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Abstract

A novel thermomechanical model of frictional self-excited stick-slip vibrations is proposed. A mechan-

ical system consisting of two masses which are coupled by an elastic spring and moving vertically between

two walls is considered. It is assumed that between masses and walls a Coulomb friction occurs, and stick-

slip motion of the system is studied. The applied friction force depends on a relative velocity of the sliding

bodies. Stability of stationary solutions is considered. A computation of contact parameters during heating

of the bodies is performed. The possibility of existence of frictional auto-vibrations is illustrated and
discussed.
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1. Introduction

Stick-slip motion is intimately related to the nature of frictional phenomena and is often attrib-
uted to the difference between the static and kinematic friction coefficients. Even though the topic
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of friction is a relatively old one and plays an important role in many practical and engineering
applications, surprisingly it is not as well understood as might be expected.
Research reported in this paper extends the authors� earlier results, where both regular and cha-

otic vibrations in a cylinder-bush system have been analyzed [2–6]. In addition, two-degrees-
of-freedom system, where a friction force depends on a distance between two masses, has been
studied in reference [14].
It is worth noting that the main conditions for occurrence of self-excited vibrations in the mod-

els discussed earlier are associated with a difference between static and kinematic frictions, and
with existence of an elastic coupling in a tribo-mechanical system.
Analysis of various references [1,2,5,8,10,12] leads to a conclusion that velocity of one of the

contacting bodies is always given. The system in the condition of self-excited vibrations takes en-
ergy from a body moving at constant velocity. The self-excited vibrations do not appear when
inertia of the contacting bodies is taken into account. The latter case is considered in this work.
It has been shown that owing to heat extension, a body can be periodically heated, braked, cooled
and accelerated. In some conditions, stick-slip self-excited vibrations may also appear.
2. Statement of the problem

We consider two masses M1 (body 1) and M2 (body 2) which are coupled by an elastic spring as
indicated in Fig. 1. We assume that the initial length of the spring is l0 and that the spring has
stiffness k, which represents the overall elastic properties of the system. We also assume that
the masses are constrained by walls to move only in the vertical direction, and that Z1 and Z2

denote positions of masses M1 and M2, respectively, as indicated in Fig. 1. Let us consider a
one-dimensional model of the thermo-elastic contact of body 1 with a surrounding medium. As-
sume that this body 1 is represented by a rectangular plate (l1 · l2 · 2L) (Fig. 1). Both bodies are
subjected to an action of the forces F n ¼ F n�hF ðtÞ, n = 1,2, (hF(t)! 1, t !1). At the initial time
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Fig. 1. Two coupled masses system.
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Fig. 2. The Stribeck friction-speed curve.
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instant, body 1 (2) is situated at distance Z0
1 (Z

0
2) and its velocity reads _Z

0

1 (
_Z
0

2). The distance be-
tween walls is always equal to the initial plate thickness 2L.
It is assumed that a heat conduction between the bodies and the walls obeys Newton�s law. At

an initial instant the temperature is governed by the formula T0hT(t) (hT(t)! 1, t !1). It causes
heat extension of the parallelepiped in the direction of 0X, and body 1 starts to contact the walls.
As a result of this process, a frictional contact on the parallelepiped sides X = ±L occurs. A simple
frictional model is applied in the further considerations, i.e. friction force Ffr is a product of nor-
mal reaction force N(t) and a friction coefficient. That means that F fr ¼ f ð _Z1ÞNðtÞ is the friction
force defining resistance of the movement of two sliding bodies. Here, contrary to the assumption
made in references [1,5,8], the kinematic friction coefficient f ð _Z1Þ depends on the relative velocity
V r ¼ _Z1 of the sliding bodies (Fig. 2).
The friction force rXZ(X, t) per unit contact surface X = �L, X = L generates heat. According

to Ling�s assumptions (cf. [9]), the work of the friction forces is transmitted into heat energy.
Note, that the non-contacting plate surfaces are heat-isolated and have the dimensions of
L/l1 � 1, L/l2 � 1, which is in agreement with the assumption of our one-dimensional modeling
for body 1. Quantities Mn, F

n
�, k are related to a unit contacting surface.

