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Abstract

A first order differential-operator equation with an operator-coefficient generatifygcéass semi-group
is studied. Boundary conditions for which this equation possesses a unique solution dependent continuously
on its right-hand side are derived. Two theorems are formulated and proved.
0 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Coupled problems of plate thermo-mechanics (Timoshenko and Kirchhoff types models) [1]
can be reduced in a Hilbert space to the following first order differential-operator equation:

y —Ay=f(1) 1)

with the uniformly correct Cauchy problem for the associated homogeneous equation [2—4].
A Cauchy problem for the equatigri— Ay = 0 with the initial conditiony(0) = yg is called uni-
formly correct if for anyyg € D(A) there exists one solution; andyif (0) — 0, theny, (r) — 0

is uniform with respect te on each finite intervalO, 7], wherey, (z) are solutions to the men-
tioned equation. It is important from both the theoretical and application points of view to define
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boundary conditions for Eq. (1) which lead to a unique solution depending continuously on
its right-hand side. With this aim in view we define a maximal operét@nd a minimal op-
erator Lo generated by differential expression determined by the left side of (1). In terms of
boundary conditions we define the appropriate solvable (in the sense of Gorbachuk and Gor-
bachuk [5]) operatord/, i.e., operators with the following propertieby ¢ M c L and M1

defined and bounded on the whole space. Notice that many works are devoted to description of
various extension and restriction properties of differential operators (many references are cited
in monograph [5]). One of the main difficulties arises from the observation that a set of boundary
values of some differential operators do not overlap with the input (initial) space. In this paper
we construct the space of boundary values suitable for description of solvable operators.

2. Method

Let H be a Hilbert space with the scalar prodgct) and norm| - |; L2(H; 0, b) is a space
of measurableH -valued functions with norm square-integrable [Onb]; A is a closed linear
operator inH, andA is a generator of &g class semi-group. The latter condition is equivalent
to the uniform correctness of the Cauchy problem for the equatienAy = 0 ([2, Chapter 1,
§2], [3, Chapter 23, §3)).

On the setD(L’) composed of strongly differentiable functiopg) with values inD(A)
and satisfying the properfyy] = y' — Ay € L>(H; 0, b), the operatol’ is defined:L'y = I[y].
The closurel of the operatod.” will be called a maximal operator generatedis( H; 0, b) by
the expression. A minimal operatorLg is defined as the closure of the restrictionlofo the
functionsy(r) € D(L’) satisfying the conditiory(0) = y(b) = 0.

According to [5, Chapter 3, §2], an operatdris said to be solvable, fo ¢ M C L and the
inverseM —1 exists as a bounded operator defined on the whole shgdé; 0, b).

Let U (¢) be the semi-group generated Ayand let the following norm o/ be introduced:

b
|x|2_:/|U(s)x|2dsga(b)|x|2, x€H. )
0

We denote byH_ the completion ofH by this norm. The inequality

b b
\U@)x|? =/|U(S)U(t)x|2ds <C/|U(s)x|2ds=c|x|2_ (c>0),
0 0

implies that the semi-groufp' (+) extends continuously up to the semi—grdﬁpt) in H_. Note
also that if a sequende;,} in H converges torg € H_ in H_, then the sequendé/ (¢)x,} is
the fundamental one ih2(H; 0, b) and is convergent to the limit (r)xo. Hence, the function
y(t) = ﬁ(t)xo belongs toL>(H; 0, b). On the contrary, if the sequen¢€ (¢)x,} (x, € H) con-
verges toy(¢) in L2(H; 0, b), then there exists an elemente H_ such thaty(r) = l~/(t)xo.

Indeed, (2) implies that the sequenpog} is fundamental inH_, and one may take ag
the element to whicHx,} converges. The above considerations yield the conclusion: for any
xo € H_ the functiony(r) = ﬁ(r)xo belongs to kef, i.e.,Ly = 0.
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Lemma. The domainD (L) of operatorL consists of the functions defined by the relation
t

y(t)=U(t)x +/U(t —$)f(s)ds, (3)

0
wherex e H_, f € L»(H;0,b),andLy = f.

