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Stability analysis and Lyapunov exponents of
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Abstract

The model of a mechanical system subjected to unilateral constraints, together with the model
of stability based on the Aizerman–Gantmakher theory, are presented. Some examples of numerical
computation of Lyapunov exponents for the system of triple physical pendulum with the horizontal
barrier, using presented model of stability, are reported.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that impact and friction accompanies almost all real behaviour, leading
to non-smooth dynamics. The non-smooth dynamical systems can be modelled as the so-
called piece-wise smooth systems (PWS) and are also interesting from a theoretical point
of view, since they can exhibit certain non-classical phenomena of non-linear dynamics.

One of the important tools of non-linear dynamics is the linear stability theory, useful
among others in the analysis of bifurcations of periodic solutions and in the identification
of attractors through Lyapunov exponents. These tools are well-developed and known in
the case of smooth systems. In what follows, it will be shown how the same tools with
small modifications can be used also for the PWS systems. The modifications consist in

∗ Corresponding author. Tel.:/fax: +48 42 6312225.
E-mail address: awrejcew@ck-sg.p.lodz.pl (J. Awrejcewicz).

0362-546X/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2004.12.038

http://www.elsevier.com/locate/na
mailto:awrejcew@ck-sg.p.lodz.pl


e910 J. Awrejcewicz, G. Kudra / Nonlinear Analysis 63 (2005) e909–e918

the suitable transformation of the perturbation in the point of discontinuity, accordingly
to the so-called Aizerman–Gantmakher theory. Results of this theory, firstly applied to the
systems with discontinuous vector field (systems with dry friction, for example), were used
for the Lyapunov exponents calculation in systems with impacts (with discontinuous state)
in Ref. [4].

In this paper, we present the model of linear stability of trajectory of a multi-degree-of-
freedom mechanical system with rigid barriers imposed on its position. In those systems
impacts as well as the changes in structure of the system due to the permanent activity of
some obstacles, when the number of degrees of freedom of the system actually decreases,
are possible. We focus on the use of this model for the numerical calculation of Lyapunov
exponents, although the same method can be used in stability analysis of periodic solutions.

Some examples of identification of attractors in the system of triple physical pendulum
with the horizontal barrier are given. The used system is the special case of the more general
model of triple pendulum investigated in works [1,3].

2. Mathematical model of the system

Let us consider Lagrangian mechanical system of n-degrees-of-freedom with vector of
generalized coordinates q(t) = [q1(t), . . . , qn(t)]T, symmetric n × n mass matrix M(q, t)

and n × 1 force vector f(q, q̇, t). Let us assume that the system is subjected to m rigid uni-
lateral constraints h(q, t)=[h1(q, t), . . . , hm(q, t)]T �0. We define a set I ={1, 2, . . . , m}
of indices of all defined unilateral constraints hi and the set Iact = {i1, i2, . . . , is} of indices
of s constraints permanently active on a certain time interval [ti , ti+1]. Physically, it means
that the system slides along obstacles with indices from the set Iact.

If the constraints are perfect (frictionless, as we assume in further considerations), the
system on time interval [ti , ti+1] is governed by the following set of differential and algebraic
equations (DAEs):

M(q, t)q̈ = fq(q, q̇, t) +
(

�hact(q, t)

�qT

)T

�act,

0 = hact(q, t),

0 = ḣact(q, t) = �hact(q, t)

�qT q̇ + �hact(q, t)

�t
, (1)

together with the following conditions:

�act = [�i1 , �i2 , . . . , �is ]T > 0,

hinact(q, t) = [hj1(q, t), hj2(q, t), . . . , hjm−s (q, t)]T > 0, (2)

where hact(q, t) = [hi1(q, t), hi2(q, t), . . . , his (q, t)]T is the vector of s constraints perma-
nently active on [ti , ti+1], �act is the vector of non-negative Lagrange multipliers and hinact
is the vector of m − s inactive constraints, i.e. constraints which indices belong to the set
I\Iact = {j1, j2, . . . , jm−s}.
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Fig. 1. Scheme for the numerical simulation of the system.

