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Abstract. In this paper, we present a novel approach to quantify regular or chaotic dynamics of either smooth or non-smooth
dynamical systems. The introduced method is applied to trace regular and chaotic stick–slip and slip–slip dynamics. Stick–slip
and slip–slip periodic and chaotic trajectories are analyzed (for the investigated parameters, a stick–slip dynamics dominates).
Advantages of the proposed numerical technique are given.
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1. Introduction

Simple dynamical oscillators exhibiting chaotic behavior are still a topic of investigation, but a richer
dynamics is exhibited by coupled oscillator systems and it has inspired a great deal of research [1–3].
Various real systems in mechanics [4–6], electro-mechanics [7–9], and life sciences [2, 10] are modeled
by coupled oscillators. Among them a special class of important (both from the point of view of theory
and application) systems are those excited by dry friction [4–6, 11].

In this work, our attention is focused on the analysis of self-excited 2-degrees-of-freedom coupled
system with dry friction. First, an approach to quantify chaos is addressed, and then the domains of
stick–slip and slip–slip oscillation are investigated.

The descriptions of various prognostic and diagnostic criteria of chaos occurring in nonlinear dy-
namical systems can be found in numerous introductory books on chaos. To such known approaches,
it is possible to mention Melnikov’s method, period doubling criteria, “Smale horseshoe”, spectrum
analysis, the method of cell-to-cell mapping for nonlinear dynamical systems [14–16] and the most
often exploited Lyapunov exponents’ computations, etc.

No belittling merits of the analytical approaches, it should be mentioned that for some comparatively
simple equations, the theoretical criteria of appearance of chaos have not been found yet. Even though
the Melnikov’s method for systems in Rn has been presented [17], only periodically forced dynamical
systems with a small parameter are considered. In addition, for such systems, it is necessary to know
the homoclinic orbit explicitly. But for most of nonlinear dynamical systems, finding an analytical ex-
pression for the homoclinic orbit is virtually impossible. The upshot, the algorithms for the realization
of Melnikov’s approach for computing the bifurcation conditions are based on numerical simulations.
Furthermore, the theoretical thresholds, which correspond to the homoclinic trajectory criterion, are
known to be underestimated and do not reflect the complex structure of chaotic regions (and presence of
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periodic “windows”, chaotic “islets”, “streaks” etc.). Also it is known that during a treatment of bifur-
cations, the validity of analytical methods is often only local. Both analytical and numerical approaches
must be used together to confirm the chaotic character of the motion in the investigated regions.

The question of universal multipurpose criteria for analysis of nonlinear dynamical systems is still
open. During implementation of existent approaches various difficulties and problems arise. Later, we
briefly describe two effective approaches for nonlinear dynamical systems analysis and give comparative
valuation and advantages of the approach presented in this paper.

Hsu’s method of cell-to-cell mapping for nonlinear dynamical systems [14–16] is an interesting non-
ordinary approach. The procedure of the algorithm is devised by taking advantages of certain properties
of Markov chains as tools for global analysis of the mapping systems. The generalized cell-mapping
theory is theoretic base for computer algorithms for the systems analysis involving a very large number
of cells. But it is computationally intensive. Let us illustrate it. Let a cell Z(n) be mapped by the
mapping G. According to the generalized theory of cell-to-cell mapping, the mapping of a cell Z(n)
may have several possible image cells, each image cell having a definite fraction of the total number
of possibilities. In another words, if the system is at cell Z(n) when t = n, the state at the next step
t = n + 1 can be at Z(1)(n + 1) with probability p(1), at Z(2)(n + 1) with probability p(2), and so
forth. The state of the system is described by the probabilities according to which state the system
may be found. In that way, for each fixed set of control parameters, a “sink cell” is introduced and is
labeled number 0, and then other cells are labeled 1, 2, . . . , N. The cells are classified as persistent or
transient cells. The persistent cells are decomposed into irreducible persistent groups. The period of
each persistent group and the long-term limiting probability distribution among the cells within each
group (for the acyclic groups and for the periodic groups) are determined. Then the evolution from
all the transient cells by computing the absorption probability αi j of a transient cell j into a persistent
cell i, the groups absorption probability α(Bg , j) of cell j into a persistent group Bg , and the expected
absorption time ν j of cell j into persistent groups are evaluated. The probabilities of mappings among
cells are defined using different schemes as, for instance linear (or higher-order) interpolation methods.
Method of analyzing generalized mappings implies also in computer intensive operations with matrices.
The most time-consuming part of the algorithm is the evaluation of the matrix that characterizes the
expected absorption time. This matrix results from the inversion of a high order very sparse matrix. To
find the inverse of such a matrix is a time consuming task. Therefore, special sparse matrix techniques
are used. There are also other technical problems.

