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Abstract

A novel thermo-mechanical model of frictional self-excited stick-slip vibrations is proposed. Contrary to
the tribo-mechanical models known in literature, the proposed model does not include any massless elastic
parts. The applied friction force depends on a relative velocity of the sliding bodies. The period of
vibrations depends on both heating expansion conditions and on conditions of heat taking up (giving up).
Stability of the stationary solutions is studied. A computation of contact parameters during heating of the
bodies is performed. Possibility of the existence of frictional auto-vibrations is shown.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are numerous examples of autonomous systems exhibiting regular non-linear self-excited
vibrations (see Fig. 1) carefully analysed in the literature.

The Froude pendulum serves as a classical dynamical system, frequently used in the mechanical
literature, to illustrate generation of self-vibrations in a mechanical system with friction (Fig. 1a).
Zhukowski [1] and Strelkov [2] analysed vibrations of a pendulum with friction attached to
uniformly rotating bush, i.e. the so called Froude pendulum.

It has been proved by Wells and Thomas [3,4] that occurrence of stick-slip vibrations (after
Bowden and Leben [5]) is associated with a difference between static and kinematic frictions. The
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Fig. 1. Froude pendulum models (a); two (equivalent) sliding systems (b); Prony’s clamp (c); woodpecker knocking into
cylinder (d); the “Olgdzki’s slider” (e) and “‘cylinder-bush system” (f).

first model of self-excited vibrations was proposed by Van-der-Pol [6] (see Fig. 1b), and has been
often applied since. The mathematical model shown in Fig. lc is studied in references [7-9].

Stick-slip relaxation vibrations are studied in Ref. [10] with the use of the model shown in
Fig. 1b as an example.

Note that for small motion velocities a static friction coefficient plays a key role, whereas for
larger velocities, a kinematic friction coefficient is more important, which has been discussed and
illustrated by Ishlinskiy [11]. The reader is encouraged to become familiar with the review
references [12-15], where the history of the mentioned models and the ways of their investigation
are included.

Vibrations of the mechanical system modelling the woodpecker behaviour (Fig. 1d)
are analysed by Pfeiffer [16], and also studied in the monograph by Awrejcewicz [17].
The “mechanical woodpecker” consists of a stiff body with the moment of inertia B, and the
mass ms, and is coupled to a bush via a spring of stiffness k. The bush mass inertial moment is
denoted by B,.

Vibrations of the so-called “Oledzki’s slider” were first studied in Ref. [18] (see Fig. le). If the
mass centre S; of the horizontal rod is located at a distance larger than //(2f) (! denotes length of
the slider, fis the friction coefficient), then (in static conditions) a motion of the rod or the slider
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along the vertical rod—guide axis is not possible. However, an infinitely small perturbation of the
end of the horizontal rod forces the system to move.

Note that two discussed models of the slider movement are associated with the “‘stick-slip™
vibrational behaviour.

Despite considerable simplicity of the introduced models, important information is obtained.
Namely, it is shown that a static self-braking kinematic pair can initiate movement, when the
vibration appears.

Both regular and chaotic vibrations in a cylinder-bush system have been analysed by the
authors [19,20].

It is worth noticing that the main conditions for occurrence of self-excited vibrations in the
models discussed earlier are associated with a difference between static and kinematic frictions
and with existence of an elastic coupling in a tribo-mechanical system.

It should be emphasized that both mathematical models and various methods applied to solve
problems of contacting mechanical systems (one sided constraints) have been used separately so
far. First, during analysis of dynamical models of the contacting mechanical systems tribologic
processes (heat generation) occurring on the contacting surfaces of the considered bodies have
been omitted. On the other hand, models of contacting bodies with an account of thermal effects
usually do not include inertial forces of the bodies. The proposed paper fulfils the occurred gap in
research devoted to this problem, since our proposed and illustrated models may be used to
predict behaviour of real engineering contacting system.

It is clear that from an engineering point of view it is important to determine forces that
occurred in kinematic pairs of the contacting bodies, as well as it is expected to obtain recipes for
an optimal choice of frictional materials as well as other parameters required for realization of
long time sure work of various elements of machines and mechanisms. Therefore, it is highly
required that a progress in mathematical modelling of processes appeared in contacting systems
yields finally the results being close to that observed in real systems.

In this work we analyse a mechanical problem governed by non-linear ordinary (ODE) and
partial differential equations with the attached initial and boundary conditions. Owing to applied
methodology, the stated problem is reduced to that of a system of ODEs and the integral equation
modelling a contact pressure. The last equation is yielded by application of the Laplace
transformation.