Functions (2) are the event functions and the event ti+1 is at a zero of one of the com-
ponents of �act or hinact. At time ti+1 the suitable changes in initial conditions (due to the
impact) and in the set Iact take place and the next piece of solution [ti+1, ti+2] is governed
by the new DAEs. In this way the system has been modelled as a PWS DAEs.

The algorithm for the execution of changes in the system state and changes in the set Iact
at each event time tj , used in our numerical simulation, is presented in Fig. 1. Because of
the limited space, we restrict this scheme to the simplified case, where only one constraint
h1(q, t) is defined (I={1}). In Fig. 1, the following notations are used: qj =q(tj ), q̇j =q̇(tj ),
tj ′ = tj + �t0 and the function g(q, q̇, t) represents the impact law with the restitution
coefficient e while the function g(0)(q, q̇, t) represents impact with the restitution coefficient
equal to zero independently from the system parameters.
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The applied impact model is the generalized Newton’s (restitution coefficient) impact
law based on Ref. [2], and has the following final form for the impact with the obstacle
defined by hi(q, t) = 0:

g(q, q̇, t) =
⎡
⎢⎣

(∇qhi(q, t))T[ tT
1

. . .

tT
n−1

]
· M(q, t)

⎤
⎥⎦

−1

× ·

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

−e(∇qhi(q, t))T⎡
⎢⎣

tT
1

. . .

tT
n−1

⎤
⎥⎦ · M(q, t)

⎤
⎥⎥⎥⎦ q̇ +

⎧⎪⎪⎨
⎪⎪⎩

−(e + 1)
�hi(q,t)

�t

0
. . .

0

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎟⎠ , (3)

where tj are the base vectors of the subspace of the configuration space q, tangent to the
impact surface hi(q, t) at the impact point. For more details on the impact model see works
[1,3].

3. Stability model

Let us write the dynamical system in the form

ẋ = f(x, t), (4)

where x = [qT, q̇T]T in the case of the mechanical system considered in the previous
section. Then the linear stability theory in the case of smooth system based on the following
variational equations:

�ẋ = �f(x, t)

�xT �x(t), (5)

where we have assumed �t = 0 since the perturbation in time is independent from the
perturbation �x (�ṫ = 0). Eq. (5) is useful among others in the stability and bifurcation
analysis of periodic solutions, as well as in the Lyapunov exponents calculation.

In the case of non-smooth dynamical system, we cannot apply directly the linear stability
theory since the Jacobian in (5) is not determined. But in the case of the PWS system
the function f(x) = fi (x) is sufficiently smooth on each time interval [ti , ti+1] between
two successive discontinuity points and the linear stability can be applied using variational
equations (5) on intervals [ti , ti+1], and applying at each discontinuity point ti special
transformation rules accordingly to the Aizerman–Gantmakher theory (for �t = 0)

�x+
i = �gi (x

−
i , ti )

�xT �x−
i +

[
�gi (x

−
i , ti )

�xT fi (x
−
i , ti ) + �gi (x

−
i , ti )

�t
− fi+1(x

+
i , ti )

]
�te,

(6)
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where

�te = − [�eventi (x
−
i , ti )/�xT]�x−

i

(�eventi (x
−
i , ti )/�xT)fi (x

−
i , ti ) + �eventi (x

−
i , ti )/�t

,

where x−
i = limt→t−i

x(t), x+
i = limt→ti+ x(t), �x+

i = limt→t+i
�x(t), �x−

i = limt→t−i
�x(t),

gi (x) is the function representing jump in the system state x+
i = gi (x

−
i ) in the discontinuity

point and eventi (x, t) is the scalar function used for detection of the discontinuity instance
at ti (eventi (x

−
i , ti ) = 0). For details on derivation of Eq. (6) see works [1,3,4].

