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The triple physical pendulum with barriers is used to model a piston — connecting rod —
crankshaft system of a mono-cylinder combustion engine. Among other results, a peculiar motion
of the piston — connecting rod — crankshaft model is reported, i.e. six sliding stages of the
piston along the cylinder per one engine cycle are illustrated. In spite of its simplicity, the
introduced model can serve as the first step in a more advanced modeling taking into account
various technological details. In particular, the proposed model can be considerably useful for
the investigations of impacts between the piston and the cylinder aiming at the reduction or

total elimination of this source of harmful noise.
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1. Introduction

As known, even a single harmonically or parametri-
cally excited pendulum may exhibit a rich spectrum
of nonlinear phenomena including various local and
global bifurcations, attractors and repellers, stable
and unstable manifolds, scenarios leading to chaos
and out of chaos, symmetry breaking and crisis
bifurcations, steady-state and transitional chaos,
oscillatory-rotational attractors, etc. (see [Bishop
& Clifford, 1996; Szemplinska-Stupnicka & Tyrkiel,
2002a, 2002b; Szempliriska-Stupnicka et al., 2000]).

On the other hand, many real processes, like
for instance, earth-quake caused vibrations of high
buildings can be modeled via coupled pendulums.
It is clear that a couple system of pendulums
may exhibit more complex nonlinear dynamics, and
hence attracts the attention of mathematicians,
physicists and engineers, who show a particular
interest in the examination or control of various
systems modeled by coupled pendulums. In addi-
tion, it may be expected that many theoretical

unsolved problems of nonlinear dynamics can be
explained using a model of rigid multibody coupled
pendulums.

Our research is focused mainly on the applica-

tion of triple pendulum dynamics to a real world

object. It turns out that although many technologi-
cal and design-oriented details have been neglected,
the inverted triple pendulum can be used to model a
real piston — connecting rod — crankshaft system
of a mono-cylinder combustion engine.

Modeling of multibody systems with activ-
ity state of constraints varying during dynamics
is addressed in references [Ballard, 2000; Pfeiffer,
1999; Wosle & Pfeiffer, 1999]. On the other hand,
the problem of rigid impacts in multibody sys-
tems is illustrated and discussed in the monograph
[Brogliato, 1999].

This paper is organized in the following man-
ner. In Sec. 2, the general mathematical model
of rigid multibody mechanical system with unilat-
eral frictionless constraints is presented. Section 3
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describes the generalized impact law used for
impact modeling. In Sec. 4, the part of the model
dealing with the sliding states is shown. The
numerical algorithm for calculation of the system
response is presented in Sec. 5. Section 6 contains
the description of the general model of the triple
physical pendulum with arbitrarily situated rigid
and frictionless barriers. In Sec. 7, the piston —
connecting rod — crankshaft system is modeled
as a special case of the triple physical pendulum
with barriers, and in Sec. 8 the numerical results
devoted to its study are presented. Section 9 sum-
marizes the research and presents the concluding
remarks.

2. The Model of Rigid Multibody
Mechanical System with Unilateral
Frictionless Constraints

The concept of modeling of the rigid multibody
mechanical system with unilateral constraints,
when the activity state of a particular constraint
may change during the system evolution, used in
the present study, follows [Ballard, 2000; Pfeiffer,
1999; Wosle & Pfeiffer, 1999).

Let us consider a Lagrange rigid multibody
mechanical system of n-degrees-of-freedom repre-
sented by the vector of generalized coordinates
q(t) = [qi(t),...,q.(t)]T and subjected to the m
unilateral constraints representing rigid frictionless
obstacles imposed on the system position. If none
of the unilateral constraints is active, the system
dynamics is governed by the following set of the
second-order differential equations:

M(q, )4(t) = f(q, 4, 1), (1)

where M(q, t) is the symmetric nxn inertia matrix,
f(q,q,t) is the n x 1 vector containing gyroscopic,
damping, potential and exciting forces, q(t) and
q(t) are the n x 1 vectors of generalized velocities
and accelerations, respectively, and ¢ is the indepen-
dent time variable.