Below, the problem is reduced to determination of the mass plate (body 2) center displacement
Z1(t) (Z2(t)), plate (body 2) velocity _Z1ðtÞ ( _Z2ðtÞ), contact pressure P(t) = N(t)/l1 l2 =
�rXX(�L, t) = �rXX(L, t), plate temperature T1(X, t), and displacement U(X, t) in the direction
of X axis.
3. Mathematical problem formulation

In the considered case, the studied problem is governed by two equations of motion in the form
M1
€Z1ðtÞ þ kðZ1ðtÞ � Z2ðtÞ � l0Þ ¼ M1g þ F 1

�hF ðtÞ � 2f ð _Z1ÞP ðtÞ; ð1Þ

M2
€Z2ðtÞ � kðZ1ðtÞ � Z2ðtÞ � l0Þ ¼ M2g þ F 2

�hF ðtÞ; ð2Þ
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where Z1, Z2 denote position of both masses as shown in Fig. 1; _Z1, _Z2 denote their respective
velocities. Equations of the heat stress theory for an isotropic body 1 [11] follow
o

oX
o

oX
U 1ðX ; tÞ � a1

1þ m1
1� m1

T 1ðX ; tÞ
� �

¼ 0; ð3Þ

o2

oX 2
T 1ðX ; tÞ ¼

1

a1

o

ot
T 1ðX ; tÞ; X 2 ð�L;LÞ ð4Þ
and mechanical
U 1ð�L; tÞ ¼ 0; U 2ðL; tÞ ¼ 0; ð5Þ
heat
�k1
oT 1ð�L; tÞ

oX
þ aT T 1ð�L; tÞ � T 0hT ðtÞð Þ ¼ f ð _Z1Þ _Z1ðtÞP ðtÞ; ð6Þ

k1
oT 1ðL; tÞ

oX
þ aT T 1ðL; tÞ � T 0hT ðtÞð Þ ¼ f ð _Z1Þ _Z1ðtÞPðtÞ ð7Þ
and initial conditions
T 1ðX ; 0Þ ¼ 0; X 2 ð�L; LÞ; Z1ð0Þ ¼ Z0
1; Z2ð0Þ ¼ Z02; _Z1ð0Þ ¼ _Z

0

1;
_Z2ð0Þ ¼ _Z

0

2 ð8Þ
are attached. Normal stresses that occur in the plate are defined via the relation
rXX ¼ E1

1� 2m1

1� m1
1þ m1

oU
oX

� a1T 1

� �
: ð9Þ
In the above, the following notation is applied: E1—elasticity modulus, m1, k1, a1, a1, aT are Pois-
son�s ratio, thermal conductivity, thermal diffusivity, thermal expansion and heat transfer coeffi-
cients, respectively.
Integration of Eq. (3), owing to (9) and boundary conditions (5), yields the contact pressure

P(t) = �rXX(�L, t) = �rXX(L, t) cast in the form
P ðtÞ ¼ E1a1T 0

1� 2c1

1

2L

Z L

�L
T 1ðn; tÞdn: ð10Þ
Let us introduce the following similarity coefficients
t� ¼ L2=a1 ½s�; v� ¼ a1=L ½m=s�; P � ¼ T 0E1a1=ð1� 2m1Þ ½N=m2� ð11Þ

and the following non-dimensional parameters
x ¼ X
L
; s ¼ t

t�
; zn ¼

Zn
L
; p ¼ P

P �
; h ¼ T 1

T 0

; z0n ¼
Z0
n

L
; _z0n ¼

_Z
0

n

v�
; l ¼ l0

L
;

snD ¼ t�=tnD; n ¼ 1; 2; mn0 ¼ ðMng þ F nÞ=2P �; en ¼ 2P �t2�=MnL; n ¼ 1; 2; ð12Þ
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c ¼ E1a1a1
ð1� 2m1Þk1

; Bi ¼ LaT
k1

; F ð_zÞ ¼ f ðv� _zÞ;
where tnD ¼
ffiffiffiffiffiffiffiffiffiffiffi
Mn=k

p
, n = 1,2.