The linearized (variational) DAEs of system (1) are:

M(q, t)�q̈ = �f(q, q̇, t)

�qT �q + �f(q, q̇, t)

�q̇T �q̇ + �

�qT

((
�hact(q)

�qT

)T

�act

)
�q

+
(

�hact(q)

�qT

)T

��act −
(

�M(q, t)

�qT �q
)

q̈,

0 = �hact(q, t)

�qT �q,

0 = q̇T �2hact(q, t)

�q�qT �q + �hact(q, t)

�qT �q̇, (7)

where

q̈ = M(q, t)−1

(
f(q, q̇, t) +

(
�hact(q, t)

�qT

)T

�act

)

and where we have also assumed �t = 0.
We have applied Eqs. (7) together with the transformation rules (6) in the Lyapunov

exponents calculation for the mechanical system presented in Section 2. Note that Eqs. (6)
with the impact law gi (x, t)=g(0)

i (x, t) with the restitution coefficient equal to zero applied
in the case where the sliding motions starts (see Fig. 1), gives the perturbation (�q, �q̇)

consistent with the algebraic equations in (7) and the perturbation vector �x+ lies in the
(2n − 2)-dimensional subspace (in the case of only one constraint permanently active).

In the well-known algorithm of Lyapunov exponents computation the Gram–Schmidt
reorthonormalization procedure is applied after some time of integration of variational
equations. After use of this procedure to the vector of perturbations �x fulfilling 2s algebraic
equations in (7) (in the case of s constraints permanently active), we obtain the new set of
perturbation vectors, from which 2n-2s satisfy the algebraic equations and 2s of them do
not. Then in our procedure we simply set that 2s vectors to zero vectors, obtaining the new
“degenerated” set of orthonormal vectors, satisfying algebraic equations.

4. Model of triple physical pendulum

Here we present the special case of the more general model of the externally excited
triple physical pendulum with arbitrarily situated barriers, investigated in works [1,3]. Now
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Fig. 2. Harmonically forced triple pendulum with horizontal barrier.

the pendulums, presented in Fig. 2, are reduced to the identical rods with horizontal barrier,
coupled in points Oi (i = 1, 2, 3) with viscous damping of coefficients c̄i and moving on
the plane. The system position is defined by three angles �i (i = 1, 2, 3), and the first link
is externally forced by q̄1 cos �̄1�.

A vector of generalized coordinates is the vector of three angles q = � = [�1, �2, �3]T

and the mass matrix and force vector in non-dimensional form are
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correspondingly

M(q, t) = M(�) =
[ 1 �12 cos(�1 − �2) �13 cos(�1 − �3)

�12 cos(�1 − �2) �2 �23 cos(�2 − �3)

�13 cos(�1 − �3) �23 cos(�2 − �3) �3

]
,

f(q, q̇, t) = f(�, �̇, t) = −N(�)�̇2 − C�̇ − p(�) + fe(�, �̇, t), (8)

where

N(�) =
[ 0 �12 sin(�1 − �2) �13 sin(�1 − �3)

−�12 sin(�1 − �2) 0 �23 sin(�2 − �3)

−�13 sin(�1 − �3) −�23 sin(�2 − �3) 0

]
,

C =
[

c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

]
,

p(�) =
{ sin �1

�2 sin �2
�3 sin �3

}
, fe(�, �̇, t) =

{
q1 cos �1t

0
0

}

and where �̇2 = [�̇2
1, �̇

2
2, �̇

2
3]T.

The following relations hold between the non-dimensional quantities and the real ones:

�2 = 4
7 , �3 = 1

7 , �2 = 3
5 , �3 = 1

5 , �12 = 9
14 , �13 = 3

14 , �23 = 3
14 ,

q1 = 2q̄1

5glm
, ci =

√
6c̄i√

35gl3m
,

t = 	1�,

� = 	−1
1 �̄, �̇j = 	−1

1

|
�j , �̈j = 	−2

1

||
�j , (9)

where symbols
|

(...) and
•

(. . .) denote derivatives with respect to the real time � and the
non-dimensional time t , respectively, m and l are mass and length of each link, and where

	1 =
√

15g

14l
· (10)

The barrier is described by the following unilateral constraint:

h1(�) = 
 − (cos �1 + cos �2 + cos �3)�0, (11)

where


 = h

l
. (12)

If the condition 3 > 
 > 2 is satisfied, then only one inequality (11) is sufficient to describe
the horizontal barrier and the obstacle lies in the region reachable by the end of the last link
of the pendulum.
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Fig. 3. Projections of the periodic attractors. The parameters are: c1 = c2 = c3 = 0.1, q1 = 0.7, �1 = 1.2, 
 = 2.6,
e = 0.9 (a); c1 = c2 = c3 = 0.2, q1 = 0.75, �1 = 1, 
 = 2.2, e = 0.8 (b).