Proof. Both the results reported in [2, Chapter 1, §6], [4, Chapter 9, §1] concerning a solution to
the non-homogeneous equation (1) and the earlier considerations imply that the functions of the
form (3) belong toD(L). Assume nowy € D(L) andLy = f. In what follows one may find a
sequencéy,}, v, € D(L'), being converged t@ in L2(H; 0, b) that f,, = L'y, converges tof .

The functiony, can be presented in the following form:

t

yn(t)ZU(I)xn‘F/U(I—S)fn(S)dS.
0

Since{y,}, { f»} are convergentU (t)x,} is convergent too. Applying the last equality to achieve
a limit, one gets thag can be presented in form (3). The lemma is proved.

Remark. The operatorr — U (¢)x is one-to-one continuous mapping Bt onto kerL. This
observation follows from the lemma and our earlier considerations.

In addition, one more norm is introduced via the relation
b b

(|x|“i)2 = /|U*(s)x|2ds = /(U(S)U*(s)x, x) ds <BMb)|x|?, xeH,
0 0
and the completion off with respect to this norm is denoted B§*. Observe that the spaé¢e&*
can be treated as the negative one with respeflpte: H [6, Chapter 1, 81]. The corresponding
positive space is denoted Wy . It follows from [6] that the operator;,, an extension of the
operatorféJ U(s)U*(s)ds onto H*, is a one-to-one continuous mappingif onto H.
Proceeding in a similar way, one may prove théir) extends td/*(r) defined onH* and the
operatorx — U*(¢t)x mapsH* into Lo(H; 0, b). Therefore, the corresponding adjoint operator

b
f—>/U(S)f(S)ds 4)
0

represents a continuous mapping frém(H; 0, b) into H3. Furthermore, defining ag the fol-
lowing function f (s) = U*(s)1,, *x, wherex € H, one may conclude that (4) maps(H; 0, b)
onto the spacéf?.

Now using a simple change of variables it is not difficult to establish that the operator

b
f—>/U(b—s)f(s)ds
0
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maps Lo(H;0,b) onto HY. Assuming f(s) = U(s)x (x € H_) and applying the equality
ﬁ(b — s)l7(s) = ﬁ(b), the relationﬁ(b)x € H} is obtained, and hence the operalfdlb) maps
H_ continuously intoH .

The following boundary mappings : D(L) — H_, y2: D(L) — H are introduced for the
functionsy € D(L) by the formulasy,y = y(0) andy2y = y(b), respectively. The operators
y1, 2 have the following properties:

(i) for any arbitrary element&; € H_, hp € H, there exists a functiory € D(L), that
Y1y = h1, y2y = h2;
(ii) y1, y2 are continuous o (L) with the norm of the graph af;
(iii) the restrictiony, on kerL is a one-to-one mapping onfd_.

Indeed, in order to prove the property (i) it is sufficient to apph¢ k1, f(s) = U*(b — s) x
Ib_l(hz — U(b)hy) in formula (3). In what follows we prove the property (ii). Lgt, y € D(L),
Ly, = fu, Ly = f and let sequenceds;,}, {f,} converge inL>(H; 0, b) to y, f, respectively.
According to the proved lemma, the functioys y can be presented in the form

t t

y(t)=l7(t)yn(0)+/U(l—S)fn(S)ds, y(t)=l~/(t)y(0)+/U(t—S)f(S)ds,

0 0

and hence{ﬁ(r)yn (0)} converges td7(t)y(0). Owing to this result and the considerations out-
lined before the lemmdy, (0)} converges ta(0) in H_ and{y,(b)} converges tg(b) in H}.

The property (iii) follows directly from the Remark.

To conclude, the ordered quadrugld_, H*, y1, y2) is a space of boundary values of the
operatorL in the sense of the work [7].

Theorem 1. An operator M is solvable if and only if there exists a bounded operator
N:H} — H_,such thatD(M) consists only of the elements D(L), which satisfy the follow-
ing condition

y(0) = N (y(b) — U (b)y(0)). (5)

Proof. Denote byf a restriction ofL to the set of elementse D(L), satisfying the conditions
y(0) = 0. It follows from (3) thatl is solvable operator. Any element D(L) may be presented
in the following form: y = u + z, whereu € kerL, z € D(L), and elements, z are defined
uniquely with respect tg. Owing to this equality, if the operata¥l is solvable, thenD (M)
consists of elements of the following form:

y=Kf+L1f, feLyH;0b), (6)

whereK is a bounded linear operator froh»(H; 0, b) into kerL andK g = 0 for anyg belong-

ing to the space valueRB(Lo) of the operatoi.g. On the contrary, a set consisting of elements
of the form (6) for anyK with the mentioned properties is a domain of the solvable operator.
Expression (6) yields

M=k +L7L @)

Taking into account thak (Lo) is closed ian’gH; 0, b), afactor spac@ = L2(H;0,b)/R(Lo)
and a canonical mappingof L>(H; 0, b) onto F are introduced. Note that the operatois as-
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sociated with the operatd/f: F — kerL, defined through the equality = Kr.Both operators
K andK are simultaneously continuous.

