ s

−∞
V−(s)PV−(θ)−1h(θ)dθ−

∫ 0

s
V−(s)(I−P)V−(θ)−1h(θ)dθ (2.8)

on the Banach space X , where

h(θ)= f−
(
γ−(θ) + v(θ)

)− f−
(
γ−(θ)

)−D f−
(
γ−(θ)

)
v(θ) + εg

(
γ−(θ) + v(θ),θ +α,ε

)
.

(2.9)

Since

f−
(
γ−(θ) + v

)− f−
(
γ−(θ)

)−D f−
(
γ−(θ)

)
v =O(|v|2), (2.10)

for ε small, we can solve (2.8) by using the implicit function theorem to obtain a unique
small solution v(s,α,ε) of (2.8), and so

z(s,α,ε)= γ−(s) + v(s,α,ε) (2.11)

solves (2.3). The proof is finished. �

We put

ϕ−(α,ε)= x(0,α,ε), (2.12)

where

z(s,α,ε)= (x(s,α,ε), y(s,α,ε)
)
. (2.13)

Clearly, ϕ−(α,0)= x−(0). Next, we consider (2.2) with the initial condition

x(0)= ϕ−(α,ε). (2.14)

If h(x,s,ε) is the right-hand side of (2.2), then conditions (i) and (ii) imply that h(x,s,ε) >
0 for any x−(0)≤ x ≤ x+(0) and ε small. Then assumption (ii) gives the solvability of the
equation

q−2
(
x
(
s+(α,ε)

)
,1,s+(α,ε) +α,ε

)= 0 (2.15)
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for the function s+(α,ε) > 0, where x(s) solves (2.2) and (2.14). So, s+(α,ε) is the time
when the sliding motion of (2.2) is ending. We put

ϕ+(α,ε)= x(s+(α,ε)
)
. (2.16)

Finally, we consider the initial value problem

ż = f−(z) + εg(z, t,ε) for y ≤ 1,

ṫ = 1, s≥ s+(α,ε),

z
(
s+(α,ε)

)= (ϕ+(α,ε),1
)
, t

(
s+(α,ε)

)= s+(α,ε) +α.

(2.17)

That is the initial value problem

ż = f−(z) + εg(z,s+α,ε) for y ≤ 1,

z
(
s+(α,ε)

)= (ϕ+(α,ε),1
)
, s≥ s+(α,ε).

(2.18)

We note that γ+(0) = (ϕ+(α,0),1) and we look for a solution z of (2.18) near to γ+(s−
s+(α,ε))= ω+(s). By taking

z(s)= ω+(s) + εw(s) (2.19)

in (2.18), we obtain

ẇ =D f−
(
ω+(s)

)
w+

1
ε

{
f−
(
ω+(s) + εw

)− f−
(
ω+(s)

)−D f−
(
ω+(s)

)
εw
}

+ g
(
ω+(s) + εw,s+α,ε

)
, s≥ s+(α,ε),

w
(
s+(α,ε)

)= (ψ+(α,ε),0
)
,

(2.20)

where

ψ+(α,ε)= (ϕ+(α,ε)−ϕ+(α,0)
)
/ε. (2.21)

By shifting the time s↔ s+ s+(α,ε), s≥ 0 in (2.20), we obtain

ẇ =D f−
(
γ+(s)

)
w+

1
ε

{
f−
(
γ+(s) + εw

)− f−
(
γ+(s)

)−D f−
(
γ+(s)

)
εw
}

+ g
(
γ+(s) + εw,s+(α,ε) + s+α,ε

)
, s≥ 0,

w(0)= (ψ+(α,ε),0
)
.