The Wolf’s algorithm for determining the Lyapunov exponents can also be realized by computer
simulation. Even in presence of fast computers, recent scientific books [18] have pointed out problems
which appear using standard procedures of Lyapunov exponent calculations in practice. According to
Wolf’s algorithm, the calculation of the Lyapunov exponent λ as the measure of the trajectory divergence
begins with the choice of a basic trajectory x∗(t, x(0)). At each time step tk the dynamical system is
integrated along with any neighboring point x∗(tk)+η acting as the initial condition. To find the exponent
λ, the governing equations and the corresponding variational equations η̇ = A · η, in which A is matrix
of partial derivatives ∇ f (x∗(tk)), are solved N times (where N is the number of the time steps). The
averaging over long times results in a reliable value of λ. The analogous calculation needs to be executed
for all nodal points of the sampled space under investigation. This procedure is very computationally
intensive especially for non-smooth systems. The method can often work for low-dimensional systems,
but in practice, it fails for chaotic systems of high-dimensionality. To carry out our approach, it is enough
to solve the equations governing the dynamical system only two times for each selected trajectory. For
our specific problem, the characteristic vibration amplitudes Ai is calculated simultaneously with the
integration of the trajectory. So, for each selected trajectory it does not have to find the matrix of partial
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derivatives A, and the governing differential set is solved 2 times instead 2N, not having to average over
a long times the distances between the trajectories.

Note that calculations of Lyapunov exponents may results also in other problems [18]. On the one
hand, the individual terms of the cumulative product matrix grow exponentially, and, on the other hand,
the eigenvectors all tend to align themselves in the direction of the maximum growth and hence do
not accurately span the space. To avoid these problems, the Gram–Schmidt orthonormalization may be
used additionally, but it increases the time consumed and it also complicates the algorithm.

The chaotic trajectories, which are quantified using our approach, correspond to “positive” Lyapunov
exponents. Even in the case of calculating the largest Lyapunov exponents without having to calculate
the matrix of partial derivatives, the present approach still remains simpler and less time-consuming
(especially for discontinuous systems and for systems of higher dimensionality). Transient chaos (in
which the motion is apparently chaotic for a long time before eventually settling down to a nonchaotic
attractor) often occurs near a global bifurcation, signaling the onset of chaos. The resulting regions
of chaotic motion include cases of transient and alternating chaos. Even with this restriction for the
various investigated smooth and non-smooth systems, our approach reflects extremely well the complex
structure of chaotic regions (presence of periodic “windows”, chaotic “islets”, “streaks” etc.).

2. The Model

Consider two masses m1 and m2 (as shown in Figure 1) which are riding on a driving belt. The belt is
moving at a constant velocity v0. The mass m1 is attached to a wall by a spring k1. Masses m1 and m2

are coupled by a spring k2. A friction force Ti acts between the mass mi and the belt which is dependent
on the relative velocity wi (i = 1, 2) between both. These 2-degree-of-freedom autonomous oscillators
are governed by the following second-order set of coupled differential equations

{
m1 ẍ1 = −k1x1 − k2x1 + k2x2 + T1(w1)
m2 ẍ2 = −k2x2 + k2x1 + T2(w2),

(1)

where

wi = v0 − ẋi (i = 1, 2).

For the Ti (wi ), we consider the following friction model (see Figure 2):

Ti (wi ) = T0i sign(wi ) − αi (T0i )wi + βi (T0i )w
3
i ,

αi = 3

4

T0i

v∗
i

βi = T0i

4(v∗
i )3

(i = 1, 2).

Figure 1. Autonomous coupled oscillators with friction.
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Figure 2. Friction model.

