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Abstract

Nonlinear equations governing chaotic dynamics exhibited by a class of lumped mechanical systems
with dry friction are analysed. It is shown that the obtained corresponding Melnikov’s function can be
simplified in some cases to yield analytical conditions for chaos occurrence. The analytical predictions
are verified numerically.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since nonlinear dynamical systems (NDS) may exhibit either regular or chaotic motions
[1,2], one of the recent challenging tasks has been focused on their control. Such control
can be realized, for instance, by applying an external kinematic excitation (perturbation).
Although majority of the methods aiming at analysis and control of NDS are realized via
numerical algorithms, an analytical treatment seems to be the most powerful and econom-
ical. One of the often applied approaches that allow one to calculate the distance between
the homoclinic orbits, and yield the conditions of chaos occurrence in a nearly Hamil-
tonian system, is the Melnikov method [10] or the modified Melnikov theory [6-9]. This
method has been widely applied to the analysis of smooth dynamical systems. Its successful
application to analyze simple dynamical systems with friction has been illustrated only quite
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Fig. 1. Analyzed system (1—rotating shaft; 2—bush supported by springs).

recently [3]. This approach has even been extended to study of more complicated regular
and chaotic stick—slip dynamics of a rotating shaft with a rigid bush in wear and heat transfer
conditions [5]. The numerical experiments confirmed well an analytical prediction owing
to analysis of a Melnikov’s function.

In this work, the following mechanical system is analyzed (Fig. 1). An elastic and heat
transferring shaft with radius R is inserted into a bush. The bush is supported by massless
springs. We assume that the bush is a perfectly rigid body and the “radial” (“tangent”)
springs are characterized by the stiffness coefficients k1, and k2, k3 (Duffing type), respec-
tively. Note that spring k1 is initially stretched. The shaft rotates with such angular velocity
Q@) = 2,01 (2) that centrifugal forces can be neglected. It is assumed that the angular
velocity of the shaft is governed by equation w1 = . + {; sin @'t, where {; is the non-
dimensional amplitude of the kinematical external excitation. The next hypotheses follow:
(a) heat transfer exchange between the bush and the shaft satisfies Newton’s law; (b) the
bush ideally transfers heat and, in the initial time instant, temperature of the environment
changes with the law Tpar (¢), where Tp is a constant with units of temperature, and A1 (¢)
is the known dimensionless time-varying function (A7 (1) = 1 — exp(—472)). Owing to the
heat transfer, the rotating shaft starts to expand and touch the bush. Contrary to the purely
numerical approaches to non-classical thermoelastic modeling of continuous systems ad-
dressed in the monograph [4], our attention is focused on obtaining an analytical threshold
of chaos occurrence using the Melnikov method.

The classical model of dry friction between the shaft and the bush per length unit is
governed by the function F;(V;), where V, =Q Ry — ¢, R; characterizes the relative velocity
of the shaft and the bush. B, is the bush inertial moment measured per length unit. In
accordance with Amontos law, the friction force is governed by the equation F; = f (V)N (1),
where N(t) is the normal reaction and f(V}) is the kinematic friction coefficient.

2. Equations of motion

The analyzed mechanical system [S] with a periodic external kinematical excitation and
the Duffing-type stiffness is shown in Fig. 1. One degree-of-freedom stick—slip oscillations
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are governed by the following second-order non-dimensional form of the differential
equation:

H() — ¢(1) + be’ (1) = eF (01 — P)p(r), O <71 <00 6y
The non-dimensional contact pressure is defined by the formula

s ad 4Bi
p(@ =Bzw_/(; Gp(t = Ohr(O)dE, Gp(m =) Bi%+ 2,

m=1

e MmOt

, 03

where 1, are the roots of the characteristic equation (m=1,2,3,...)
BiJo(y) — uJi(p) = 0. 3
Friction against relative velocity dependence is approximated by the function

{y/Iyll, fy#0,

The non-dimensional angular bush velocity is governed by the equation

F(y) = FoSgn(y) —ay + By>, where Sgn(y) = {

w1 = @y + { sin wpt, . &)

where {; is the non-dimensional amplitude of the kinematic external excitation.
The following non-dimensional quantities are introduced:

. 0 = P2tT) k3 R3t Q2 e P.t,2nR? i ¢TR:
= t* 3 (P - Q*t* ] - B2 £ _ BZQ* ’ - ).,1 ’
~ Lai . .
w=—*k7, wo=w'ts, F(w1— @)= f(Ri1Q(w1 — P)),
1

where

to =1/ B2/(kR3), ks =ki(lo/li — (1 +11/R2) — k2,

P, =201 E1T5/(1 — 2v)

and Ej is the elasticity modulus, v the Poisson coefficient, ly the length of a non-stretched
spring, /1 the length of a stretched spring for ¢, =0, k. > 0, a1 the shaft thermal expansion
coefficient, a7 the film heat transfer coefficient, a; thermal diffusivity, A1 is the thermal
conduction of shaft. '