(2.22)

We set

η(α,ε)= (ψ+(α,ε),0
)
. (2.23)

Now we study the problem

ẇ =D f−
(
γ+(s)

)
w+h(s),

w(0)= u,
(2.24)
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for h∈ Cb(R+,R2) and u= (u1,u2)∈R2. The system

ẇ =D f−
(
γ+(s)

)
w (2.25)

has an exponential dichotomy on R+ (cf. [4]), that is, there are positive constants M, b
and a projection Q :R2 →R2 such that

∥
∥V+(s)QV+(θ)−1

∥
∥≤Me−b(s−θ) for 0≤ θ ≤ s,

∥
∥V+(s)(I−Q)V+(θ)−1

∥
∥≤Meb(s−θ) for 0≤ s≤ θ,

(2.26)

where V+(s), V+(0) = I is the fundamental matrix solution of (2.25). Moreover, since
γ̇+(s) solves (2.25) and it is bounded on R+, we can suppose (cf. [4]) that ImQ =Rγ̇+(0)
and Im(I−Q) is orthogonal to the lineRγ̇+(0). On the other hand, condition (ii) implies
that

ẏ+(0)= f−2
(
x+(0), y+(0)

)= f−2
(
x+(0),1

)= 0. (2.27)

So,

γ̇+(0)= (ẋ+(0), ẏ+(0)
)= (ẋ+(0),0

)
. (2.28)

Consequently,Q is the orthogonal projection onto the x-axis. Let Γ= γ̇+(0)⊥ be a nonzero
orthogonal vector onto γ̇+(0). Now, for simplicity, we can take Γ= (0,1). So, Im(I−Q)=
RΓ. We note that

μ(t)=V∗
+ (s)−1Γ (2.29)

is a basis of a space of bounded solutions on R+ of the adjoint system (cf. [4])

ẇ =−D f ∗−
(
γ+(s)

)
w. (2.30)

We need the following result.

Lemma 2.2. Problem (2.24) has a bounded solution w on R+ if and only if

∫ +∞

0

(
h(s),μ(s)

)
ds=−(Γ,u)=−u2, (2.31)

where (·,·) is the usual scalar product on R2. Moreover, if condition (2.31) holds, then prob-
lem (2.24) has a unique bounded solution w = w(u,h) on R+. Furthermore, there is a con-
stant c > 0 such that

∥
∥w(u,h)

∥
∥≤ c(‖h‖+ |u|), (2.32)

where ‖ · ‖ is the sup-norm on Y = Cb(R+,R2) and | · | corresponds to (·,·).

Proof. A general form of a bounded solution of equation

ẇ =D f−
(
γ+(s)

)
w+h(s) (2.33)
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on R+ is given by

w(s)= cγ̇+(s) +
∫ s

0
V+(s)QV+(θ)−1h(θ)dθ−

∫ +∞

s
V+(s)(I−Q)V+(θ)−1h(θ)dθ. (2.34)

Then using the initial condition w(0)= u, we get the equation

u= cγ̇+(0)−
∫ +∞

0
(I−Q)V+(θ)−1h(θ)dθ, (2.35)

which implies

u2=(u,Γ)=−
∫ +∞

0

(
V+(s)−1h(s),Γ

)
ds=−

∫ +∞

0

(
h(s),V∗

+ (s)−1Γ
)
ds=−

∫ +∞

0

(
h(s),μ(s)

)
ds.

(2.36)

So, (2.31) is proved. On the other hand, if (2.31) holds, then (2.35) gives

u1 = cẋ+(0). (2.37)

Consequently, the unique bounded solution of (2.24) on R+ is given by

w(s)= u1

ẋ+(0)
γ̇+(s) +

∫ s

0
V+(s)QV+(θ)−1h(θ)dθ−

∫ +∞

s
V+(s)(I−Q)V+(θ)−1h(θ)dθ.