Here the maximum static friction force is denoted by T0i , and v∗
i is the velocity corresponding to the

maximum value of Ti (wi ) (i = 1, 2) (Figure 2).

3. Our Approach and the Analysis of the Wandering Trajectories

The chaotic behavior of nonlinear dynamical systems can have different physical manifestations. For
example, an external periodic excitation applied to a multi-well potential system may cause a chaotic
response. In this case, the unpredictable switches between the potential wells characterize the chaotic
behavior. Other factors may result in unpredictable changes of the vibration amplitude of the trajectories.
This manifested unpredictability of the chaotic trajectories is affirmed by stating that those systems
exhibit sensitive dependence on the initial conditions. By analyzing the trajectories of those systems, it
is possible to find the chaotic vibration regions in control parameter space.

Let a dynamical system be expressed by the following set of ordinary differential equations

ẋ = f (t, x), (2)

where x ∈ Rn is the state vector, f (t, x) is defined in R × Rn and is the time derivative of the state
vector. It is assumed, that f (t, x) is smooth enough to guarantee existence and uniqueness of a solution
of the set (2). The right-hand side can be discontinuous, while the solution of the set of differential
equations (2) remains continuous. For instance, in cases of discontinuous vector fields of the “transversal
intersection” and “attracting sliding mode” types a solution of the set (2) exists and is unique. In that
way, the continuous dependence property on the initial conditions x(0) = x(t0) of the solution of the set
(2) is used: for all initial conditions x(0), and x̃(0), both in Rn and at t = 0, for every number T > 0,
no matter how large, and for every pre-assigned arbitrary small ε > 0 it is possible to find a positive
number δ > 0 such that if the distance ρ between x(0) and x̃(0) is ρ(x(0), x̃(0)) < δ, and for t ≤ T , takes
place the inequality

ρ(x(t), x̃(t)) < ε.

In another words, if the initial points are chosen close enough, then during the pre-assigned arbitrary
large time interval t ≤ T the distance between simultaneous positions of moving points are less given
then a positive number ε.
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Since we are interested in identifying chaotic and regular dynamics, we assume that all trajectories
remain in the closed bounded domain of a phase space, i.e.

∃Ci ∈ R : max
t

|xi (t)| ≤ Ci (i = 1, 2 . . . n).

If a trajectory escapes to infinity, it may be diagnosed easily.
To analyze trajectories of the set (2), we introduce the characteristic vibration amplitudes Ai of the

components of the motion xi (t):

Ai = 1

2

∣∣∣ max
t1≤t≤T

xi (t) − min
t1≤t≤T

xi (T )
∣∣∣ (i = 1, 2 . . . n).

[t0, T ] is the time interval, in which the motion is considered, [t0, t1] is the time interval in which all
transient processes are damped.

Though a metric ρ on Rn can be assigned in various ways, we find it convenient to consider an
n-dimensional parallelepiped defined through the embedding theorem, which states as follows:

if Sε(x) = {x̃ ∈ Rn : ρ(x, x̃) < ε} is the hyper-sphere with center in the point x and with radius ε and
Pε1,ε2,...,εn (x) = {x̃ ∈ Rn : |xi − x̃i | < εi } is the n-dimensional parallelepiped, then for any ε > 0 there
is parallelepiped Pε1,ε2,...,εn (x) such that Pε1,ε2,...,εn (x) ⊂ Sε(x). And conversely, for any parallelepiped
Pε1,ε2,...,εn (x) it is possible to indicate ε > 0 such that Sε(x) ⊂ Pε1,ε2,...,εn (x).

Let us choose in the parallelepiped Pδ1,δ2,...,δn (x(0)) two neighboring initial points x(0) and x̃(0), such
that |x (0)

i − x̃ (0)
i | < δi , where δi is small in comparison with Ai (i = 1, 2 . . . n). For the case of regular

motion, it is expected that the εi in the inequality |xi (t) − x̃i (t)| < εi is also small in comparison
with Ai (i = 1, 2 . . . n). The wandering orbits attempt to fill some bounded domain of the phase
space. The trajectories that are close at the instant t0 diverge exponentially on the average afterwards.
Hence, the absolute values of differences |xi (t) − x̃i (t)| for some instant t1 can take any values in the
interval [0, 2Ai ]. If the differences |xi (t) − x̃i (t)| are equal to zero at some instants {tk