The rigid unilateral constraints are defined by
the following set of algebraic inequalities:

h(q,t) > 0, (2)

where h(q,t) = [hi1(q,?),...,hn(q,t)] is the vec-
tor of m smooth scalar functions, and each of them
should have a direct physical sense of the normal
distance from the appropriate physical obstacle.

In order to describe the state of each poten-
tial constraint, the following index sets are

introduced:
I={1,2,...,m},
Ir={i e I;(h; =0Ah; <0)}, (3)

Is={ieI;(hy=0Ah; =0A\ >0)}.

The set I consists of m indexes of all potentially
active constraints. The elements of the set I; are
represented by mj; indexes of the unilateral con-
straints with vanishing normal distance and neg-
ative relative velocity in the normal direction (the
system is just before an impact with respect to these
constraints). In the set Ig there are mg indexes
of the constraints with vanishing normal distance
and vanishing relative velocity in the normal direc-
tion. The system is in the state of sliding on these
obstacles acting on the system via non-negative nor-
mal reactions represented by non-negative Lagrange
multipliers A; (i € Ig) that assure a continuous
contact between bodies and the active obstacles
(hiy = 0, i € Ig). The Lagrange multiplier \; rep-
resents a generalized normal force acting along the
generalized coordinate h;, where h; is a real physical
distance from the ith obstacle.

3. Generalized Impact Law

Since the investigated system is a Lagrangian one,
it can be represented by a point moving in its con-
figuration space q (see [Brogliato, 1999] for more
details). The unilateral constraints define domains
of this space, and the point representing the sys-
tem strikes the boundaries of these domains. At
the time instants ¢ = ¢, of these “generalized” col-
lisions, the system velocities undergo jumps, i.e.
the vector of generalized velocities just before an
impact q(t,) = q~ is transformed to the vector
aty) =q*

The presented model of impacts is the single
impact model, i.e. we assume that the point rep-
resenting configuration of the system strikes only
one of the smooth surfaces h;(q,t) = 0 (the case of
impact at the point on the curve of intersection of
two surfaces, or impact with one, but nonsmooth
surface is excluded). But we do not exclude the
possibility of multiple impacts in the sense of finite
number of single impacts, with not arbitrary, in gen-
eral, succession, due to the algorithm presented in
Sec. 5 and Fig. 1.

Now the method of calculating the post-impact
velocities for a system with many degrees-of-
freedom in the case of a single impact will be
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outlined briefly in accordance with the description
given in [Brogliato, 1999).

During an impact, the following shock dynam-
ics equation is valid:

M(q,t) (" —47) = pq, (4)

where pq is the generalized percussion vector for
coordinates q (the force impulse vector generated
by the impact).

For frictionless constraints, pq occurs along
Vqhi(q,t) (because the interaction force due to
the impact occurs along a Euclidean normal to the
surface h;(q,t) = 0, which is yielded by the vir-
tual work principle). Now, from (4) the following
n — 1 algebraic equations versus n unknowns can be
obtained:

tgi; M(a,0)(at —a7) =0,

In the above, tq;; are vectors tangent to the sur-
face hi(q,t) = 0, chosen to be mutually indepen-
dent, i.e. t:—’;i’jvqhi(q, t)=0(=1,...,mn—1) and
t2itqik =00, k=1,...,n—1).

The last lacking equation represents the exte-
nded Newton (restitution coefficient) rule applied
to the relative velocity in the normal direction to
the constraint

hf = —eih7, (6)

where.¢; is the restitution coefficient attached to the
ith obstacle.
From (6) we obtain

oh; .,

Oh; dh; ._ Ok
8qTq -

+a—t*‘ei<aqTq +ﬁ>' @

Owing to (5), it is seen that there is (in general) a
discontinuity in the tangential velocity due to the
inertia coupling. .