(2.38)

Then, (2.32) follows directly from (2.38). The proof is finished. �

Let S : Y → Y be a projection defined by

Sh= h(s)−
∫ +∞

0

[(

h(θ),
μ(θ)

‖μ‖2
2

)

dθ

]

μ(s), (2.39)

where ‖u‖2
2 =

∫ +∞
0 μ(θ)2dθ. Then, (2.22) is splitted as follows

ẇ =D f−
(
γ+(s)

)
w+ S

[
1
ε

{
f−
(
γ+ + εw

)− f−
(
γ+
)−D f−

(
γ+
)
εw
}

+ g
(
γ+ + εw,s+(α,ε) + s+α,ε

)
]

,

w(0)= (ψ+(α,ε),0
)
,

(2.40)

∫ +∞

0

(
1
ε

{
f−
(
γ+(s) + εw(s)

)− f−
(
γ+(s)

)−D f−
(
γ+(s)

)
εw(s)

}

+ g
(
γ+(s) + εw(s),s+(α,ε) + s+α,ε

)
,μ(s)

)
ds= 0.

(2.41)

By using Lemma 2.2 together with the implicit function theorem, we can solve (2.40) to
obtain its solution

w =w(α,ε,s). (2.42)
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Then, by plugging it into (2.41), we arrive at a bifurcation equation

B(α,ε)=
∫ +∞

0

(
1
ε

{
f−
(
γ+(s) + εw(α,ε,s)

)− f−
(
γ+(s)

)−D f−
(
γ+(s)

)
εw(α,ε,s)

}

+ g
(
γ+(s) + εw(α,ε,s),s+(α,ε) + s+α,ε

)
,μ(s)

)
ds= 0.

(2.43)

We have

M̄(α)= B(α,0)=
∫ +∞

0

(
g
(
γ+(s),s+(α,0) + s+α,0

)
,μ(s)

)
ds= 0. (2.44)

Any simple root α0 of M̄(α); that is, M̄(α0) = 0 and M̄′(α0) �= 0, gives the solvability of
B(α,ε)= 0 with respect to α= α(ε) for any ε small with α(0)= α0.

On the other hand, from the definition of function s+(α,ε) in (2.15), we see that
∂αs+(α,0) = 0. So, simple roots of M̄(α) are in one-to-one correspondence with simple
roots of the function

M(β)=
∫ +∞

0

(
g
(
γ+(s),β+ s,0

)
,μ(s)

)
ds. (2.45)

Summarizing we arrive at the following result.

Theorem 2.3. If there is a simple root β0 of M(β), that is, it holds that M(β0) = 0 and
M′(β0) �= 0, then homoclinic solution γ bifurcates to a bounded solution on R of (1.1) with
ε �= 0 small.

3. Generalization to multiple discontinuous systems

The above approach to (1.1) can be generalized to cases when homoclinic orbit γ(s)
transversally crosses another curve of discontinuity. For simplicity, we suppose that such
a discontinuity in (1.1) occurs at the level y = 1/2, that is, in this section, we deal with the
system

ż = f+(z) + εg(z, t,ε) for y > 1,

ż = f−(z) + εg(z, t,ε) for
1
2
< y < 1,

ż = F(z) + εg(z, t,ε) for y <
1
2

,

(3.1)

where z = (x, y) ∈ R2, f±, F, g are C3-smooth and g is 1-periodic in t. We suppose the
following conditions:

(a) F(0)= 0 and DF(0) has no eigenvalues on the imaginary axis,
(b) there are two solutions η−, η+ of ż = f−(z), 1/2≤ y ≤ 1 defined on [a−,0], [0,a+],

a− < 0 < a+, respectively, such that η±(s) = (x̃±(s), ỹ±(s)) with ỹ±(0) = 1,
ỹ±(a±)= 1/2, x̃−(0) < x̃+(0), x̃−(a−) < x̃+(a+). Moreover, f±(z)= ( f±1(z), f±2(z))
with f±1(x,1) > 0, f+2(x,1) < 0 for x̃−(0)≤ x ≤ x̃+(0). Furthermore, f−2(x,1) > 0
for x̃−(0)≤ x < x̃+(0), f−2(x̃+(0),1)= 0, and ∂x f−2(x̃+(0),1) < 0. Finally, we sup-
pose that f−2(η−(a−)) > 0 and f−2(η+(a+)) < 0,
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(c) there are two solutions γ̃−(s), γ̃+(s) of ż = F(z), y ≤ 1/2 defined onR− = (−∞,0],
R+ = [0,+∞), respectively, such that lims→±∞ γ̃±(s) = 0 and γ̃±(0) = η±(a±).
Moreover, F(z)= (F1(z),F2(z)) with F2(γ̃−(0)) > 0 and F2(γ̃+(0)) < 0.