The frictional kinematic pair analysed by us can be applied into two qualitatively different
mechanical objects: construction (coupling clips, conic frictional joints between a brake and hub
and a pivot, coupling and brake design, flange and yielding packing) and experimental rigs (for
instance, physical models of frictional machine heads).

Consider now our novel model, devoid of any elastic part but able to exhibit self-excited stick-
slip vibrations (Fig. 2a). For simplicity, it will be further referred to as the “frog-slider”.

The term “frog-slider” is introduced in order to emphasize that the body movement in the
proposed model can be realized by jumps. In other words, the illustrated process includes two
successive motion parts. Namely, after a relative “‘rest” of the system a “‘jump’ occurs, when a
frictional static force resistance is violated. Notice that friction force depends on both sliding
velocity and heat transfer condition.

Many important questions concerning the system under investigation may be formulated.
Which kinds of motion are possible? And how does heat and friction interact to create such
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Fig. 2. “Frog-slider system” (a) and the Stribeck friction-speed curve (b).

motions? The answers to these questions are given in this paper. The considered body being in a
contact or not (depending on the chosen parameters) may either be in: (i) an equilibrium state
(friction force is larger than a driven force); (i1) a moment with constant velocity (friction force is
equal to a driven force, and a generated heat is fully transformed into walls); (iii) stick-slip
movement, and a stick regime (both body’s temperature and contact pressure are decreased) is
substituted by a slip regime (body heating and increase of contact pressure appear).

In this work a novel computational models is proposed, where variations of velocities is
proposed, where variations of velocities of contacting bodies, contact pressure, friction force and
temperature on a contacting surface are coupled and depend on each other. Numerical
investigations indicate that the self-excited system being studied may exhibit either regular or
‘stick-slip’ vibrations. It is also expected that the detected phenomenon of the body braking owing
to friction increase can be applied during design of the so-called “intelligent” brakes. Although
the mentioned particular features of the frictional contacting pair dynamics have been presented
separately by others in real mechanical systems, our proposed complex model is expected to be
experimentally verified.

2. Statement of the problem

Let us consider a one-dimensional model of the thermo-elastic contact of a body
with a surrounding medium. Assume that this body is represented by a rectangular plate
(l; x I x 2L) (Fig. 2a). The plate together with a “frog” of mass M is subjected to force F =
F.hp(t) and moves vertically along walls in direction z; of the rectangular co-ordinates Ox;y,z;.
At the initial instant, the body is situated at distance Z, and its velocity is Zo. The distance
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between the walls is always equal to the initial plate thickness 2L. The plate moves with non-
constant velocity Z(?).

It is assumed that the heat conduction between the layer and the walls obeys Newton’s law.
At the initial instant the temperature is governed by the formula Tohr(?) (hr(t) > 1, t > 00).
It causes heat extension of the parallelepiped in the direction of Ox;, and the body starts to
contact the walls. In the result of this process, a frictional contact on the parallelepiped
sides X =+L occurs. A simple frictional model is applied in the further considerations,
i.e. friction force Fp is a product of normal reaction force N(#) and a friction coefficient.
That means that Fs =f (Z)N(¥) is the friction force defining resistance of the movement
of two sliding bodies. Here, contrary to the assumption made in Ref. [21], the kinematic
friction coefficient f(Z) depends on the relative velocity ¥, =2Z of the sliding bodies
(Fig. 2b).

The friction force oyz(X, ) per unit contact surface X = —L, L generates heat. According to
Ling’s assumptions (cf. [22]), the work of the friction forces is transmitted into heat energy. Note
that the non-contacting plate surfaces are heating isolated and have the dimensions of
L/l <1, L/l <1, which stands in agreement with the assumption of our one-dimensional
modelling.

In what follows the problem is reduced to determination of the mass plate centre displacement
Z(1), plate velocity Z(t), contact pressure P(f) = N(8)/11l; = —oxx(—L,t) = —oxx(L,?); plate
temperature 71(X, ¢), and displacement U(X, ¢) in the X-axis direction.