A change of the kinetic energy at impact is
defined by the formula

AT(ty) = = (a+)" M(q, t)a*

L@ ™M@na. @®

| =

From (8), using (5) and (7) and ‘on the account
of the assumption that the constraint is stationary

(Oh; /3t = 0), one arrives at

AT (tx)
-5 (-1
MG Vah g, 4
v (Vahi)? M(q,t)™* Vahs
(9)

Observe that for 0 < e; < 1, the kinetic energy
change due to impact is AT(ty) < 0, for e; = 1, it
is AT(tx) = 0, and for e; = 0, AT (tx) reaches its
lowest possible value.

To summarize, when the system achieves a dis-
continuity point at the time instant £ = {5 indicated
by hi(q(tx),tx) = 0, the vector of velocities is trans-
formed via the relation

a(t) = gi(alt), a(ty ), tx), (10)

where the vector function g;(q, q,t) is derived from
(5) and (7), and has the following form

(vqhi(qa t))T -
tl.

gi(q’ qa t) = Pt

|- M@t)

T
t;q,i,n—l

[ —ei(Vqhi(q,t)” ]
tqi q
tl.

q,i,n—1

( ) ah’l(q, t) )
D) "%

+ < 0 s | . (11)

4. Sliding States along Some Obstacles

Let us assume that the set Iy is empty (m; = 0) and
the set of indexes of continuously active constraints
has the following form:

Is = {i1,12,...,img}. (12)



In what follows, the mg x 1 vector corresponding to
notation (12) is defined as

hi1(q’ t)

hS(q7 t) = hl2(q’ t) ’ (13)

hims(q7 t)

containing all functions h;(q, t) that represent con-
tinuously active obstacles.
The vector of Lagrange multipliers

Aip
A.

Ag=¢ 7 (14)
Aimg

is attached to vector (13), where A;, > 0 for k =

1,2,...,mg.

In order to describe the system dynamics, nor-
mal reactions generated by active constraints act-
ing on the system are introduced to Eq. (1) via
Lagrange multipliers

i dhg\ T

The continuous contact between the active con-
straint surfaces and the bodies of the system implies
the following condition:

. Ohg,  .p 0°hg . O’hg .. 0%hg
Bs = 5qr 1t Y qpaT A 2o10qT It 02
=0, (16)

Equations (15) and (16) create the following set of
differential-algebraic equations governing the sys-
tem [Strzatko & Grabski, 1997]

[IXI ABTHA(IS}:{;} (17)

where
ohg
t (18)
18
8%hg 8%hg 8%hg
— .T . 2 . .
T 5qoa” 1 “510qT T o
Introducing the vector
_[Un U] [M AT]! (19)
Uz Ug A 0 ’
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the following set of differential-algebraic equations
is obtained

q=Upnf+Upad,

(20)
As = Uz f +Usd.

5. Computational Model

A numerical scheme for calculation of the system
response is presented in Fig. 1. The scheme applies
the Runge-Kutta method of fourth order with a
nominal time step hrx4 in time intervals (¢;,;41),
where the set I; is empty (there is no impact)
and the set Is does not change. The discontinu-
ity points t; and t;4; are detected with a finite
precision by halving the integration step. At those
points, appropriate changes of the set Is members
are introduced as well as possible transformations
of the velocity vector generated by the impact.
The symbols ¢, €; and €, denote the obstacle
detection accuracy, the detection accuracy of the
zero of the normal component of the relative veloc-
ity, and the detection accuracy of the zero of the
normal force with respect to the barrier surface,
respectively.

