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Abstract

A first order differential-operator equation with an operator-coefficient generating aC0 class semi-group
is studied. Boundary conditions for which this equation possesses a unique solution dependent cont
on its right-hand side are derived. Two theorems are formulated and proved.
 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Coupled problems of plate thermo-mechanics (Timoshenko and Kirchhoff types mode
can be reduced in a Hilbert space to the following first order differential-operator equation

y′ − Ay = f (t) (1)

with the uniformly correct Cauchy problem for the associated homogeneous equation
A Cauchy problem for the equationy′ −Ay = 0 with the initial conditiony(0) = y0 is called uni-
formly correct if for anyy0 ∈ D(A) there exists one solution; and ifyn(0) → 0, thenyn(t) → 0
is uniform with respect tot on each finite interval[0, T ], whereyn(t) are solutions to the men
tioned equation. It is important from both the theoretical and application points of view to d
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boundary conditions for Eq. (1) which lead to a unique solution depending continuous
its right-hand side. With this aim in view we define a maximal operatorL and a minimal op-
eratorL0 generated by differential expression determined by the left side of (1). In term
boundary conditions we define the appropriate solvable (in the sense of Gorbachuk an
bachuk [5]) operatorsM , i.e., operators with the following properties:L0 ⊂ M ⊂ L andM−1

defined and bounded on the whole space. Notice that many works are devoted to descri
various extension and restriction properties of differential operators (many references a
in monograph [5]). One of the main difficulties arises from the observation that a set of bou
values of some differential operators do not overlap with the input (initial) space. In this
we construct the space of boundary values suitable for description of solvable operators.

2. Method

Let H be a Hilbert space with the scalar product(·,·) and norm| · |; L2(H ;0, b) is a space
of measurableH -valued functions with norm square-integrable on[0, b]; A is a closed linea
operator inH , andA is a generator of aC0 class semi-group. The latter condition is equival
to the uniform correctness of the Cauchy problem for the equationy′ − Ay = 0 ([2, Chapter 1
§2], [3, Chapter 23, §3]).

On the setD(L′) composed of strongly differentiable functionsy(t) with values inD(A)

and satisfying the propertyl[y] = y′ − Ay ∈ L2(H ;0, b), the operatorL′ is defined:L′y = l[y].
The closureL of the operatorL′ will be called a maximal operator generated inL2(H ;0, b) by
the expressionl. A minimal operatorL0 is defined as the closure of the restriction ofL to the
functionsy(t) ∈ D(L′) satisfying the conditiony(0) = y(b) = 0.

According to [5, Chapter 3, §2], an operatorM is said to be solvable, ifL0 ⊂ M ⊂ L and the
inverseM−1 exists as a bounded operator defined on the whole spaceL2(H ;0, b).

Let U(t) be the semi-group generated byA, and let the following norm onH be introduced:

|x|2− =
b∫

0

∣∣U(s)x
∣∣2 ds � α(b)|x|2, x ∈ H. (2)

We denote byH− the completion ofH by this norm. The inequality

∣∣U(t)x
∣∣2− =

b∫
0

∣∣U(s)U(t)x
∣∣2 ds � c

b∫
0

∣∣U(s)x
∣∣2 ds = c|x|2− (c > 0),

implies that the semi-groupU(t) extends continuously up to the semi-groupŨ (t) in H−. Note
also that if a sequence{xn} in H converges tox0 ∈ H− in H−, then the sequence{U(t)xn} is
the fundamental one inL2(H ;0, b) and is convergent to the limit̃U(t)x0. Hence, the function
y(t) = Ũ (t)x0 belongs toL2(H ;0, b). On the contrary, if the sequence{U(t)xn} (xn ∈ H) con-
verges toy(t) in L2(H ;0, b), then there exists an elementx0 ∈ H− such thaty(t) = Ũ (t)x0.

Indeed, (2) implies that the sequence{xn} is fundamental inH−, and one may take asx0

the element to which{xn} converges. The above considerations yield the conclusion: for
x0 ∈ H− the functiony(t) = Ũ (t)x0 belongs to kerL, i.e.,Ly = 0.
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Lemma. The domainD(L) of operatorL consists of the functions defined by the relation

y(t) = Ũ (t)x +
t∫

0

U(t − s)f (s) ds, (3)

wherex ∈ H−, f ∈ L2(H ;0, b), andLy = f .

Proof. Both the results reported in [2, Chapter 1, §6], [4, Chapter 9, §1] concerning a solu
the non-homogeneous equation (1) and the earlier considerations imply that the function
form (3) belong toD(L). Assume nowy ∈ D(L) andLy = f . In what follows one may find a
sequence{yn}, yn ∈ D(L′), being converged toy in L2(H ;0, b) thatfn = L′yn converges tof .
The functionyn can be presented in the following form:

yn(t) = U(t)xn +
t∫

0

U(t − s)fn(s) ds.