The examined problem is governed by the following non-dimensional equations
o2hðx; sÞ
ox2

¼ ohðx; sÞ
os

; x 2 ð�1; 1Þ; s 2 ð0;1Þ; ð13Þ

€z1ðsÞ þ ðz1ðsÞ � z2ðsÞ � lÞs21D ¼ e1ðm10 � F ð_z1ÞpðsÞÞ; ð14Þ

€z2ðsÞ � ðz1ðsÞ � z2ðsÞ � lÞs22D ¼ e2m20 ð15Þ

with both boundaries
ohðx; sÞ
ox

� Bihðx; sÞ
� �

x¼�1
¼ �qðsÞ; ohðx; sÞ

ox
þ Bihðx; sÞ

� �
x¼1

¼ qðsÞ ð16Þ
and initial conditions,
hðx; 0Þ ¼ 0; z1ð0Þ ¼ z01; z2ð0Þ ¼ z02; _z1ð0Þ ¼ _z01; _z2ð0Þ ¼ _z02; ð17Þ
where
qðsÞ ¼ BihT ðsÞ þ cF ð_z1Þ_z1ðsÞpðsÞ; pðsÞ ¼ 1

2

Z 1

�1
hðn; sÞdn: ð18Þ
4. Solution of the problem

Applying an inverse Laplace transformation [7], our non-linear problem governed by Eqs. (13),
(16) and (17) is reduced to the following integral equation
pðsÞ ¼ Bi
Z s

0

_hT ðnÞGpðs � nÞdn þ c
Z s

0

F ð_z1Þ_z1ðnÞpðnÞ _Gpðs � nÞdn ð19Þ
which yields both non-dimensional pressure p(s) and velocity _z1ðsÞ. The temperature is defined by
the following formula
hðx; sÞ ¼ Bi
Z s

0

_hT ðnÞGhðx; s � nÞdn þ c
Z s

0

F ð_z1Þ_z1ðnÞpðnÞ _Ghðx; s � nÞdn; ð20Þ
where
GpðsÞ;Ghð1; sÞ
� �

¼ 1

Bi
�
X1
m¼1

2Bi; 2l2
m

� �
l2
m½BiðBiþ 1Þ þ l2

m�
e�l2ms ð21Þ
and lm are the roots of the following characteristic equation
tglm ¼ Bi
lm

; m ¼ 1; 2; . . . ð22Þ
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5. Steady-state solution analysis

A stationary solution to the problem reads
Fig. 3

(4) m0
pst ¼ hst ¼
1

1� v
; v ¼ F ðvstÞ

vstc
Bi

; ð23Þ
where vst is the solution to the non-linear equation
F ðvstÞ ¼
m0

1þ cm0vst=Bi
; m0 ¼ mst

10 þ mst
20; mst

n0 ¼
Mng þ F n�

2P �
: ð24Þ
Graphical solution of Eq. (24) is presented in Fig. 3 for various parameters m0 and Bi. Recall that
for steel c = 1.87.
The right-hand side of Eq. (24) is represented by solid curves for different values of the para-

meters m0 and Bi. Solid curve 1 is associated with parameters m0 = 0.15, Bi = 50; solid curve
2—m0 = 0.1, Bi = 50; solid curve 3—m0 = 0.1, Bi = 0.5; solid curve 4—m0 = 0.15, Bi = 0.5. The
dashed curve displays the function F(vst).
For different values of parameters, Eq. (24) can have a different number of solutions: for

m0 = 0.15, Bi = 50 (first case) it has one solution vð3Þst (F 0ðvð3Þst Þ > 0); for m0 = 0.1, Bi = 50 (second