Notice, that the multiple impacts [Ballard,
2000; Brogliato, 1999] are now possible, a series of
a finite number of single impacts, with succession
determined by the algorithm presented in Fig. 1.
In most cases this succession is strictly determined.
This is the case when the initial conditions before
each single impact are such that the system “tries”
to penetrate the space not allowed by only one alge-
braic condition. But sometimes the situation is pos-
sible, when the system “tries” to violate more than
one unilateral constraint h; > 0 simultaneously. In
such situations our algorithm recognizes two cases:
the first one, when it is possible to assume the first
single impact with one constraint, chosen arbitrar-
ily from considered ones (h; = 0, i € Iyy), and
the second case, when it is not possible (h; = 0,
1 € Ijg, the case not encountered in our simula-
tion examples). The example of the first case is
the situation, when the trajectory, initially without
contact with constraints 1 and 2, pierces at some
time instance two surfaces 1 and 2 simultaneously,
i.e. it crosses the curve of intersection of these two
surfaces, and “tries” to penetrate, after that time
instance, the space not allowed by the two algebraic
conditions: But such a case is not generic and the
probability of its appearance is infinitely small. On
the other hand, in our numerical simulations, the
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On the position of the system, the set of arbi-
trarily situated rigid and frictionless barriers can be
imposed. The system is governed by a nondimen-
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form:

M(%) %+ N(@) %° + C 9+ p(¥h) = £.(, 9, 1),

sional set of ordinary differential equations with- (21a)
out obstacles plus a set of algebraic inequalities '
(unilateral constraints) representing barriers with hi($) 20, i=1,...,m (21b)
the corresponding restitution coefficients (e;) of the
| where
Y1 W1 )2 o
Y=y, =Ry, P =LY3%, P={doy, (222)
V3 V3 ¥3 V3
[ 1 vigcos(P1 — 9P2) V13 cos(Pr — ¢3)
M(%) = | v1zcos(th — 1) B2 vag cos(vp2 — ¥3) |,
| 13 co8(th1 —p3) vezcos(2 —43) Bs
[ 0 vigsin(¢r — ¢2)  vssin(yy — ¢3)
N(y) = | —vizsin(¢1 — 1) 0 vassin(ye — ¢3) |, (22b)
| —vizsin(¢1 —1h3)  —vessin(ve — ¥3) 0
(c14+c —co 0 sin fea1 (0,9, 1)
C=| —c2 oc+c3 —c3|, p(¥)=q pesingy o, flh,9,t) =< feo(¥,%,1)
| 0 -3 c3 3 sin s fe3(,9, 1)

The following relations hold between the nondimen-
sional quantities and the physical ones

t =7,
. | ; I
bi=oi'Y;, Pi=or%;, §i=1,2,3 (23a)
1
o1 = (M1BTY)?, (23b)
B B
m=§,&=§
_ Npp _ N3 _ Ny
Vg = B’ Vg = B, B~ (23c)
M, M
H2 M1 y 3 = M1 3
¢ feg . '
— A = s = 1, 2, 3, 23d
9= B T %59

I d . . . .
where symbols (...) and (...) denote derivatives
with respect to real time ¢ and nondimensional

|
time 7, respectively, and where the following nota-

tion is used:

Bi=J,+ eglml + 12 (mg + m3),
By =J,0+ e§2m2 + l§m3,
By =J,;3+ e§3m3,
Ni2 = maeyaly +mslyls,
Ni3 = mgeysh, (24)
N3 = mgeysla,
My = magey + (mg +mg3) gly,
Ms = mageys + magls,
M3 = mggeys.
In the above, J,; (i = 1,2,3) denote appropriate
principal central moments of inertia, m; (¢ = 1,2, 3)

denote masses of respective links and g is the grav-
itational acceleration.
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The functions h; (1) represent distances of the
system from an appropriate obstacle. More details
of the triple physical pendulum model can be found
in [Awrejecewicz et al., 2001, 2002, 2003; Kudra,
2002].