Again, assumptions (a), (b), and (c) imply that (3.1) for ε = 0 has a sliding homoclinic
solution γ̃, created by η± and γ̃±, to a hyperbolic equilibrium 0. We study in this sec-
tion bifurcation of γ̃ in system (3.1) for ε �= 0 small. We can directly follow a method of
Section 2. We first solve the equation

q−2
(
ϕ̃+(α,ε),1,α,ε

)= 0. (3.2)

Since

q−2
(
x̃+(0),1,α,0

)= f−2
(
x̃+(0),1

)= 0,

∂xq−2
(
x̃+(0),1,α,0

)= ∂x f−2
(
x̃+(0),1

) �= 0,
(3.3)

we can solve (3.2) with ϕ̃+(α,0)= x̃+(0). Next, we consider the initial value problem

ż = f−(z) + εg(z, t,ε) for
1
2
≤ y ≤ 1,

ṫ = 1, s≥ 0,

z(0)= (ϕ̃+(α,ε),1
)
, t(0)= α,

(3.4)

which has a unique solution

z̃(s,α,ε)= (x̃(s,α,ε), ỹ(s,α,ε)
)
. (3.5)

Then condition (b) implies that there is the smallest time s̃+(α,ε) such that

ỹ
(
s̃+(α,ε),α,ε

)= 1
2
. (3.6)

So, s̃+(α,ε) is the first hitting time for the level y = 1/2 of the solution of (3.4). We set

ξ(α,ε)= x̃(s̃+(α,ε),α,ε
)
. (3.7)

Consequently, in order to study the bifurcation of γ̃, we need to show that the point(
ξ(α,ε),1/2

)
lies on the stable manifold of a unique small 1-periodic solution of (3.1). So

we consider the initial value problem

ż = F(z) + εg(z, t,ε),

ṫ = 1,

z
(
s̃+(α,ε)

)=
(
ξ(α,ε),

1
2

)
, t

(
s̃+(α,ε)

)= s̃+(α,ε) +α,

(3.8)

that is the initial value problem

ż = F(z) + εg
(
z, s̃+(α,ε) + s+α,ε

)
,

z(0)=
(
ξ(α,ε),

1
2

)
, s≥ 0.

(3.9)
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We note γ̃+(0)= (ξ(α,0),1/2). By taking

z(s)= γ̃+(s) + εw(s) (3.10)

in (3.9), we get

ẇ =DF(γ̃+(s)
)
w+

1
ε

{
F
(
γ̃+(s) + εw

)−F(γ̃+(s)
)−DF(γ̃+(s)

)
εw
}

+ g
(
γ̃+(s) + εw, s̃+(α,ε) + s+α,ε

)
, s≥ 0,

w(0)= (ψ̃+(α,ε),0
)=Ψ+(α,ε),

(3.11)

where

ψ̃+(α,ε)= (ξ(α,ε)− ξ(α,0)
)
/ε. (3.12)

Now we can repeat the above arguments of (2.22) to solve (3.11). So we again take

Γ= ˙̃γ+(0)⊥ =
(

˙̃γ+2(0),− ˙̃γ+1(0)
)
. (3.13)

The statement of Lemma 2.2 changes as follows.