∗}, (tk
∗ ∈ [t1,T])

then the trajectories x(t) and x̃(t) are coincident at those instants. Obviously, 2Ai are the maximum
values of these differences. And it is quite admissible value for some time instants. Let us introduce an
auxiliary parameter α, 0 < α < 1. The αAi are the divergence measures of the observable trajectories
in the directions of the generalized coordinates xi (i = 1, 2, . . . n). By analyzing Equation (2) and its
equilibrium states, it is easy to choose an α parameter, 0 < α < 1, such that from the truth of the
statement

∃t∗ ∈ [t1, T ] : |xi (t
∗) − x̃i (t

∗)| > αAi (i = 1, 2, . . . , n), (3)

it follows that there is a time interval or set of time intervals, for which the trajectories x(t) and x̃(t)
move around various equilibrium states. These trajectories are sensitive to changing the initial conditions.
Thus, these trajectories are wandering. Indeed, as it has already been mentioned, all trajectories are in
the closed bounded domain of the space Rn . With the aid of the parameter α, we choose the divergence
measures of the trajectories αAi , which are inadmissible for the case of ‘regularity’ of the motion. Note
that this choice is non-unique and the α parameter can take various values on the interval (0, 1). But it is
clear, that if α is near 0 and |xi (t)− x̃i (t)| < αAi when t ∈ [t0, T ], then the trajectories do not diverge and
are hence regular. There are values of the α parameter, which a priori corresponds to the inadmissible
divergence measures αAi (i = 1, 2, . . . n) of the trajectories in the sense of ‘regularity’. For example,
α ∈ { 1

3 , 1
2 , 2

3 , 3
4 } but other choices are possible. If the representative points of the observable trajectories

move chaotically, then for another choice α from the set of a priori ‘appropriate’ α, the divergence
of the trajectories will be recorded at another time t∗. As numerical experiments show, the obtained
domains of chaotic behavior with various a priori ‘appropriate’ values of the α parameter are practically
congruent. Therefore, in this work, pictures for different values of α are not presented.
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A similar non-unique choice of parameters occurs when applying some other criterium for the
chaotic oscillations. For instance, one can apply the procedure for calculating the Lyapunov exponents
d(t) = d02λt . Here λ is Lyapunov exponent, d0 is the initial distance measure between the starting
points, d(t ) is the distance between trajectories at instant t. The base 2 is chosen for convenience. In all
other respects, the parameter α > 1 in the relation d(t) = d0α

λt is arbitrary. That is, the α parameter
can take values, for example, α ∈ {2, 3, 4, 5} but other choices are possible. In general, the specificity
of the numerical approach is like that, all parameters have to be concrete and most of them can be
non-unique.

By varying the parameters of the system, and using condition (3), it is possible to find domains
of chaotic motions (including transient and alternating chaos) and domains of regular motions. This
approach has been realized on well-known systems – the non-autonomous Duffing equation and Lorenz
system [12]. It has achieved remarkable results and very good agreement with other investigations.

4. A Stick–Slip and Slip–Slip Motions

Let us find the stick–slip and slip–slip domains of the chaotic or regular motion. If the solution x(t) of
the set (1) is known, it is easy to obtain the set of time intervals {	tst i} for which

ẋi = v0 (i = 1, 2). (4)

It corresponds to the presence of “stick” in the vibrations of ith oscillator. The maximum time interval
max 	tst i from the set {	tst i} can be considered as a characteristic of a given motion.

If the investigated space of parameters has as one of its coordinates the velocity of the belt v0, the
dynamics of the process increases with magnification of v0. And then even very small max 	tst i does
point out the presence of the “stick” in the vibrations. In this case, under appropriate choice of the
constant 0 < δ < 1, and by checking the control condition

v0 max 	tst i > δAi (i = 1, 2), (5)

it allows to trace the presence of “stick” motion, which could be lost in the analysis using max 	tst i .

5. Results and Discussion

The conditions (3) for the system (1) can be presented in the following form

∃t∗ ∈ [t1, T ] :
{(|x1(t∗) − x̃1(t∗)| > αA1) ∨

⇓
chaos of the first oscillator

(|x2(t∗) − x̃2(t∗)| > αA2)}
⇓

chaos of the second oscillator

(6)

Fulfillment of the condition (|x1(t∗)− x̃1(t∗)| > αA1)∧ (|x2(t∗)− x̃2(t∗)| > αA2) signifies a presence
of hyper-chaotic behavior of the system.