LetT = yZZ*l. Owing to the properties (i), (ii) of boundary operators, the operataraps
continuouslyL,(H; 0, b) onto H .

Defmmons of the operator&g, L |mpIy that kerl' coincides withR(Lg). Therefore, the
operatorT defined through the formul& = T, maps continuously and one-to- oﬁeontoH*

Let us introduce the operatoi : H} — H_ through the equalityy = leT—1 Hence

K = BNT, (8)

whereg: H_ — kerL is the inverse of the restriction of to kerL, i.e., x = U(1)x, x € H_.
The operatorsV and K are simultaneously continuous. It follows from (7), (8) that a domain
D (M) of any arbitrary solvable operatdf consists of the elements of the form

y=PBNyxz+z, ()]

wherez is an arbitrary element (L), N: H} — H_ is a bounded operator. And vice versa,
a set consisting of elements of the form (9) creates a domain of the solvable operator.
It follows from (9) that

vy =Nyaz.  yay =UB)Nyoz + yaz. (10)
and hence
2z = y2z — U (b)y1y. (1)

Applying the operatow to (11) and taking into account (10), formula (5) is obtained. Con-
sequently, any element of form (9) satisfies condition (5). On the contrary iD(L) satisfies
(5) then the equality (9) holds. Indeedyit= u + z, whereu € kerL, z € D(L), then

vy =y, 2y =yau+yoz=Ub)yu + yoz.

The obtained equalities and (5) allow us to conclude gtz = y1y. Therefore,y can be
presented as in (9). The theorem is provedi

Remark. Equality (11) and property (i) (see properties in the Remark before Theorem 1) of
the operatorg/, y» imply that, for any solvable operata/, a set of elements of the form
y(b) — U(b)y(O), wherey € D(M), coincides with whole space$; . Besides, it follows from

the proof of Theorem 1 that the operatd#s N uniquely determine each other.

Assume now thatV is the restriction ofL to a set of functions) € D(L), satisfying the
condition

{0, y(b)} € Mo, (12)

wheref-,-} denotes an ordered pair, ahy C H_ @ H7 is alinear relation, i.e., a linear manifold.
Note that terminology associated with linear relations is introduced for example in Refs. [5,8].

Theorem 2. The operatorM is solvable if and only if the relatiotMg — ﬁ(b))‘1 is bounded
with domain equal to the whole space.
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Proof. Let {y(0), y(b)} € Mo. This is equivalent tdy(0), y(b) — U(b)y(0)} € Mg — U(b),
which yields{y(») — U(b)y(O) y(0)} e (Mg — U(b)) 1. Now Theorem 2 follows from The-
orem 1, whereV = (Mo — U(b)) 1. Theorem 2 is proved. O

It should be emphasized that conditions (12) contain a wide class of linear-type boundary con-
ditions. By introducing a relatioMy in different ways, one obtains various relations combining
boundary values.

Let us consider for example the case, when relatigrconsists of a set of paifg(0), y(b)},
satisfying the following condition:

S1y(0) = Sa2y(b), (13)

where S1: H_ — Bo, S2: HY — Bo are bounded linear operatorBy is an arbitrary Banach
space.
One may observe that condition (13) is equivalent to the following one:

Cy(0) = S2(y(b) — U(b)y(0)),

where C = §1 — Szﬁ(b) Therefore the relatiomfp — ﬁ(b) consists of the set of pairs
{g1, g2} satlsfymg the conditiorCg1 = S»g». Therefore the relatiodg — U(b) is closed and
(Mo — U(b)) C~15,. Theorem 2 implies that the operattf is solvable if and only if the
operatorC is |nvert|ble and operataf —1S, is everywhere defined.
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