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Abstract

Using an effective algorithm based on analysis of the wandering trajectories, chaotic behavior
regions of oscillators with hysteresis are obtained in various parametric planes. Substantial influence
of a hysteretic dissipation value on the form and location of these regions and also restraining and
generating effects of the hysteretic dissipation on a chaos occurrence are demonstrated.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Hysteresis is a well-known phenomenon in many fields of science and is caused by
very different processes. The models describing systems with hysteresis are discontinu-
ous and contain high nonlinearities with memory-dependent properties. Investigation of
these systems within the framework of approximate analytical approaches as, for instant,
slowly varying parameters or harmonic balance methods, results in the conclusion that in-
dependently of values of control parameters residing in conditions of an external periodic
excitation the hysteretic system has a stable symmetric asymptotic response. However, the
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recent publications and works [5,6], based on both numerical and combined numerical-
analytical techniques, present frequency–response curves and bifurcation diagrams which
point to the presence of solutions and bifurcations mostly unexpected for hysteretic oscil-
lators. However, the control parameter spaces of such systems are not sufficiently studied.
In this connection, the prediction of the behavior of the systems with hysteresis depending
on various parameters is very topical.

Often during a simulation of hysteresis, a system is considered as a black box and an
output (or a response) of the system is modelled using analytical expressions or differential
equations supposing that the input of the system is known [7,9]. Though various transient
processes of the input may be reflected in a minor loops formation, as a rule, regular signals
of inputs are considered and regular responses of the system are expected. However, as
investigations show, a hysteretic dissipation can change conditions for the possibility of
chaotic response occurrence substantially.

In the present work, the classical Masing and Bouc-Wen hysteretic oscillators are consid-
ered.Among standard procedures of diagnosing or prediction of chaotic behavior of a system
under investigation the computation of the spectrum of Lyapunov exponents is a straightfor-
ward but computationally intensive method [8] (especially in the case of many-parametric
non-smooth systems such as oscillators with hysteresis). It not infrequently results in some
problems in practice. On the one hand, the individual terms of the cumulative product ma-
trix grow exponentially, and, on the other hand, the eigenvectors all tend to align in the
direction of maximum growth and hence do not accurately span the space. To avoid these
problems, the Gram–Schmidt reorthonormalization may be used additionally increasing the
time consumed and complicating the algorithm. In this work, to predict conditions for reg-
ular/unregular behavior of the hysteretic oscillators under harmonic excitation, an effective
algorithm devoted to numerical analysis of these systems is applied. This technique is based
on analysis of the wandering trajectories and already had been successfully applied to the
cases of smooth and non-smooth systems in Refs. [1–4,8]. The applied approach is simpler
and faster from a computational point of view compared with standard procedures (some
advantages are reported, for example, in [2]) and permits sufficient accuracy in tracing reg-
ular/unregular responses of the hysteretic systems. Since the domains of chaotic behavior
of hysteretic systems have a complex structure with periodic “windows” and with a set of
scattered points, the analytical estimation cannot guarantee precise threshold estimation.

The motion of each oscillator is described by the coupled differential sets and all com-
ponents of motion have influence on each other. Restraining and generating effects of the
hysteretic dissipation on a chaotic behavior occurring in various parametric planes are
demonstrated.

2. Chaotic and regular behavior of the Masing and Bouc-Wen oscillators

Let us consider classical hysteretic models such as Masing oscillator and Bouc-Wen
oscillator. In both cases, an external periodic excitation with an amplitude F and fre-
quency � acts on the mass m which oscillates along an inertial base. These oscillators
possess hysteretic properties and it is supposed that there is a linear viscous damper with
a coefficient 2�.
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The following set of differential equations governs a motion of the Masing oscillator:

ẋ = y,

ẏ = −2�y − (1 − �)g(x) − �z + F cos �t ,

ż = g′
(

z − zi

2

)
y. (1)