Using the conditions (4)–(6), the space of parameters (v0, T01, T02) for the system (1) is investigated
after a coordinate sampling with a grid width 	v0 = 0.1, 	T01 = 1, 	T02 = 1. The domains in which
the chaotic behavior of the first and second oscillators occurs are found. The domains of stick–slip
and slip–slip motion are also found. All numerical calculations are done for the following fixed values,
characterizing the system (1): m1 = 4, m2 = 3, k1 = 11.77, k2 = 7.85, v∗

1 = 4, v∗
2 = 3. The following
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initial conditions are taken: x1(0) = 0.01, ẋ1(0) = 0.5, x2(0) = 0.01, ẋ2(0) = 0.5. The time history
of the trajectories of motion is 120 units. During simulations, a half of this time corresponds to the
time interval [t0, t1], in which the transitional processes are damped. Initial conditions of the closed
trajectories are distinguished by 0.5% with ratio of characteristic vibration amplitudes Ai (i = 1, 2), and
α parameter to be equal to 1/3.

Figure 3 in the section T02 = 19.62 of the parameter space (v0, T01, T02) represents the domains
where chaotic vibrations of the first (a) and of the second (b) oscillators are possible. It is interesting,
that these regions are almost congruent. That is, one does not observe the situation when only one
of the oscillators moves chaotically. It is also remarkable, that the presence of the chaotic “islets” in
the domains of periodic movement is also characteristic of many experiments in chaotic dynamics.
In the cross-section T01 = 29.43 (see Figure 4) the chaotic vibrations domains of first (a) and second
(b) oscillators are also practically congruent.

In Figures 5 and 6, the domains of stick–slip oscillations are exhibited, corresponding to various
“adhesion” time 	tst of the oscillators to the belt (when 5 < max 	tst i , 2 < max 	tst i < 5, 0.5 < max

Figure 3. Domains of chaotic vibrations of the first (a) and of the second (b) oscillators in the (v0, T01) plane at T02 = 19.62.

Figure 4. Domains of chaotic vibrations of the first (a) and of the second (b) oscillators in the (v0, T02) plane at T01 = 29.43.
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Figure 5. Domains of stick–slip oscillations of the first (a) and of the second (b) oscillators in the (v0, T01) plane at T02 = 19.62
for various stick conditions (δ = 0.1).

Figure 6. Domains of stick–slip oscillations of the first (a) and of the second (b) oscillators in the (v0, T02) plane at T01 = 29.43
for various stick conditions (δ = 0.1).

	tst i < 2). It is reported in the section T02 = 19.62 (see Figure 5) of the parameter space (v0, T01, T02) for
the first (a) and for the second (b) oscillators and also in the section T01 = 29.43 (see Figure 6) for the first
(a) and for the second (b) oscillators. Crosses represent the domains in which max 	tst i < 0.5. But for
these domains the stick segment on a phase plane, which corresponds to brief “adhesion” of an ith oscil-
lator, exceeds δAi . It is accepted δ = 0.1. So, this segment exceeds a tenth of the characteristic vibrations
amplitude of ith oscillator Ai . The latter behavior is caused by an increase in the dynamical process.

Now some examples characterizing the mentioned domains are presented.
Figure 7 shows the trajectories of the first and second oscillators on the phase plane for values of

parameters v0 = 1, T01 = 30, T02 = 19.62, which corresponds to the domain of the chaotic vibrations
(see Figure 3(a) and (b)). Stick is corresponding to 2 < max 	tst i < 5 for the first oscillator and to
5 < max 	tst i for the second oscillator (see Figure 5(a) and (b)). The phase portraits in Figure 8 are
plotted for v0 = 0.9, T01 = 29.43, T02 = 15. They correspond to chaotic domains, which are observed
in Figure 4(a) and (b).