case)—three solutions vð1Þst , v
ð2Þ
st , v

ð3Þ
st (F 0ðvð1Þst Þ > 0, F 0ðvð2Þst Þ < 0, F 0ðvð3Þst Þ > 0); and for m0 = 0.1,

Bi = 0.5 (third case) one solution vð1Þst (F 0ðvð1Þst Þ > 0). Owing to approximation (37) we have
vð1Þst � e0m0=2F 0 and F 0ðvð1Þst Þ � 2F 0=e0. For m0 = 0.15, Bi = 0.5 (fourth case), again one solution ex-
ists vð2Þst (F 0ðvð2Þst Þ < 0).
Let us introduce a perturbation of the stationary solution (23) by means of the following

formulas
zn ¼ vsts þ z�n; _zn ¼ vst þ _z�n; n ¼ 1; 2; p ¼ pst þ p�;

h ¼ hst þ h�; hT ¼ 1þ h�T ; hF ¼ 1þ h�F ; jh�F j�1; jh�T j�1: ð25Þ
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. Graphical solution of Eq. (24) (solid curves: (1) m0 = 0.15, Bi = 50; (2) m0 = 0.1, Bi = 50; (3) m0 = 0.1, Bi = 0.5;

= 0.15, Bi = 0.5; dashed curve corresponds to F(vst)).
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Owing to linearization of the right-hand sides of (14) and with boundary condition (16) the fol-
lowing linear problem is obtained
o2h�ðx; sÞ
os2

¼ oh�ðx; sÞ
os

; ð26Þ

€z�1ðsÞ þ ðz�1 � z�2Þs21D ¼ e1½m�
10ðsÞ � F ðvstÞp�ðsÞ � F 0ðvstÞpst _z�1�; ð27Þ

€z�2ðsÞ � ðz�1 � z�2Þs22D ¼ e2m�
20ðsÞ; ð28Þ

dh�ðx; sÞ
dx

� Bih�ðx; sÞ
� �

x¼�1
¼ �q�ðsÞ; dh�ðx; sÞ

dx
þ Bih�ðx; sÞ

� �
x¼1

¼ q�ðsÞ; ð29Þ
where
q�ðsÞ ¼ Bih�T ðsÞ þ cðvstpstðb1 þ b2Þ_z�1ðsÞ þ vstF ðvstÞp�ðsÞÞ;

m�
n0ðsÞ ¼ F n�h

�
F ðsÞ=ð2P �Þ; p�ðsÞ ¼ 1

2

Z 1

�1
h�ðn; sÞdn; b1 ¼

F ðvstÞ
vst

; b2 ¼ F 0ðvstÞ: ð30Þ
Further, applying the Laplace transformation, a solution of problem (26)–(29) in the transform
domain is found. For example, the Laplace transformation of the velocity perturbation of body
1 reads
s�z�1ðsÞ ¼ �D�1ðsÞ e1b1vstBiðs2 þ s22DÞSðsÞ�h
�
T ðsÞ þ BivSðsÞ � D1ðsÞ

	 
�
� e1ðs2 þ s22DÞ�m�

10ðsÞ þ e2s
2
1D �m

�
20ðsÞ

� ��
; ð31Þ
where
�z�1ðsÞ; �h
�
T ðsÞ; �h

�
F ðsÞ; �m�

n0ðsÞ
� �

¼
Z 1

0

z�1ðsÞ; h�T ðsÞ; h�F ðsÞ;m�
n0ðsÞ

� �
e�ss ds:
The characteristic equation of the linearized problem reads
DðsÞ ¼ ðe1pstb2ðs2 þ s22DÞ þ sðs2 þ s21D þ s22DÞÞD1ðsÞ þ Bivðe1pstb1ðs2 þ s22DÞ
� sðs2 þ s21D þ s22DÞÞSðsÞ ¼ 0; ð32Þ
where D1ðsÞ ¼ sSðsÞ þ BiCðsÞ, SðsÞ ¼ sinhð
ffiffi
s

p
Þ=

ffiffi
s

p
, CðsÞ ¼ coshð

ffiffi
s

p
Þ.