3. Mathematical problem formulation

In the considered case, the studied problem is governed by the dynamics of the plate mass
centre [17]

mZ(i) = F.hp(t) — 2 (2)P(2) )
and equations of the heat stress theory for an isotropic body [23]
6 6 1 + V1
5% jog VD~ )] =0, @
? 19
S n&X,n=—=TX,), Xe(-LL), (3)
with the attached mechanlcal
UL =0, UL,t)=0, 4
heat
oT(—L,t ..
~FCED | ar (T (L) Tohr(0) = /() Z)PO), ©
oT(L,t L
1 LD (L 1 - Tohr ) = F @20 PO) ©)

(). ¢
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and initial

T(X,00=0, Xe(-LL), Z(0)=2Z, Z0)=2Z (7
conditions. Normal stresses that occur in the plate are defined through
E] 1-— V1 oU
= — -y T
XX =T [1 Tvox M 1] ®

In the above, the following notation is applied: E; is the elasticity modulus, vy, 4y, ay, a5, ar are
Poisson’s ratio, thermal conductivity, thermal diffusivity, thermal expansion and heat transfer
coefficients, respectively; m = M, /l11,, whereas P(t) = N(t)/I1l, denotes the contact pressure.

Integration of Eq. (2), with Eq. (8) and boundary conditions (4) taken into account, yields the
contact pressure P(f) = —aXX(—L 1) = —oxx(L,1):

E10£1 To 1
P() =75 o Tl(é, Hde. ©)
Let us introduce the followmg similarity coefficients:
te=L*/ay[s], vi=a/Lims™"], Py = ToE11 /(1 — 2v))[Nm™?] (10)
and the following non-dimensional parameters: ,
X t Z P T, 2P,
x—z, T—Z, Z—Z, p—F*, 9—-]—_';, & = mL N (11)
Eloc]al . LOCT F * . . .
_ i i ==X F©)=fv,2).
The examined problem is modelled by means of non-dimensional equations of the form
3%0(x,7)  06(x,7)
e - e e(-1, 1), 7e€(0, oco), (13)
#(7) = e1(mohr(t) — F(2)p(r)), : (14)
with the following boundary
2 i =
Ox x=-—1
0
2 b, n] = a0 as)
x=1

and initial
0(x,00=0, z(0)==z°, 2(0)=:2°, _ (16)

conditions, where

1
0) = Bibr @)+ FOHOPO. p) =5 [ 0EDaz a7
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4. Solution of the problem

Applying the Laplace transformation [24]
o0
7} = / {0,p,qle " dr
0

the following is obtained:

a4 |
£ @ = s0, (18)
dd .- I s [ _ :
[a_;c — Bl@] = -4, [dx + BIH] = g, | (19)
1t
r=3/ desa (20)
A solution to Eq. (18) is sought in the form
0(x,5) = A($)S(x,5) + B($s)C(x,5), 1)
where

S(x,s) = sinh(v/sx)//5, C(x,5) = cosh(/sx).
Quantities A(s) and B(s) are defined through two boundary value problems (19). Finally, we get

0,9 = sq©)Go(x,8),  PO) = SIS, (22)
where
( ) A _ C(x,9)
( S) A () G@(x’s)_ SA](S)’
A1(s) = s8(s) + BiC(s),
- 8(s) = sinh(+/5)/+/5,  C(s) = cosh(/5). (23)
Applying an inverse Lapplace transformation, the following system of equations is obtained:
PO =Bi [ @G- Odt+y [ FOHIPOGA - Dk, @4
- | 0 o
)= o [mo / e - / FOp©) dé], ~ 25)

which yields non-dimensional pressure p(‘t) and veloaty Z(‘L’) The temperature is defined through
the following fonnula

8 =8 [ hr @Gt 9 +7 [ FOAIPOGotnT— 4L, 6)
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where

2B, 22)
e 27
VBB + 1) + 1] @)

1 o0
{Gp(2), Go(LD} =5~
m=1

and pu,, are the roots of the following characteristic equation:

Bi
gy, =—, m=12,.... (28)
Hm
Observe that u,, ~ nm, m — oo.
Notice that it is easy to formulate dependence between the heat flow and the contact pressure
velocity variation in the form

dp(r) _ 06(z,x)
dr ~  ox ’

x=1

(29)

which will be used further in the analysis of the contact characteristics.

In order to carry out a numerical analysis, the knowledge of function (27) is required. The
values of function (27) for t — 0 and oo are defined via application of the theorem on the limiting
values (cf. [25]):

{G,(7), Go(1,7)} =~ 1/Bi, 17— o0, (30)

G ~1, Go(l,1)=2v7//7, ©— 0. 31)

5. Steady-state solution analysis

A stationary solution to the problem reads:

1 1 . Vst
Pst=m, Bsz=1—_‘—v, v=F(vs,);—ti, (32)

where vy, is the solution of the non-linear equation
my

F (Vst) = —1 Nups—— / B

(33)
Graphical solution of Eq. (33) is presented in Fig. 3 for various parameters my and Bi. Recall that
for steel y = 1.87.