3. The Melnikov’s function
Introducing the new variables

X=¢, y= ¢’ (6)
the equations of motion can be transformed (note that p(t) — 0.993 for T — ©0) into the
following form:

% = po(x, y) + ep1(x, y, wot, &), , _

y=gqo(x,y) +eq1(x, y, wot, &), €
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where

po(x,y)=y, pi(x,y,w1,€) =0,
go(x,y) =x —bx3, qi(x,y, w07, &) = F(ws + {i sinwot — y). 6))

For ¢ =0, system (7) possesses the following homoclinic orbit of the form:

_\/? 1 ( __\/? sinh(t) ©
*o(1) = b cosh(1)’ Yo(®) = b coshz(r)' )

For a sufficiently small parameter 0 < £ €1, the Melnikov’s function is defined by the
formula [3]

+00 +o00
M(7o) = f - (qop1 — q1P0) | x=x9G—1) dT = — f q1P0| x=xg¢s—) AT, 10
-0 Y=y0(t—70) —00 Y=y0(t-70)
where x((7), yo(7) is the solution of the non-disturbed system of equations (¢ = 0), which
corresponds to the homoclinic orbits, and 7¢ is the parameter that characterizes the positions
of the point moving on this orbit. In accordance with Melnikov’s theory, if the function
M ((1p) has simple zeros, then for a sufficiently small parameter ¢, the motion governed by
system (7) can be chaotic.
Introducing the change of variable T — 7o = ¢, Melnikov’s function reads as follows:

M(to) = — f::o Yo(t)[Fo Sgn(wy) — o, + Pe}]dt, an
where the non-dimensional relative velocity has the form
r (t) = 04 + { sin{wo(t + 70)) — yo(?). (12)
The substitution of (9) and (12) into (11) yields Melnikov’s function of the form
M (7o) = I(t0) + J (70), 13)
where

J(19) = 2C + 2{3v/ A% + BZ sin(woto + @)
+ 6BC£(1220 cos? woto + oo sin? woTo — 241111 Sin WTH COS WTH)
+ ZﬂCz(—Ilso cos3 woTo — 31112 sin? WQTo COS WQTo),

A=(a—3Bwd)110 —3BI310, B =6Bwilri,
C = Blago — (¢ — 3D oo, ¢ =arctan(A/B),

o0
Lnjk = fo [Yo(®)]" [sin(wot) ) [cos(wot)]* dt. (14
After the integration of Eq. (14) we obtain
I — Lo — 8 e — nwo(2 — wd)
2007 350 M40 T 3570 201 T G sinh (g /2)
T
Lo =—

~/2b cosh(mewy /2) ’
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wo(11 + 1002 — w?) 1—iw 3 —iw
I = 00 1y 0) -y 0)
120b/2b 4 4

+¢(1+1w0) ¢(3 +4iwo)},
- 3nwg (1 — iwg) 3n(1 — iwg)
T30 = 8735 {cot (————-4 ) + cot (———-——4 )

t(7r(3 - iwo)) — cot (n(l - 3iwo)>
—Co — col — )i

g cosh(mwy /2) WO

Iz = , hh=—————m—o,
2= ob(1 — 2cosh(mwo))’ - /2bcosh(mao)
nwo(Zw% — 1) + sinh(mwg)
Iyo = -
3b sinh(twg)
nwo(l — 2?2) + sinh(mewg) I (2)
Lo = 0 sy Y@=+,
3b sinh () I'(z)

where ¥(z) denotes the derivative of the natural logarithm of the function I'(z).
In (13), the term I (tp) is defined by the formula

+o0
I =—F [ () Sen(on)dt =2F \[ ) BN, ), 1)

0 cosh t,
where ¢, are the roots of the equation
O (tm) = Ox + L sin(wo (tm + 70)) — yo(tm) =0, (16)

whereas w/.(¢) = {wo cos(wg(t + T0)) — x0(?) + bxg(t).

4. Melnikov’s function for large values of b’

If Melnikov’s function (13) changes its sign, then one may expect chaos. Observe that in
our case, Melnikov’s function has arather complex structure and a direct theoretical analysis
of it is not easy. Therefore, in this report, our considerations are limited to the analysis of
the function J(tg) for large values of b and small values of {; of the form:

4 16 1
J(10) = (—g(oz —3Bw?) + T g +0 (b2)) z

Ll V2rwo(a — 3pw?) cos(@t0) — 2nwofo(w — 2)
cosh(nwo/2) 0%0 /b sinh(nwo /2)

1 1
X sin(wgTg) + O (Z):l E Cr + O(C,%). an
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Fig. 2. Chaotic threshold in the ({z, b) plane (¢ = 0.1, wg =2, W« = 0.4, Fy = 0.3, x =0.3, § = 0.3).