The characteristic function D(s), in the form of an infinite order polynomial takes the form
DðsÞ ¼
X1
m¼0

smam; ð33Þ
where
a0 ¼ s22Db0; a1 ¼ s22Db1 þ s21Dðd
ð1Þ
0 � BivÞ; am ¼ bm�2 þ s22Dbm þ s21Dðd

ð1Þ
m�1 � Bivdð2Þm�1Þ;

m ¼ 2; 3; . . . ; b0 ¼ e1pstc0; bm ¼ e1pstcm þ dm�1; m ¼ 1; 2; . . . ;
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c0 ¼ Biðb2 þ vb1Þ; dm ¼ dð1Þm � Bivdð2Þm ; cm ¼ b2d
ð1Þ
m þ Bivb1d

ð2Þ
m ;

dð1Þm ¼ 2mþ Bi
ð2mÞ! ; dð2Þm ¼ 1

ð2mþ 1Þ! :
Observe that owing to analysis of the roots of characteristic Eq. (33), the parameter vst represents
a solution to non-linear Eq. (24).
If the frictional heat generation is not taken into account (c = 0), the characteristic equations

are governed by the following cubic equation: s3 þ e1b2s
2 þ ðs21D þ s22DÞsþ e1b2s

2
2D ¼ 0. Its roots

lie in the right-hand part of the complex plane if b2 < 0.
In the case of a perfectly stiff spring (k ! 1), we have s1D !1, s2D !1. The Laplace trans-

formation of the velocity perturbation of body 1 reads
s�z�1ðsÞ ¼ �D�1ðsÞ e1b1vstBiSðsÞ�h
�
T ðsÞ

�
þ BivSðsÞ � D1ðsÞ
	 


ðe1 �m�
10ðsÞ þ e2 �m�

20ðsÞÞ
�
; ð34Þ
where
DðsÞ ¼ ðe1pstb2 þ sÞD1ðsÞ þ Bivðe1pstb1 � sÞSðsÞ ¼ 0 ð35Þ
is the characteristic equation of the linearized problem, and velocity vst is a solution to Eq. (24).
Note that Bern has carried out a detailed analysis of roots of Eq. (35) for b2 = 0 in reference [13].
In the case, when M2 ! 0, we have s2D ! 1, and for F 2

� ¼ 0 (�m�
20ðsÞ ¼ 0) the Laplace transfor-

mation of the velocity perturbation of body 1 is defined by Eq. (34), whereas the characteristic
equation is given by (35).
In this case, the examination concerns the steel made parallelepiped plate (a2 = 14 · 10�6 �C�1,

k1 = 21 W/(m �C�1), m1 = 0.3, a1 = 5.9 · 10�6 m2/s, E1 = 19 · 1010 Pa) with e1 = 100, e2 = 900,
s1D = 2, s2D = 6 and with a non-constant friction coefficient. The function F ð_zÞ ¼ f ðv� _zÞ is defined
by the formula (cf. [5])
f ðV rÞ ¼ sgnðV rÞ

fmin þ ðF 0 � fminÞ expð�b1 jV r jÞ; for jV rj < V min

½�F 0; F 0�; for V r ¼ 0

fmin þ ðF 0 � fminÞ expð�b1 jV min jÞ

þ b2b3ðjV rj � V minÞ2

1þ b2ðjV rj � V minÞ
; for jV rj > V min;

8>>>>>><
>>>>>>:

ð36Þ
where F0 = 0.12, fmin = 0.05, b1 = 140 sm�1, b2 = 10 sm�1, b3 = 2 sm�1, Vmin = 0.035 mc�1. The
function sgn(x) is approximated by the formula (cf. [5,10])
sgne0
ðxÞ ¼

1; if x > e0;

2� jxj
e0

� �
x
e0
; if jxj < e0;