In the above,

� ∈ [0, 1]; g(x) = (1 − �)x

(1 + |x|n)1/n
+ �x; R = (1 − �)g(x) + �z

is total restoring force with non-linear elastic part (1 − �)g(x) and with hysteretic part �z.
The case � = 1 corresponds to maximum hysteretic dissipation and � = 0 corresponds to
elastic behavior of the oscillator. The parameter � characterizes a ratio between the post-
and pre-yielding stiffness. The parameter n governs the smoothness of the transitions from
the elastic to the plastic range. Couples ±(xi, zi) represent the velocity reversal points at
ẋ = 0. According to Masing’s rule which is disseminated on the case of steady-state motion
of the hysteretic oscillator, the loading/unloading branches of a hysteresis loop are similar
geometrically. So, if f (x, z)=0 is the equation of a virgin loading curve, then the equations
f ((x ± xi)/2, (z ± zi)/2) = 0 describe loading/unloading branches of the hysteresis loop.
In the case of non-steady-state motion of the Masing’s oscillator, it is supposed that the
equation of any hysteretic response curve can be obtained by applying the original Masing
rule to the virgin loading curve using the latest point of velocity reversal.

A motion of Bouc-Wen oscillator is governed by the following set of differential equa-
tions:

ẋ = y,

ẏ = −2�y − �x − (1 − �)z + F cos �t ,

ż = [kz − (� + � sgn(y)sgn(z))|z|n]y, (2)

where R = �x + (1 − �)z is the total restoring force; the parameters (kz, �, n) ∈ R+ and
� ∈ R govern the shape of the hysteresis loop. The parameters � and n have the same sense
as in the case of the Masing model.

Let us describe briefly the approach based on analysis of the wandering trajectories in
view of the state vector of the systems (1), (2) for x ∈ R3. A chaotic behavior of nonlinear
deterministic systems supposes a wandering of trajectories of motion around the various
equilibrium states. They are characterized by unpredictability and sensitive dependence on
the initial conditions. By analyzing trajectories of motion of these systems, it is possible to
find the chaotic vibration regions in control parameters space.

The continuous dependence property on the initial conditions x(0) = x(t0) of a solution
of the set (1) or (2) will be used: for every initial condition x(0), x̃(0) ∈ R3, for every
number T > 0, no matter how large, and for every preassigned arbitrary small � > 0, it is
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possible to indicate a positive number � > 0, such that if the distance � between x(0) and
x̃(0), �(x(0), x̃(0)) < �, and |t |�T , the following inequality is satisfied:

�(x(t), x̃(t)) < �.

That is, if the initial points are chosen close enough, then during the preassigned arbitrary
large time interval −T � t �T , the distance between simultaneous positions of moving
points will be less given positive number �.

For the sake of tracing chaotic and regular dynamics, it is supposed that with the increase
in time all trajectories remain in the closed bounded domain of a phase space, i.e.

∃Ci ∈ R: max
t

|xi(t)|�Ci, i = 1, 2, 3.

To analyze trajectories of the sets (1) and (2), the characteristic vibration amplitudes Ai

of components of the motion are introduced, Ai = 1
2 |maxt1 � t �T xi(t)−mint1 � t �T xi(t)|.

Here and below, index number i runs over three values corresponding to three generalized
coordinates x, y, and z. [t1, T ] ⊂ [t0, T ] and [t0, T ] is the time interval, in which the trajectory
is considered. The interval [t0, t1] is the time interval, in which all transient processes are
damped.

For the sake of our investigation it seems most convenient to use the embedding theorem
and to consider a 3-dimensional parallelepiped instead of a hyper-sphere with the center
at point x. Two neighboring initial points x(0) = x(t0) and x̃(0) = x̃(t0) (x = (x, y, z)T or
x = (x1, x2, x3)

T) are chosen in the 3-dimensional parallelepiped P�x ,�y ,�z
(x(0)) such that

|x(0)
i −x̃

(0)
i | < �i , where �i > 0 is small in comparison with Ai . In the case of regular motion,

it is expected that �i > 0 used in inequality |xi(t) − x̃i (t)| < �i is also small in comparison
with Ai . The wandering orbits attempt to fill up some bounded domain of the phase space.
At instant t0 the neighboring trajectories diverge exponentially afterwards. Hence, for some
instant t1, the absolute values of differences |xi(t) − x̃i (t)| can take any values in closed
interval [0, 2Ai]. An auxiliary parameter 	 is introduced, 0 < 	 < 1. 	Ai is referred to as
divergence measures of observable trajectories in the directions of generalized coordinates
and with the aid of parameter 	 one has been chosen, which is inadmissible for the case of
“regularity” of the motion. The domains, where a chaotic behavior of considered systems
is possible, can be found using the following condition:

∃t∗ ∈ [t1, T ] : |x(t∗) − x̃(t∗)| > 	Ax .