Lemma 3.1. Problem

ẇ =DF(γ̃+(s)
)
w+h,

w(0)= u (3.14)

has a bounded solution w on R+ for a h∈ Cb(R+,R2) if and only if

∫ +∞

0

(
h(s), μ̃(s)

)
ds+

(
˙̃γ+(0)⊥,u

)
= 0. (3.15)

Moreover, if condition (3.15) holds, then problem (3.14) has a unique bounded solution
w = w̃(u,h) on R+. Furthermore, there is a constant c̃ > 0 such that

∥
∥w̃(u,h)

∥
∥≤ c̃(‖h‖+ |u|). (3.16)

Here, μ̃ is a bounded solution on R+ of the adjoint linear equation

ẇ =−DF(γ̃+(s)
)∗
w (3.17)

with w(0)= Γ.

Condition (3.15) yields that instead of projection S from Section 2, we take a mapping
S̃ :R2×Y → Y defined by

S̃(u)h= h−
∫ +∞

0

[(

h(θ),
μ̃(θ)

‖μ̃‖2
2

)

dθ

]

μ̃−
(

˙̃γ+(0)⊥,u
) μ̃

‖μ̃‖2
2
. (3.18)



10 Bifurcations of planar sliding homoclinics

Then we have
∫ +∞

0

(
S̃(u)h(s), μ̃(s)

)
ds+

(
˙̃γ+(0)⊥,u

)
= 0. (3.19)

So we split (3.11) as follows:

ẇ =DF(γ̃+(s)
)
w+ S̃

(
Ψ+(α,ε)

)
[

1
ε

{
F
(
γ̃+(s) + εw

)−F(γ̃+(s)
)−DF(γ̃+(s)

)
εw
}

+ g
(
γ̃+(s) + εw, s̃+(α,ε) + s+α,ε

)]
,

w(0)=Ψ+(α,ε),

(3.20)

∫ +∞

0

(
1
ε

{
F
(
γ̃+(s) + εw

)−F(γ̃+(s)
)−DF(γ̃+(s)

)
εw
}

+ g
(
γ̃+(s) + εw, s̃+(α,ε) + s+α,ε

)
, μ̃(s)

)
ds

+
(

˙̃γ+(0)⊥,Ψ+(α,ε)
)
= 0.

(3.21)

By using Lemma 3.1, we can solve (3.20) to obtain its solution

w = w̃(α,ε,s). (3.22)

Then by inserting it into (3.21), we arrive at a bifurcation equation

B̃(α,ε)=
∫ +∞

0

(
1
ε

{
F
(
γ̃+(s) + εw̃(α,ε,s)

)−F(γ̃+(s)
)−DF(γ̃+(s)

)
εw̃(α,ε,s)

}

+ g
(
γ̃+(s) + εw̃(α,ε,s), s̃+(α,ε) + s+α,ε

)
, μ̃(s)

)
ds

+
(

˙̃γ+(0)⊥,Ψ+(α,ε)
)
= 0.

(3.23)

We have

M̃(α)= B̃(α,0)=
∫ +∞

0

(
g
(
γ+(s),a+ + s+α,0

)
, μ̃(s)

)
+ ˙̃γ+2(0)ψ̃+(α,0)= 0, (3.24)

where we use that s̃+(α,0)= a+ and

1
ε

{
F
(
γ̃+(s) + εw̃(α,ε,s)

)−F(γ̃+(s)
)−DF(γ̃+(s)

)
εw̃(α,ε,s)

}=O(ε). (3.25)

Any simple root α0 of M̃(α) gives the solvability of B̃(α,ε)= 0 with respect to α= α̃(ε) for
any ε small with α̃(0)= α0.

Furthermore, from (3.6), we get

f−2
(
η+
(
a+
))
∂εs̃+(α,0) + ∂ε ỹ

(
a+,α,0

)= 0, (3.26)

while (3.7) and (3.12) give

ψ̃+(α,0)= ∂εξ(α,0)= f−1
(
η+
(
a+
))
∂εs̃+(α,0) + ∂εx̃

(
a+,α,0

)
, (3.27)
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which altogether imply

ψ̃+(α,0)=− f−1
(
η+
(
a+
)) ∂ε ỹ

(
a+,α,0

)

f−2
(
η+
(
a+
)) + ∂εx̃

(
a+,α,0

)
. (3.28)

Next, we derive from (3.4) for

w(s)= ∂εz̃
(
a+,α,0

)= (∂εx̃
(
a+,α,0

)
,∂ε ỹ

(
a+,α,0

))
(3.29)

the linear variational initial value problem

ẇ =D f−
(
η+(s)

)
w+ g

(
η+(s),s+α,0

)
,

w(0)= (∂εϕ̃+(α,0),0
)
.