�1; if x < �e0;

8>><
>>:

ð37Þ
where e0 = 0.0001.
In the first case (for m0 = 0.15, Bi = 50), one solution vð3Þst ¼ 21, pð3Þst ¼ hð3Þ

st ¼ 1:12 (v = 0.105) is
found. It is always stable (the roots of equation (32) s1,2 = �0.05 ± 6.3i lie in the left-hand side of
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the complex variable s). The contact characteristics achieve their limiting values through a
damped oscillation process with the expected �period� T = 0.99.
In the second case (m0 = 0.1, Bi = 50), three solutions appear. The solution vð3Þst ¼ 15:94, pð3Þst ¼

hð3Þ
st ¼ 1:06, (v = 0.056) is stable (the roots of equation (32) s1,2 = �0.04 ± 6.32i lie in the left-hand

side of the complex plane s). The solution vð2Þst ¼ 0:41 (v = 0.0015) is unstable (s1 = 3.8, s2,3 =

0.15 ± 6.23i). The solution vð1Þst � 0 corresponds to an equilibrium state. In the considered
case, the contact characteristics, depending on initial conditions, tend to one of the two stable
solutions.
In the third case (m0 = 0.1, Bi = 0.5), there is only one solution, which is stable. Note that in this

case, a braking process always occurs (the applied external force is smaller than the friction force).
In the fourth case (m0 = 0.15, Bi = 0.5), the only solution that exists is of the form: vð2Þst ¼ 3:01,

pð2Þst ¼ hð2Þ
st ¼ 2:69, (v = 0.63) and it is unstable (s1,2 = 0.5 ± 0.68i, s3,4 = 0.06 ± 6.32i). If a solution

is unstable, then solving non-stationary problem this solution may approach a stable limit cycle or
it can be expressed via oscillations increasing in time (its behavior depends on other non-linear
terms).
6. Numerical analysis of transient solution

Let us consider the fourth case as an example. Fig. 4a shows the dependence of displacement of
non-dimensional body 1 (body 2) z1(s) (z2(s)) versus non-dimensional time s, whereas Fig. 4b dis-
plays a dependence of velocity of non-dimensional body 1 (body 2) _z1ðsÞ (_z2ðsÞ) versus non-dimen-
sional time s. Solid curves correspond to body 1, dashed curve corresponds to body 2. Note that
body 1 is in a stick-slip state. Zones with stick (_z1 ¼ 0) are substituted by zones of slips.
Evolution of non-dimensional contact pressure in time (curve 1) and a temperature on the con-

tact surface (curve 2) is shown in Fig. 5.
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Fig. 4. Time history of non-dimensional body displacement (a) and velocity (b). Solid curves correspond to body 1,

dashed curve corresponds to body 2.
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Fig. 5. Dimensional contact pressure p (curve 1) and dimensionless contact temperature h (curve 2) versus dimensionless
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7. Conclusions

In this work a new physical and mathematical model of a two-degrees-of-freedom system with
an account of friction and heating processes is studied. It is assumed that the friction coefficient
depends on sliding velocity.
It has been shown that when a heat transfer is not taken into account (c = 0), the system cannot

exhibit a stick-slip motion. This potential behavior of the studied system is displayed by a solid
curve in Fig. 3. For m0 > F0 (solid curve 5) equation F(vst) = m0 has one stable static solution,
which attracts a non-stationary one. For fmin < m0 < F0 (solid curve 6) the mentioned equation
has three static solutions, and one of them is unstable. In this case, a non-stationary solution will
be attracted by one of two static stable solutions. In the cases when m0 < fmin (solid curve 7) the
discussed equation has only one stable solution.
In order to realize a stick-slip motion the parameter c should be positive (see case 4). In this

case, one deals with only one solution, which is unstable and a non-stationary solution can be at-
tracted by a limiting cycle. The numerical analysis is in agreement with theoretical prediction of
the occurrence of stick-slip dynamics of our investigated system with friction and heat generation.
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