The right-hand side of Eq. (33) is represented by solid curves for different values of parameter
mg and Bi. Solid curve 1 is associated with parameter my = 0.14, Bi = 20, solid curve 2—myqy = 0.1,
Bi = 20, solid curve 3—my = 0.1, Bi = 5, solid curve 4—my = 0.14, Bi = 5. The dashed curve is
associated with function F(vy).

For different values of the parameters Eq. (33) can have a different number of solutions: for
mg = 0.14, Bi = 20 (first case) it has one solution v, (F'(v3)>0), for mg = 0.1, Bi = 20 (second
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Fig. 3. Graphical solution of Eq. (33).

case)—three solutions v}, v2, v3, (F/(v})>0, F'(v})<0, F'(v})>0), and for my =0.1, Bi=>5
(third case) one solution v., = 0 (with approximation (44) v\, ~ eymg/2F,, F'(vl) ~ 2F /). For
moy = 0.14, Bi = 5 (fourth case}—again one solution exists v2, (F'(v2)<0).

The case of constant friction presented in Fig. 3 by the dashed horizontal line F(vy) =f =
const was earlier considered in Ref. [21], where v, = Bi(mg/f — 1)/(moy).

Let us introduce a perturbation of the stationary solution (32) by means of the following-
formulas:

. Owing to the linearization of the right-hand sides of Eq. (14) and with boundary condition (15)
taken into account, the following linear problem is obtained:
B0 00y S
o2~ Bt , 33)

20 = e[~ F ) — F vy’ - | (36)
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[ﬁ)—d(;ci)— — Bif*(x, 1:)] . = —q*(7), 37
0*
[d_% + Bif*(x, 1:)] . = q"(7), (38)

where
q*(v) = Bilp(v) + y(vaps(B1 + B2)2" () + vt F(Vsr)p* (7)),

1
rO=;[ rCod b= f=Fw). (39)

st

Further, applying the Laplace transformation, a solution of problem (35)~(39) in the transform
domain is found. For example, the pressure perturbation reads:

_ S(S)Bi(ﬂlpstsl + S) w

X
= 4
P (S) A (S) T(S)’ ( O)
where
A(s) = (e1P5:B2 + 5)41(5) + Biv(e1py, 1 — 5)S(s) = 0 (41)
is the characteristic equation of the linearized problem. The roots sy
(Res;>Resy>--->Resy>---, m=1,2,3,...) of characteristic (41) lie either in the left-hand

side of the complex plane Res< 0 (stationary solution is stable) or in the right-hand side of the
complex plane Res>0 (stationary solution is unstable) of the complex variable s.
The characteristic function A(s), in the form of an infinite order polynomial, is

As) = imm, 42)

m=0
where

bo = e1p5C0, bm = €1P5Cm + dm—1, m= 1,2,...
co = Bi(By +VB)), dm=dV —Bivd?, ¢, =p,dV + Bivp,d?,

m = Tam 0 Ym T @mr 1)

Observe that in the analysis of the roots of characteristic (41), parameter vy represents a
solution of non-linear (33). Furthermore, note that in accordance with Eq. (32), 0<v< 1. Itis easy
to prove that d,,>0 (m=0,1,2,...) and b,,>0 if §,>0.

Assuming that the body moves with a constant velocity, vy = const, the so-called frictional
thermo-elastic instability occurs (Re s; >0) for v> 1. The latter is characterised by an exponential
increase of the contact characteristics, and the moving body is overheated.

In this case, the examination concerns the steel made parallelepiped plate (¢; = 14 x 1076°C™!,
AL =21W/@m°C™"), vy=03, a3 =59x%x10"%m?s™!, E; =19 x 10"°Pa) with L =0.01m,
To=5°C, z° =2° =0 and with a non-constant friction coefficient. The result is ¢, = 16.95s,
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ve =0.59 x 1073ms~!, P, =3.3 x 10’ Pa. The function F(2) = f(v,z) is defined through the
formula (cf. [20])
fmin + (Fo — f min) €xp(=b1|v,[) for |v,| <Vmin,
[—Fo; Fo) for v, =0,
J () =800V £, + (Fo = f in) €XD(—B1 [Vimin]) (43)

B2 b3 (IV,|—Vimin)”
+ 1+b2(1V¢ | =Vemin)

where Fy = 0.12, f,,, = 0.05, by = 140sm™!, b, = 10sm™!, b3 = 2sm™!, vy, = 0.035mc™!. The
function sgn(x) is approximated through formula (cf. [14])

for IVr| > Vmins

1 if x> g,
sen, =14 (22D Eif x <, (44)
g &0 80 80

-1 if x< ~ g,

where gy = 0.0001.