Since{yn}, {fn} are convergent,{U(t)xn} is convergent too. Applying the last equality to achie
a limit, one gets thaty can be presented in form (3). The lemma is proved.�
Remark. The operatorx → Ũ (t)x is one-to-one continuous mapping ofH− onto kerL. This
observation follows from the lemma and our earlier considerations.

In addition, one more norm is introduced via the relation

(|x|∗−
)2 =

b∫
0

∣∣U∗(s)x
∣∣2 ds =

b∫
0

(
U(s)U∗(s)x, x

)
ds � β(b)|x|2, x ∈ H,

and the completion ofH with respect to this norm is denoted byH ∗−. Observe that the spaceH ∗−
can be treated as the negative one with respect toH0 = H [6, Chapter 1, §1]. The correspondin
positive space is denoted byH ∗+. It follows from [6] that the operatorIb, an extension of the

operator
∫ b

0 U(s)U∗(s) ds ontoH ∗−, is a one-to-one continuous mapping ofH ∗− ontoH ∗+.
Proceeding in a similar way, one may prove thatU∗(t) extends tõU∗(t) defined onH ∗− and the

operatorx → Ũ∗(t)x mapsH ∗− into L2(H ;0, b). Therefore, the corresponding adjoint opera

f →
b∫

0

U(s)f (s) ds (4)

represents a continuous mapping fromL2(H ;0, b) into H ∗+. Furthermore, defining asf the fol-
lowing functionf (s) = Ũ∗(s)I−1

b x, wherex ∈ H ∗+, one may conclude that (4) mapsL2(H ;0, b)

onto the spaceH ∗+.
Now using a simple change of variables it is not difficult to establish that the operator

f →
b∫
U(b − s)f (s) ds
0
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mapsL2(H ;0, b) onto H ∗+. Assumingf (s) = Ũ (s)x (x ∈ H−) and applying the equalit
Ũ (b − s)Ũ (s) = Ũ (b), the relationŨ (b)x ∈ H ∗+ is obtained, and hence the operatorŨ (b) maps
H− continuously intoH ∗+.

The following boundary mappingsγ1 :D(L) → H−, γ2 :D(L) → H ∗+ are introduced for the
functionsy ∈ D(L) by the formulasγ1y = y(0) andγ2y = y(b), respectively. The operato
γ1, γ2 have the following properties:

(i) for any arbitrary elementsh1 ∈ H−, h2 ∈ H ∗+, there exists a functiony ∈ D(L), that
γ1y = h1, γ2y = h2;

(ii) γ1, γ2 are continuous onD(L) with the norm of the graph ofL;
(iii) the restrictionγ1 on kerL is a one-to-one mapping ontoH−.

Indeed, in order to prove the property (i) it is sufficient to applyx = h1, f (s) = Ũ∗(b − s) ×
I−1
b (h2 − Ũ (b)h1) in formula (3). In what follows we prove the property (ii). Letyn, y ∈ D(L),

Lyn = fn, Ly = f and let sequences{yn}, {fn} converge inL2(H ;0, b) to y, f , respectively.
According to the proved lemma, the functionsyn, y can be presented in the form

y(t) = Ũ (t)yn(0) +
t∫

0

U(t − s)fn(s) ds, y(t) = Ũ (t)y(0) +
t∫

0

U(t − s)f (s) ds,

and hence{Ũ (t)yn(0)} converges tõU(t)y(0). Owing to this result and the considerations o
lined before the lemma,{yn(0)} converges toy(0) in H− and{yn(b)} converges toy(b) in H ∗+.

The property (iii) follows directly from the Remark.
To conclude, the ordered quadruple(H−,H ∗+, γ1, γ2) is a space of boundary values of t

operatorL in the sense of the work [7].

Theorem 1. An operator M is solvable if and only if there exists a bounded opera
N :H ∗+ → H−, such thatD(M) consists only of the elementsy ∈ D(L), which satisfy the follow
ing condition:

y(0) = N
(
y(b) − Ũ (b)y(0)

)
. (5)

Proof. Denote bỹL a restriction ofL to the set of elementsy ∈ D(L), satisfying the condition
y(0) = 0. It follows from (3) that̃L is solvable operator. Any elementy ∈ D(L) may be presente
in the following form: y = u + z, whereu ∈ kerL, z ∈ D(L̃), and elementsu, z are defined
uniquely with respect toy. Owing to this equality, if the operatorM is solvable, thenD(M)

consists of elements of the following form:

y = Kf + L̃−1f, f ∈ L2(H ;0, b), (6)

whereK is a bounded linear operator fromL2(H ;0, b) into kerL andKg = 0 for anyg belong-
ing to the space valuesR(L0) of the operatorL0. On the contrary, a set consisting of eleme
of the form (6) for anyK with the mentioned properties is a domain of the solvable oper
Expression (6) yields

M−1 = K + L̃−1. (7)

Taking into account thatR(L0) is closed inL2(H ;0, b), a factor spacẽF = L2(H ;0, b)/R(L0)

and a canonical mappingπ of L2(H ;0, b) ontoF̃ are introduced. Note that the operatorK is as-
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sociated with the operator̂K : F̃ → kerL, defined through the equalityK = K̂π . Both operators
K̂ andK are simultaneously continuous.