Figure 9 (for v0 = 2.5, T01 = 30, T02 = 19.62) and Figure 10 (for v0 = 1.5, T01 = 0.5, T02 = 19.62)
represent periodic vibrations of both first and second oscillators. In Figure 10, the first oscillator moves
without stick condition. All these data demonstrate a very good agreement with the obtained chaotic
and regular vibration domains (see Figure 3) and with the domains of stick–slip and slip–slip motion
(see Figure 5).
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Figure 7. Phase portraits of the chaotic trajectories of the first and second oscillators (v0 = 1, T01 = 30, T02 = 19.62) which
correspond to the domains of the chaotic vibrations in the (v0, T01) plane. A stick refers to the maximum “adhesion” time of the
oscillators to the belt: 2 < max	tst1 < 5 for the first oscillator and 5 < max	tst2 for the second oscillator.

Figure 8. Phase portraits of the chaotic trajectories of the first and second oscillators (v0 = 0.9, T01 = 29.43, T02 = 15) which
correspond to the domains of the chaotic vibrations in the (v0, T02) plane. A stick refers to the maximum “adhesion” time of the
oscillators to the belt: 2 < max 	tst1 < 5 for the first oscillator and 5 < max 	tst2 for the second oscillator.

Figure 9. Phase portraits of the periodic trajectories of the first and second oscillators (v0 = 2.5, T01 = 30, T02 = 19.62) which
correspond to the domains of regular motion in the (v0, T01) plane. A stick refers to the maximum “adhesion” time of the oscillators
to the belt: 0.5 < max 	tst1 < 2 for the first oscillator and 	tst2 < 0.5 for the second oscillator.



392 J. Awrejcewicz et al.

Figure 10. Phase portraits of the periodic trajectories of the first and second oscillators (v0 = 1.5, T01 = 0.5, T02 = 19.62) which
correspond to the domains of regular motion in the (v0, T01) plane. The first oscillator moves without a stick. A stick condition
of the second oscillator refers to the maximum “adhesion” time to the belt 2 < max 	tst2 < 5.

Figure 11. Phase portraits of the trajectories demonstrating “chaos onset” with a passage from the stability domain (a) (v0 = 1.4,
T01 = 29.43, T02 = 40) to the instability domain (b) (v0 = 1.4, T01 = 29.43, T02 = 34).

In Figure 11, it is possible to observe “chaos onset” with a passage from the stability domain (a) at
fixed values of parameters v0 = 1.4, T01 = 29.43, T02 = 40 to the instability domain (b) at fixed values of
parameters v0 = 1.4, T01 = 29.43, T02 = 34 (see also Figure 4). In the first case, one can see the regular
motion about the three states. Then the first oscillator wanders around these states with unpredictable
jumping.
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Figure 12. Phase portraits of the trajectories of the first and second oscillators (v0 = 3.4, T01 = 41, T02 = 19.62). The second
oscillator is in a slip–slip chaotic motion.

Figure 13. Phase portraits of the trajectories of the first and second oscillators (v0 = 3.3, T01 = 29.43, T02 = 36). The second
oscillator is in a slip–slip chaotic motion.

The comparison between Figure 3 and Figure 5, and also between Figure 4 and Figure 6 yield a
conclusion that mainly stick–slip chaos is observed during our experiments. Slip–slip chaotic motion is
exhibited only in the small domain in a neighborhood of v0 = 3.3–3.4, and only for the second oscillator.
Examples are shown in both Figure 12 for fixed values of parameters v0 = 3.4, T01 = 41, T02 = 19.62
and Figure 13 for fixed values of parameters v0 = 3.3, T01 = 29.43, T02 = 36.

6. Conclusions

Our approach designed to quantify regular and chaotic domains were successfully applied to analyze
stick–slip and slip–slip dynamics in our self-excited 2-degrees-of-freedom system with friction. Both
stick–slip and slip–slip periodic and chaotic trajectories are studied. It is shown, among others, that for
a wide interval of investigated parameters a stick–slip dynamics dominates. Our investigations show
that the situation when only one of the oscillators moves chaotically is not observed. However, there
are conditions when only the first oscillator moves with “adhesion” to the belt and the other oscillator
moves without “adhesion”, and vice versa.
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In addition, our numerical tests indicate that our direct technique is less time consuming that the stan-
dard approaches devoted for the computation of Lyapunov exponents when considering discontinuous
systems [13].
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