In the first case (for my = 0.14, Bi = 20), one solution v = 101.1, p3 =232, 93 =232,
(B =0.6x 1073, p, =04 x 1073, v = 0.57) is found. It is always stable (for instance, for & = 800
the roots of Eq. (41) 512 = —1.02 & 1.57i, whereas for ¢ = 75.45 the roots of Eq. (41) s; = —0.57
lie in the left-hand side of the complex variable s). In this case after a transitional process, the
body starts to move with constant velocity v3, = 101.1. The contact characteristics for & = 800
achieve their limiting values through the damped oscillation process with the expected ‘period’
T = 4, whereas for ¢; <75.45 the contact characteristics are overdamped.

In the second case (my = 0.1, Bi = 20), three solutions appear. The solution v, = 87.1,
p=0,=18, 60 =225 (8 =06 x 1073, B, = 0.3 x 1073, v = 0.45) is stable (for instance, for
&1 = 800 the roots of Eq. (41) ;2 = —0.93 £ 1.1 lie in the left-hand side of the complex plane s).
The solution v2 =35.26 (B; =02 x 107!, B, =—-0.4x 1072, v =10.05) can be unstable (for
instance for g = 800 the root of Eq. (41) s; =2.84). The solution described through
approximation (44) v =04x107* (B, =B, =24x10%, v=4x1077) corresponds to the
equilibrium state (roots of Eq. (41) 51 = —2.2, s = —20 lie in the left-hand side of the complex
plane). In the considered case, the contact characteristics for ¢ = 800 tend, depending on initial
conditions, to one of the two stable solutions.

In the third case (mp = 0.1, Bz = 5), there is only one solution. The approximation of the
solution given by Eq. (44) vL=04x10"*~0, pl =10, 8, =10, (B; =B, =24 x10%,
v = 1.5 x 107%) corresponds to the equilibrium state (for & = 800 roots of Eq. (41) sy = —1.7,

= —16.3 lie in the left-hand side of the complex plane). Notice that in this case, there always
occurs a braking process (the applied external force is smaller than the friction force).

In the fourth case (my = 0.14, Bi = 5), the only solution that exists is of the form: v = 27.8,
pL=0%5=245 (B, =02 x 1072, B, = —0.58 x 1072, v = 0.59). It is unstable if parameter g1 1s
larger than its critical value ( ¢ >&). One may use characteristic function (42) for m =3 to
estimate a stability zone of the stationary solution of Eq. (32). Recall that one of the conditions
for the cubic characteristic equation roots to lie on the right-hand side of the complex plane is
exhibited by the inequality b1b2 — byb3<0. In the discussed case it results in the following
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Fig. 4. Critical parameter g; vs. Bi.

instability occurrence condition:

6> F=(1—v)—B— VB —440)/(24), (45)

where 4 = ¢jc2 — coc3, B=¢1d1 + cadp — coda, C = dpd;. In Fig. 4 the dashed curve represents
dependence of function & on parameter Bi. The stability loss curve derived through the
characteristic Eq. (41) analysis is denoted by the solid line. Observe that for the considered
parameters, a good agreement in the unstable zone estimation through Egs. (41) and (42) for
m = 3 is achieved. Furthermore, the associated analytical formula is given. An increase of the heat.
taking up (increase of non-dimensional parameter Bi) causes an increase of critical parameter &
(stable solution zone is increased). Moreover, for any fixed material body and for its loading
parameters there is parameter Bi such that a stationary solution is always stable (in the considered
case Bi>8). ~

The period of oscillation vs. Bi is shown in Fig. 5a. An increase of Bi causes variation in the
period oscillation (first it is decreased, then increased, and then again decreased).

In Fig. 5b, the dependence of the solution to Eq. (33) on parameter Bi is shown. Note that a
physical sense of non-dimensional stationary velocity v, exists for &; <&.
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Fig. 5. Dimensionless period T vs. Bi (a) and dimensional velocity vy, vs. Bi.