Eq. (17) yields the observation that the function J(7g) changes its sign (for large b and
small () when the following inequality holds:

@ _ 4cosh(nwy/2)

M < where = 18

Note that for large values of » and small values of {;, we have I(1g) = 0, and the
remaining terms of J(tg) in (13) are small. The value of the mentioned terms changes its
sign when (18) holds. For a certain value of {;, further referred to as {,,,, the value of integral
I(1p) is not equal to zero, and starts to play a dominant role in M (tp). The function M (7o)
begins to change sign, when {; > {,,, and when I (1) is not equal to zero (the function ,(¢)
starts to change its sign). One may find the corresponding estimated value of the parameter
{; by using the following formula:

Using both formulas (18) and (19), the functions (Ei), i =1, 2 versus the parameter b are
shown in Fig. 2. One may conclude that the region corresponding to chaos occurs above
the curves.
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Fig. 3. Melnikov’s function M (tg) versus parameter 7 for {3 = 3.2 (continues curves) and for {; =3.81 (dashed
curves), and for b =1.

5. Numerical results

In order to verify the analytical conditions of the chaotic oscillation occurrence, some
numerical tests have been carried out. The following initial condition x(0) = 0, y(0) =0
and the following parameters e=0.1, wg =2, w«=0.4, Fp=0.3,2=0.3, §=0.3 are fixed.

5.1. Arbitrary values of b

Formula (13) holds for any value of b. Numerically obtained Melnikov’s function M (7o)
is shown in Fig. 3 forb = 1.

Since Melnikov’s function can change its sign (it has simple zeros) for &, ~ 3.6,
chaos may occur according to Melnikov’s theory. To confirm the analytical prediction, the
bifurcational diagram x({;) has been constructed (projection of Poincaré section into the
x-axis for {; € (0, 6) and {; € (3, 4)). The obtained results are shown in Fig. 4.

Observe that for {; < @, (@.=0.4), the periodic motion occurs with the free frequency of
the system, which undergoes changes as {; increases. However, this motion vanishes when
{ — w,. With the increase of the parameter {;, period doubling occurs for &, ~ 3.6, and
a bifurcation cascade leading to chaos follows.

In addition, for the same parameters fast fourier transform (FFT) of the process x (z) for
large values of T € (11, Ty) is reported. The computational results of the obtained power
spectrum are shown in Fig. 5. The following relations are applied to estimate power spectra:

L(w) =20log |X ()], X(w)=X(Apm)=Xp,
Ao =27m/(AN), m=1,2,3,...,N,
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Fig. 4. Bifurcation diagrams using {; as control parameter: (a) full diagram, (b) enlargement.
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Fig. 5. Power spectrum: (a) {; = 3.2, (b) {; = 3.81.
N
Xm = Z(xn - xo)e—Zm(n—l)(m—-l)N, Xnp = x(nAT)y n= 17 27 3’ LA ] N9
n=1

1 N
x0=ﬁ’;xn

and the following values are fixed during computations: N = 4000, 4, = 0.02.

Observe that for {; = 3.2 the four periodic motion occurs, whereas for {; = 3.81, the
motion is chaotic. The phase planes and Poincaré sections for {; =3.2 (Fig. 6a) and {;, =3.81
(Fig. 6b) are shown. The points of Poincaré maps are obtained with respect to the period of
kinematic excitation 27/ wyg.

5.2. Large values of b

In general, for large values of the parameter b the values of {; responsible for chaos occur-
rence are smaller in comparison with those of the parameter w.. As the numerical analysis
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Fig. 6. Phase planes and Poincaré sections: (a) {; = 3.2, (b) { =3.81.
I(ty) M(ty)
|'I 0.025 | |
|| | 0.02}] ”
(I oots ‘I I
I : o.01 | I
| [ I
| 0.005(| [
[ ) |
1 | 1 | A\
-4 2 o 2 4
@ K ®)

Fig. 7. Function I (tg) (a) and Melnikov’s function M (tg) (b) versus the parameters tg for {; = 0.165 (solid
curves) and i = 0.17 (dashed curves); b =9.

shows, for {; € [0, w,), the system motion is periodic with the free system frequency wy.
For example, for fixed value of b = 1, the following values of w4 are found: {; = 0 yields
wg ~ 0.902; {; =0.1 yields wy ~ 0.805; {; = 0.2 yields w; ~ 0.675; {; = 0.3 yields
wg ~ 1.43175; {; = 0.4 yields wy = wy = 2.