7. Piston — Connecting Rod —
Crankshaft System

The general model of the triple physical pendulum
with barriers, introduced in Sec. 2, can be used to
build a model of the piston — connecting rod —
crankshaft system of the mono-cylinder combustion
engine shown in Fig. 3. The first link represents the
crankshaft (1), the second one is the connecting rod
(2) and the third one is the piston (3). The links are
connected by rotational joints with viscous damp-
ing. The cylinder barrel imposes restrictions on the
position of the piston that moves in the cylinder
with backlash. It is assumed that at the contact of
the surfaces between the piston and the cylinder
a tangent force does not appear. Observe that the
model of the piston — connecting rod — crankshaft
system can be treated as an inverted pendulum,
so it is natural to introduce the following vector
of angles describing the system position
&= lp1, 02,037
= +mye+mys+a]’, (25

where angles ; (i = 1,2,3) are the generalized co-
ordinates used in Sec. 2 for the description of the
general triple physical penduluin.

The restriction on the position of the piston
imposed by the cylinder barrel can be described
using four conditions defined by four points K
(i=1,2,3,4):

T, = —hsing) —lysingy — hsingg
— = COS Py = ——,
U= Ty
T, = —hsing) — lpsingy — hsingg
d ) D
— 5('05(;:3 + ssingy = —5
(26)
Tr, = —lsing) —losings — hsingy
d
- 500-‘3 w3 < o
T, = —hsing| —lysingy — hsingy

d ) D
+ 5005303 + ssingy < ER

Fig. 3. Piston — connecting rod — crankshaft system.

where Tx,, Tx,, Tk, and Tg, are co-ordinates of
four corners of the piston in the co-ordinate system
T—7. Notice that the given description is valid only
when the piston does not undergo full rotation (i.c.
the backlash is sufficiently small).



The above inequalities are divided by !; and
transformed to the form

D
Tk, + 5 Tk, + 5
(@)= ——220, ha¢)= ——2 20,
D
—Tkyt+ ) —TK, + 5
hs(¢) = 20, hy(o) = >0

(27)

yielding the final form of the nondimensional
set of inequalities (representing rigid unilateral
constraints):

A ) .
hi(¢) = 5 T Singr— A2 sin 2

)
—7nsingz — 5 oS3 >0,
A .
he(@) = 5 —singr - Az sin o

1)
+ (o0 — n)singz — 2 Cos 3 >0,
(28)

A .
hs(@) = 2 + sin 1 + Agsin g

é
+nsin p3 — Ecos w3 =0,

A
ha(@) = Bl + sinp; + Agsingy

1) .
— (o —m)sings — S cos 3 20,

where the following nondimensional parameters are
introduced '
h D
s 52 AD
I l1
(29)

The same restitution coefficient e is related to each
of the unilateral constraints.

It is assumed that a gas pressure force can be
reduced to the force acting along a line parallel to
the axis of the cylinder and containing the piston
pin axis O3. Moreover, this force is assumed to be a
function of the angular position of the crankshaft ¢4

— wd?

F(p1) = pmax —P(p1); (30)

where pax is the maximal pressure over the piston,
and p(yp;) is the nondimensional pressure distribu-
tion such that its maximal value is one. The pres-
sure distribution function with period 27N (where
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N is an integer number) is developed into a Fourier
series with a finite number of terms K

K K
— , .91 i f:P1
p(e1) = ap + El awos(zF) + 'El b; s1n<zN).
1= 1=
(31)

The crankshaft is externally driven by moment M
originating from an external power receiver (brake)
and acting contrary to the positive sense of the
angle ;1. It is also assumed that the rotational
speed of the crankshaft is constant. The system
defined in such a way is in fact an autonomous and
self-excited system.

The external forces acting on the system can be
reduced to the following generalized force vector:

F (1) lising: — Mo

F (1) lasingg ;
0

fe (@) = (32)

where ]Te,l is the moment of force acting on the
crankshaft system, fe o is the moment acting on the
connecting rod and 76,3 is equal to zero (the latter
observation is yielded assuming that the gas pres-
sure force acts along the line including point O3).