If this inequality is satisfied in some nodal point of the sampled control parameter space,
then such motion is relative to the chaotic one (including transient and alternating chaos).
The manifold of all such nodal points of the investigated control parameter space setup
domains of chaotic behavior of the considered systems.

3. Results and discussion

Stability of motion depends on all parameters of the considered hysteretic models in-
cluding initial conditions. We succeeded sufficiently accurately in tracing unregular
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responses of the Masing and Bouc-Wen hysteretic oscillators in the damping coefficient-
amplitude and frequency-amplitude of external periodic excitation planes after a coordinate
sampling.

The Masing oscillator (1) is non-linear both in the case of a pure elastic behavior without
hysteretic dissipation (� = 0) and in the case of motion with hysteretic dissipation (� > 0).
And at � = 0, chaos has been found too. Fig. 1 displays the evolution of chaotic behavior
domains with increase in hysteretic dissipation value in the mentioned planes. The (�, F )

and (�, F ) planes had been uniformly sampled by 100 × 100 nodal points in the rectangles
(0.01���0.61; 0.01�F �1.51) and (0.01���0.26; 0.01�F �1.61), respectively. The
time period for simulation T is of 300
/� non-dimensional time units. During computations,
one half of the time period T corresponds to the time interval [t0, t1], where transient
processes are damped. The integration step size is 
/100�. Initial conditions of the closed
trajectories are distinguished by 0.5 percent with ratio to characteristic vibration amplitudes,
e.g. the starting points of these trajectories are in the 3-dimensional parallelepiped (|x(t0)−
x̃(t0)| < 0.005Ax , |ẋ(t0)− ˜̇x(t0)| < 0.005Aẋ , |z(t0)− z̃(t0)| < 0.005Az). The parameter 	 is
chosen to be equal to 1

3 . All domains are multiply connected. There is also some number of
scattered points here. Such a structure is characteristic for domains, where chaotic vibrations
are possible.

One can observe the effect of restraining the chaotic regions with the increase in the
hysteretic dissipation value in the (�, F ) plane (Fig. 1(a)–(c)). The “quickness” of the
restraining decreases when � increases. So, in the case of maximum hysteretic dissipation
value � = 1, the chaotic regions in the (�, F ) plane are distinguished from regions (c), Fig.
1, non-principally.

In the (�, F ) plane (Fig. 1(d)–(f)) the form and location of the chaotic domains are
changed depending on the hysteretic dissipation that is made conditional upon mutual
influence of the nonlinear terms in the set (1).

Fig. 2 characterizes the obtained domains and demonstrates various characteristics
of motion of the Masing oscillator as chaos and hysteresis loss (a), and periodic
response (b).

Another situation occurs for the Bouc-Wen oscillator (2) which naturally is linear (when
� = 1). So, the hysteretic dissipation adding leads to chaotic responses occurring in this
system. Fig. 3 presents the evolution of chaotic behavior regions with the increase in
the hysteretic dissipation value in the (�, F ) and (�, F ) planes. One can observe the
changes of the form and location of the chaotic regions. Note that chaotic responses of
the Bouc-Wen oscillator are not observed right up to � = 0.2, when the influence of the
nonlinear terms becomes critical. It demonstrates the generating effect of the hysteretic
dissipation on chaos occurring in the hysteretic system which appears after some criti-
cal value �cr. After �cr, both the form and location of the chaotic behavior regions are
changed with the increase in the hysteretic dissipation. In the case of maximum hysteretic
dissipation value (when � = 0), the chaotic behavior region in the (�, F ) plane is al-
most the same as in case (c), Fig. 3. A “friable” form of the chaotic regions in the (�, F )