Let T = γ2L̃
−1. Owing to the properties (i), (ii) of boundary operators, the operatorT maps

continuouslyL2(H ;0, b) ontoH ∗+.
Definitions of the operatorsL0, L̃ imply that kerT coincides withR(L0). Therefore, the

operator̂T defined through the formulaT = T̂ π , maps continuously and one-to-onẽF ontoH ∗+.
Let us introduce the operatorN : H ∗+ → H− through the equalityN = γ1K̂T̂ −1. Hence

K = βNT, (8)

whereβ :H− → kerL is the inverse of the restriction ofγ1 to kerL, i.e.,βx = Ũ(t)x, x ∈ H−.
The operatorsN andK are simultaneously continuous. It follows from (7), (8) that a dom
D(M) of any arbitrary solvable operatorM consists of the elements of the form

y = βNγ2z + z, (9)

wherez is an arbitrary element inD(L̃), N :H ∗+ → H− is a bounded operator. And vice vers
a set consisting of elements of the form (9) creates a domain of the solvable operator.

It follows from (9) that

γ1y = Nγ2z, γ2y = Ũ (b)Nγ2z + γ2z, (10)

and hence

γ2z = γ2z − Ũ (b)γ1y. (11)

Applying the operatorN to (11) and taking into account (10), formula (5) is obtained. C
sequently, any element of form (9) satisfies condition (5). On the contrary, ify ∈ D(L) satisfies
(5) then the equality (9) holds. Indeed, ify = u + z, whereu ∈ kerL, z ∈ D(L̃), then

γ1y = γ1u, γ2y = γ2u + γ2z = Ũ (b)γ1u + γ2z.

The obtained equalities and (5) allow us to conclude thatNγ2z = γ1y. Therefore,y can be
presented as in (9). The theorem is proved.�
Remark. Equality (11) and property (i) (see properties in the Remark before Theorem
the operatorsγ1, γ2 imply that, for any solvable operatorM , a set of elements of the form
y(b) − Ũ (b)y(0), wherey ∈ D(M), coincides with whole spacesH ∗+. Besides, it follows from
the proof of Theorem 1 that the operatorsM , N uniquely determine each other.

Assume now thatM is the restriction ofL to a set of functionsy ∈ D(L), satisfying the
condition{

y(0), y(b)
} ∈ M0, (12)

where{·,·} denotes an ordered pair, andM0 ⊂ H−⊕H ∗+ is a linear relation, i.e., a linear manifol
Note that terminology associated with linear relations is introduced for example in Refs. [5

Theorem 2. The operatorM is solvable if and only if the relation(M0 − Ũ (b))−1 is bounded
with domain equal to the whole space.
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Proof. Let {y(0), y(b)} ∈ M0. This is equivalent to{y(0), y(b) − Ũ (b)y(0)} ∈ M0 − Ũ (b),
which yields{y(b) − Ũ (b)y(0), y(0)} ∈ (M0 − Ũ (b))−1. Now Theorem 2 follows from The
orem 1, whereN = (M0 − Ũ (b))−1. Theorem 2 is proved. �

It should be emphasized that conditions (12) contain a wide class of linear-type bounda
ditions. By introducing a relationM0 in different ways, one obtains various relations combin
boundary values.

Let us consider for example the case, when relationM0 consists of a set of pairs{y(0), y(b)},
satisfying the following condition:

S1y(0) = S2y(b), (13)

whereS1 :H− → B0, S2 :H ∗+ → B0 are bounded linear operators;B0 is an arbitrary Banac
space.

One may observe that condition (13) is equivalent to the following one:

Cy(0) = S2
(
y(b) − Ũ (b)y(0)

)
,

where C = S1 − S2Ũ(b). Therefore the relationM0 − Ũ (b) consists of the set of pair
{g1, g2} satisfying the conditionCg1 = S2g2. Therefore the relationM0 − Ũ (b) is closed and
(M0 − Ũ(b))−1 = C−1S2. Theorem 2 implies that the operatorM is solvable if and only if the
operatorC is invertible and operatorC−1S2 is everywhere defined.
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