The nondimensional equations of motion, when
none of the obstacles is active, are as follows:

M(¢)$+N(¢)¢" + Ch+p(e) = f(¢), (33)
where
45 = 12’11;,:4,, ‘l.bz = ¢2|¢=¢, ¢ = "Z’|¢=¢,
M(¢) = M("/’)|¢:¢a N(¢) = N(¢)|¢=¢» (34)

P(®) = —P(¥)ly—g

In the above, the nondimensional generalized force
vector takes the following explicit form:

Fop(p1)sing1 — Mo
A2 Fop (1) sin g,
0

fe()

fo(¢) = M T , (35)

where the following nondimensional parameters are

introduced:

"y T
4 M’ My’

Predicting large rotational speeds of the crankshaft,

it is reasonable to introduce a new nondimensional
time

Fy = prax 0 (36)

t= al, (37)
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where e@; is the average nondimensional angular
velocity (measured in the nondimensional time ¢)
of the crankshaft per period (corresponding to the
period 2N of the pressure function p (¢1)) of the
periodic steady state motion of the system with-
out backlash between the piston and the cylinder
(d = D). The new nondimensional time is scaled in
such a way that the corresponding nondimensional
angular velocity of the shaft is approximately equal
to one, which is more convenient for the simulations
and analysis.

In this special case (d = D) the analyzed sys-
tem reduces to a one-degree-of-freedom system, and
the generalized co-ordinates vector has independent
components

#1

o2 (1)
0

¢ (38)

The geometric and kinematic relations between the
co-ordinates of the given vector, and between their
derivatives follow

Ld=—/T(C$)d¢T=—/02ﬂN

Using relations (39) and replacing the angular
velocity ¢, by the average velocity e, relation (41)
can be expressed as follows:

c1+ ¢
0

2N

dip1

Lg= —(01 + 02)6!1

0
cos¢1

1 2N
— 225 Czal/ die1
2 0 \/1—/\2_2 sin?

2N 2
_ cos? g1
—/\22 (02 +03)a1/
0

1— 52 sin%¢;
(42)

After integration, the following expression obtained
for the damping forces work as a function of the
average angular velocity:

Li=—-27N((c1 + &)
+ Nlea+e3)(1—y/1-252)) e, (43)

The nonrestoring external forces can be cast in the
form

sin(gz) = —/\2_1 sin(eg1),

cos(ip2) = /1 — A5 % siney,

for A >1 and 9926(—7r W),

22
Opy I Cospr It COs 1
I = e e
1 P2 1—A5“sin“¢
. Op2 . -1 COs @1 .
P2 = 7 P1 = —A 21, (39)
VI e v P P
ez _ cos g1
dpg = =dipy = =231 ———de1.
dep1 1 — Ay “sin“¢

The average angular velocity is defined by the
formula

Lo+ L. =0, (40)

where L; and L. denote correspondingly the vis-
cous damping forces work and the external forces
work during one period of the steady state motion
of the system without backlash between the piston
and the cylinder.

The viscous damping forces work can be writ-
ten as

. T
#1 dp1
0 e 7
02—4; c3 —003 gjﬁ 5;9% 1 (41)
3 3 0 0
|
L= [ ) 9"
T
: dp1
orn | FOD(P1) siner — My B
= / A2 Fy p(s1) sinegs 22 oy
0 Be1
0
0
(44)
From the given expression, and using (39) one gets
L.=Lp+ Ly, (45)
where
2N
Lr=F /0 plp1) singy
R —
A2y/1 — A\ ?sin®e;
LM = —27TNMO (46)

represent the work of the nondimensional gas pres-
sure forces and the work of the nondimensional
external moment loading the shaft, respectively.
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Condition (40) and relations (43), (45) and (46) yield the following form of the average angular velocity

of the shaft

6¥1=F0

Let (...) denote the derivative with respect to
time # whereas relations between derivatives
with respect to nondimensional time ¢, real time
7 and new nondimensional time ¢ have the
form

d(..) _d(..)de(t) (...