Table 1
The Lyapunov exponents’ spectra of the presented attractors

Fig. name �1 �2 �3 �4 �5 �6 �7 Attractor

3a 0 −0.16 −0.18 −0.18 −0.95 −1.41 −2.51 Periodic
3b 0 −0.14 −0.14 −1.30 −2.96 −Inf −Inf Periodic
4ab 0.00 0 −0.02 −0.02 −0.56 −0.78 −2.21 Quasi-periodic
4cd 0.00 0 −0.02 −0.11 −1.63 −Inf −Inf Quasi-periodic
4ef 0.09 0 −0.03 −0.13 −1.31 −Inf −Inf Chaotic

5. Numerical results

Here we present some examples of numerical computation of Lyapunov exponents in the
mechanical system subjected to the unilateral constraints, described in Sections 2 and 4, by
the use of stability model presented in Section 3. Parameters for each example, presented
in Figs. 3 and 4, are given in the figure captions. The corresponding Lyapunov exponents’
spectra are collected in Table 1. In diagrams the following coordinates have been used:

xO4 = x̄O4

l
= − sin �1 − sin �2 − sin �3,

yO4 = ȳO4

l
= cos �1 + cos �2 + cos �3, (13)

where x̄O4 and ȳO4 are the position coordinates of the point O4 in the pendulum movement
plane.

In Fig. 3 we have projection of two periodic trajectories. The first one (Fig. 3a) is the
periodic solution with impacts but without the part of trajectory lying on the surface of the
barrier and second one (Fig. 3b) has segments of trajectory with permanent contact with
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Fig. 4. Projections of two quasi-periodic attractors (a–d) and the chaotic one (e–f). The parameters are:
c1 =c2 =c3 =0.08, q1 =0.83, �1 =1.211, 
=2.5, e=0.9 (a—trajectory; b—Poincaré section); c1 =c2 =c3 =0.1,
q1 = 0.65, �1 = 1.211, 
 = 2.5, e = 0.5 (c—trajectory; d—Poincaré section); c1 = c2 = c3 = 0.02, q1 = 0.5,
�1 = 1, 
 = 2.5, e = 0 (e—trajectory; f—Poincaré section).

the obstacle in a certain time interval. In the later case there are two Lyapunov exponents
in minus infinity (the symbol “Inf” in Matlab language).

In Figs. 4a–d two quasi-periodic attractors, with two zero Lyapunov exponents, are pre-
sented. The first one (Figs. 4a and b) is the solution with impacts only and the second
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one (Figs. 4c and d) is the orbit with parts of trajectory lying on the obstacle and with
degenerated spectrum of Lyapunov exponents.

Figs. 4e and f show an example of chaotic attractor with one positive Lyapunov exponent.
The solution has two degenerated Lyapunov exponents due to some parts of trajectory with
permanent contact with the barrier.

Note also that one of the Lyapunov exponents, related to the perturbation in time, is
always strictly zero, and is not computed numerically since the investigated system is non-
autonomous.

6. Concluding remarks

In the paper theAizerman–Gantmakher theory, handling with perturbed solution in points
of discontinuity, is used to extend classical method for computing Lyapunov exponents for
the multi-degree of freedom mechanical system with rigid barriers imposed on its position.
Some examples of identification of attractors in the system of triple pendulum with hori-
zontal barrier are presented, including periodic, quasi-periodic and chaotic attractors with
impacts as well as attractors with some segments of trajectory lying on the surface of the
obstacle, where the obstacle is permanently active in a certain time interval and the two
Lyapunov exponents are degenerated having the value in the minus infinity.

We have focused on the calculation of Lyapunov exponents, although the same method
can be used in the stability and bifurcation analysis of periodic solutions.
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