Numerical analysis of Melnikov’s function is carried out for the parameters associated
with the points 1-6 lying in the chaotic area (points 2, 4, 6) and out of chaos (points 1,
3, 5>—see Figs. 7, 9, 11. For {; < {,,,, we have I(tgp) = 0. The obtained values of {; give
Lpz = 0.164 (formula (19)) and {}) = 0.58 (formula (18)). Fig. 7 shows the dependence
of the function (7o) (a) and Melnikov’s function M (1g) (b) versus the parameter 7y for
points 1 (b =9, {; = 0.165; solid curves) and 2 (b =9, {; = 0.17; dashed curves) from
Fig. 2. For the mentioned parameters, condition (18) is satisfied. Although for {; = 0.165
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Fig. 8. Power spectrum for b =9: (a) {; = 0.1, ®) §=0.2.
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Fig. 9. I (7g) (a) and Melnikov’s M (1) (b) functions versus the parameter t( for {; = 0.23 (solid curves) and for
{ = 0.30 (dashed curves); b = 37.41.

the function I (tp) has non-zero values, the function M (7¢) has not changed its sign yet.
The numerical analysis shows that the function M(tg) changes its sign for ng) ~ 0.168.

Hence, both obtained values of {,,, and ng) are close to each other. The (numerical) analysis

confirms the value of (19) used to obtain the parameter ng) responsible for the occurrence
of chaos according to Melnikov’s rule.

Numerical analysis of Eq. (1) is carried out for the parameters in the vicinity of the points
1 and 2 (see Fig. 2). Fig. 8 illustrates the power spectra for the parameters {; = 0.1 (it
corresponds to the point situated below point 1 and is associated with the quasi- periodic
motion of the bush), and for {; = 0.2 (it corresponds to the point lying above point 2 and
is associated with chaos).

Note that for b = 37.41 we have ng) = ng) (see Fig. 2). Fig. 9 shows the I(tg) (a)
and Melnikov’s (b) M (tg) functions versus the parameter 1y for the parameters associated
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Fig. 10. Power spectra for b = 37.41: (a) {; = 0.23, () { = 0.29.

with point 3 (see Fig. 2) (b = 37.41, {; = 0.23; solid curves) and with point 4 (b = 37.41,
{+ = 0.30; dashed curves). Although the function I (7o) is equal to zero, the function M (tg)
still does not change its sign (I(to) = 0 for {; < Cg;))- It begins to change the sign for
{x = 0.30. Therefore, the numerical tests confirm the values defined by Egs. (18) and (19)
and yielding the parameters Cgl) and Cgl) responsible for chaos occurrence, according to
Melnikov’s theory.

The numerical tests of Eq. (1) are performed for the parameter sets associated with the
points 3 and 4 (Fig. 2). Fig. 10 presents the power spectra for the parameters {; = 0.23
(point 3 corresponds to the 27-periodic bush motion) and {; = 0.29 (point 4 corresponds
to chaotic motion). Chaotic behavior in the vicinity of the homoclinic orbits (9) is clearly
visible for {; = 0.29.

In the next computational step, we have taken & = 121. Note that I (zg) =0 for { < 3,)

Formula (19) gives L’gl) =0.336, whereas formula (18) yields CSB =0.158. Fig. 11 presents
the function I(7p) (a) and Melnikov’s function M (1) (b) versus 7¢ for the parameters
associated with points 5 (b =121, {; =0.14; solid curves) and 6 (b =121, {;, =0.17; dashed
curves). In this case, I (7o) =0 for {; =0.14, but the function M (7o) does not change its sign
(I(tp)=0for {;, < CSI)) (it starts to change it for {; =0.17). Again numerical computations

confirm the applied value of (18) to define the parameter CS;) responsible for the prediction
of analytical chaos.

Finally, the numerical analysis of Eq. (1) is carried out for the parameters associated
with points 5 and 6 in Fig. 2. For the parameters {; = 0.1 (the investigated point lies
below the point 5 and corresponds to the periodic motion of the bush) and {; = 0.17 (point
6 corresponds to the narrow region of chaos), the associated power spectra are shown
in Fig. 12.

Again, they confirm our analytical prediction.
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Fig. 11. I (zg) (a) and Melnikov’s function M (zg) (b) versus the parameter tg for {3 = 0.14 (solid curves) and for

{x = 0.17 (dashed curves); b = 121.
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6. Conclusions

-20 -

L(w)

-40

-60 -
0
®)

Fig. 12. Power spectra for b = 121: (a) {3 = 0.1, (b) {x =0.17.

It has been shown that for our investigated nonlinear system with friction the associated
Melnikov’s function can be constructed. As aresult, one may control the nonlinear dynamics
by analytical prediction of either regular or chaotic system state. For some parameter sets,
the complicated analytical structure of the Melnikov’s functions can be simplified to yield

simple analytical conditions for the occurrence of chaos.
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