(3.30)

But (3.2) implies

∂x f−2
(
η+(0)

)
∂εϕ̃+(α,0) + g2

(
η+(0),α,0

)= 0. (3.31)

So instead of (3.30), we consider the linear initial value problem

ẇ =D f−
(
η+(s)

)
w+ g

(
η+(s),s+α,0

)
,

w(0)=
(

−g2
(
η+(0),α,0

)

∂x f−2
(
η+(0)

) ,0

)

.
(3.32)

Summarizing we arrive at the following result.

Theorem 3.2. Let function M̃ be given by (3.24) along with formulas (3.28), (3.29), and
(3.32). If there is a simple root of M̃, then homoclinic solution γ̃ bifurcates to a bounded
solution on R of (3.1) with ε �= 0 small.

4. Example

We present in this section an illustrative example. Let a+ be the unique (positive) solution
of the equation

ea+
(
1− a+

)= 1
2
. (4.1)

We note that a+ ∼ 0.768039. Then we set

a= ea+
(
2− a+

)∼ 2.65554. (4.2)

In this section, we consider system (3.1) with

f+(z)=
⎧
⎨

⎩
ẋ = y,

ẏ = x− 3y,
f−(z)=

⎧
⎨

⎩
ẋ = y,

ẏ = 2y− x,

F(z)=

⎧
⎪⎪⎨

⎪⎪⎩

ẋ =−2ay,

ẏ =− 1
2a
x,

g(x, t,ε)= cos t

(
0
1

)

.

(4.3)
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It is not difficult to see that now we have

η+(s)=
⎧
⎨

⎩
es(2− s),

es(1− s),
γ̃+(s)=

⎧
⎨

⎩
e−sa,

e−s/2,

γ̃−(s)=
⎧
⎨

⎩
−esa,

es/2,
η−(s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−aes−a− +
(

1
2

+ a
)
es−a−

(
s− a−

)
,

1
2
es−a− +

(
1
2

+ a
)
es−a−

(
s− a−

)
,

(4.4)

where a− ∼ −0.122043 is the unique (negative) solution of the equation

ea− +
(

1
2

+ a
)
a− = 1

2
. (4.5)

We note that (a,1/2)= η+(a+) and system (3.32) has now the form

ẇ =
(

0 1
−1 2

)

w+ cos(s+α)

(
0
1

)

,

w(0)= (cosα,0).

(4.6)

After some computations, function (3.24) has now the form

M̃(α)= a

2

(
cos

(
a+ +α

)− sin
(
a+ +α

))
,

+
1

4(1− a)
w2
(
a+
)− 1

2
w1
(
a+
)
,

(4.7)

where w(s)= (w1(s),w2(s)) solves (4.6), that is, we have

w1
(
a+
)=

(
cosα+

1
2

sinα
)
ea+ − 1

2
(cosα+ sinα)ea+a+− 1

2
sin
(
a+ +α

)
,

w2
(
a+
)= cosα

2
ea+ − 1

2
(cosα+ sinα)ea+a+− 1

2
cos

(
a+ +α

)
.

(4.8)

Then, (4.7) takes the form

M̃(α)=−0.441052cosα− 1.7501sinα. (4.9)

Function (4.9) has two different simple roots over the period 2π. By applying Theorem
3.2, we get the existence of two bounded solutions of (3.1) with (4.3) near to γ̃, which is
homoclinic to a small hyperbolic 2π-periodic solution of (3.1) with (4.3).
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