planes (d) and (f) is conditioned by the fixation of the frequency � = 0.24. Location of
the corresponding domains in the (�, F ) planes are changed with increase in the hys-
teretic dissipation. The fixed value of � only slightly contacts chaotic behavior regions (a)
and (c), Fig. 3.
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Fig. 1. Evolution of the chaotic regions for the Masing hysteresis model in the (�, F ) and in the (�, F ) planes
with increase in the hysteretic dissipation value (a), (d) � = 0; (b), (e) � = 0.5; (c), (f) � = 0.8. The parameters
� = 0.05, n = 10.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0 are fixed for all cases, and � = 0 for cases (a)–(c), � = 0.15
for cases (d)–(f).

During simulation, the (�, F ) and (�, F )planes had been uniformly sampled by 100×100
nodal points in the rectangles (0.01���0.36; 0.01�F �2.05) and (0.001���0.04;
0.01�F �1.71), respectively. The time period for the simulation T is 300
/�. During
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Fig. 2. Phase portraits and hysteresis loops of the Masing hysteretic oscillator in the cases of (a) chaotic (�=0.15,
F = 1.21, � = 0.026, � = 0.5, � = 0.05, n = 10.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0) and (b) periodic responses
(� = 0.7, F = 0.8, � = 0, � = 0.5, � = 0.05, n = 10.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0).

computations, a half of time period corresponds to the time interval [t0, t1], where transi-
tional processes are damped. The integration step size is chosen equal to 
/40�. As in the
case of the Masing oscillator, the initial conditions of the closed trajectories are distinguished
by 0.5 percent with ratio to characteristic vibration amplitudes. The parameter 	 is set
equal to 1

3 .
Fig. 4 characterizes the obtained regions of unregular motion and depicts various re-

sponses of the Bouc-Wen oscillator as chaos and hysteresis loss (a), and periodic responses
(b) and (c). One can observe in Fig. 4(c), the motion of oscillator with a triple period, and
that the hysteresis possesses reduced dissipation properties.

4. Conclusions

Highly nonlinear Masing and Bouc-Wen hysteretic models with discontinuous right-hand
sides are investigated using an effective approach based on the analysis of the wandering
trajectories [1–4]. This algorithm of quantifying regular and chaotic dynamics is simpler
and faster from a computational point of view compared with standard procedures and
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Fig. 3. Evolution of the chaotic regions for the Bouc-Wen oscillator with hysteresis in the (�, F ) and in the (�, F )

planes with increase in the hysteretic dissipation value (a), (d) � = 0.0476; (b), (e) � = 0.01; (c), (f) � = 0.001 at
kz = 0.5, � = 0.3, � = 0.005, n = 1.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0 and � = 0 for the cases (a)–(c), � = 0.24
for the cases (d)–(f).

allows sufficient in accurately tracing regular/unregular responses of the hysteretic systems.
Domains, where chaotic/regular behavior of the oscillators with hysteresis is possible,
are found in the damping coefficient-amplitude and the frequency-amplitude of external
periodic excitation planes. Substantial influence of a hysteretic dissipation value on the
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Fig. 4. Phase portraits and hysteresis loops of the Bouc-Wen hysteretic oscillator in the cases of (a) chaotic
(� = 0.24; F = 1.1227, � = 0.00136, � = 0.01, kz = 0.5, � = 0.3, � = 0.005, n = 1.0, x(0) = 0.1, ẋ(0) = 0.1,
z(0) = 0) and (b) (� = 0.35; F = 1.2, � = 0.0), (c) (� = 0.2; F = 1, � = 0.0) periodic responses (� = 0.0476,
kz = 0.5, � = 0.3, � = 0.005, n = 1.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0).

possibility of chaotic behavior occurring in the systems with hysteresis is shown. Restraining
and generating effects of the hysteretic dissipation on a chaotic behavior occurring are
demonstrated.

The possibility of the generating effects of hysteretic dissipation on chaos occurring
in hysteretic systems which are modelled by means of additional state variables (internal
variables) is a subject of further investigations.
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