6. Numerical analysis of the transient solution

Let us take the fourth case as an example. Here, for ¢ = 400 (g; <£) the roots of Eq. (41)
s12 = —0.12 & 1.06: lie in the left-hand side of the complex plane s, and a solution is exhibited
through ‘periodic’ ‘damped oscillation (expected period T = 2n/Ims; = 5.94). For the critical
value ¢ ~ & = 587, the roots 5,2 = £1.29i lie on the imaginary axis, and the expected period is
T = 4.87. For ¢ = 800, the roots 51 ; = 0.14 & 1.5/ lie in the right-hand side of the complex plane
s. A stationary solution is unstable, and a limiting stick-slip cycle appears with the expected period
T =4.18.

In order to confirm the given conclusions, a numerical analysis is carried out for the fourth
case for Bi =5 (now ¢ ~ & = 586.5), and the computational results are shown in Figs. 6 and 7
for a few values of parameter ¢ = 400; 586.5; 800. Fig. 6a shows the dependence of non-
dimensional body velocity z(r) on non-dimensional time 7 is shown. Curve 1 corresponds to the
case when & =800 (m=24x10°kgm=2), curve 2 illustrates the case & = 586.5 (m=
3.25 x 10°kgm™2), and curve 3 is for & =400 (m = 4.8 x 10'°kgm=2). In Fig. 6b, the time
history of non-dimensional friction force & F(2)p(r) occurring in the right-hand side of Eq. (14) is
shown.

The time evolution of both non-dimensional contact pressure p(r) and temperature 8(—1,7) =
0(1,7) is reported in Figs. 7a and b (curve 1: &; = 800; curve 2: ¢; = 586.5; curve 3: ¢ = 400).

As Figs. 6 and 7 show, the contact characteristics either have damped oscillatory shape (curves
3) approaching stationary states or they are periodic (curves 2) or stick-slip periodic (curves 1).
The performed numerical analysis confirms the theoretical prediction. It is found that: v, = 27.8,
pL= 9?, =2.45. In the case associated with curves 1, the period of stick-slip contact periodic
oscillations 7' = 2.7. In the critical case T = 4.1, for & = 400 (curve 3) the period of damped
oscillations 7' = 2.7.

In order to facilitate the analysis of the stick-slip contact characteristics (g; = 800), the
associated periodic orbits are shown in Fig. 8.
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Fig. 6. Time history of non-dimensional body’s velocity (a) and friction force (b) for various values of &;.
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Fig. 7. Time history of non-dimensional contact pressure (a) and temperature (b) for various values of ¢;.

Note that the period of oscillations T includes slip phase ¢y and stick phase ¢, (T = tg + ts).
The slip phase, consisting of acceleration (2> 0) and braking, begins at the time instant when the
friction force ¢ F(2)p(z) is smaller than the force g my applied to the body. Beginning from this
time instant, both the body velocity and the contact temperature increase, but p(zr) <0 (owing to
formula (29) the body is cooled). At the time instant corresponding to p(r) = 0, the heat stream
equals zero and the body starts to be heated. Since heat expansion increases, the contact pressure
increases as well. The kinetic friction coefficient F(Z) goes down, the friction force & F(2)p(z) also
decreases initially since the contact pressure increases slightly. Further pressure increase causes
friction increase. When the friction force achieves the value of the external force g;my, the body
velocity achieves its maximum and the braking begins (£<0) while the kinematic friction
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Fig. 8. T-periodic oscillations of non-dimensional contact characteristics (body’s displacement z(z), body’s velocity
(1), contact pressure p(t), contact temperature 6(t), and friction force & F(2)p(7)).

coefficient is decreased. Then, after some small delay, the contact pressure achieves its maximum,
and the body begins to cool. When z = 0, the slip phase is finished and the friction force achieves
its maximal value, which makes a stick phase begin and the contact temperature, contact pressure
and friction force decrease. The process stops when the frictional force achieves the value of the
applied external force. Then the stick-slip process is repeated.

7. Conclusions

It this work the results concerning a novel problem of the so called ‘““frog-slider’”” mechanical
system that exhibits frictional thermo-elastic contact of a moving body subject to non-constant
friction coefficients are presented and discussed. It is worth noticing that in the case of non-
constant friction coefficient, self-excited vibrations can appear in the system without an elastic
part (stiffness). This phenomenon is caused by the body heating during accelerating, the friction
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increase, and then the braking and cooling of the system. The characteristic changes of both
displacement (Fig. 6) and velocity of the analysed system are the reasons why the expression
“frog-slider” coined to name the system seems appropriate.
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