= =a;

2N
) cos
/ plp1)singr | 1+ ?21 — dp1 — 2rNMy
0 A2¢/1 — A, “sin” ¢ (47)
20N ((c1 + c2) + A7 (c2 + es)(1 —y/1 = A3?))
r
and
bymendy B-alh i-l23 (9

In order to arrive at a more convenient setting of
the system parameters, the following relation suit-
able for the mechanical efficiency of the engine esti-
mation is introduced:

dt dt dt d¢ ' -
(48) Y (50)
d(...) _ d(...) d#(t) dt(T) _ alald(...) Lp ;
dr d¢ dt  dr dt and on taking (46) into account, the following
expression for the moment loading the engine is

obtained
2N
. cos

UmFo/ p(ep1) sinegy <1+ il — )dtﬁl

M, = 0 A2y 1 — AJ“sin“¢; - (51)

2N

Note that now the damping coeflicients can be determined owing to the assumed rotational speed of the
engine. Equations (40), (43), (45), (46) and (50) yield :

cos 1

dey
Agy/1 — /\2_2 sin2qsl)

2N
Fo (1= 1m) /0 p 1) singr [ 1+

Cc1 = y (52)
27TN((1 + 021) + /\2—1(021 + 031)(1 —y/1 - /\2_2))61
where — .
c c3 s @1
c1 = —, C31 = —, 53 .

2 3 c1 (53) p(¢) = —a 2! posings % (56)

and 43 Sin 3
—1 mn
a1 =0y oo (54) Fop(p1)sinpr — Mo

In the above, n [rot./min.] represents the real aver- £(¢) =12y X Fop(pi)sines ;
age rotational speed of the crankshaft. 0

Finally, after introducing the nondimensional
time # and when none of the obstacles is active,
the equations of motion of the piston — connecting
rod — crankshaft system are as follows:

M(¢)é +N(d)p +E€¢ +p (@) =E£u(0), (55)

where

1 + 21 —C21 0
C=ajle;| —1 caten —ca |,
0 —c31 31

and My, c1, a1 are determined from (51), (52), (54),
respectively.

Observe that the proposed dynamical model of
the piston — connecting rod — crankshaft system
can be treated as a simplified model since some
very impo‘ig\tant technological details are neglected.
The most important simplifications are as follows:
(i) tangent forces of interaction between the sur-
faces of the/a' piston and the cylinder are neglected;
(ii) interaction of the piston-cylinder introduced
by the piston rings (by means of the friction forces
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in the ring grooves in the direction perpendicular
to the cylinder surface) is neglected; (iii) a simpli-
fied friction model in every joint of the system (i.e.
linear damping) is assumed.

In addition, the modeling of the impact between
the piston and the cylinder, where an oil layer
exists, requires an approach different from the gen-
eralized restitution coefficient rule. In other words,
a detailed modeling of the piston — connecting
rod — crankshaft system with all essential techno-
logical details exceeds the scope of this work. How-
ever, we believe that the general model of the triple
physical pendulum presented in Sec. 2 and inves-
tigated in some earlier works [Awrejcewicz et al.,
2001, 2002, 2003; Kudra, 2002] can serve as a good
starting point for a more advanced and closer to
reality dynamical model of the piston — connecting
rod — crankshaft system, taking into account the
lateral motion and impacts between the piston and
the cylinder barrel. It should also be noticed that
the presented model can govern steady state solu-
tions of the system, and that the simulated transient
motion does not correspond to the real piston —
connecting rod — crankshaft system.

The dynamics of the piston — connecting
rod — crankshaft system has been rigorously stud-
ied in the Habilitation Thesis [Sygniewicz, 1991].
In that monograph the following basic piston posi-
tions are assumed: (i) four piston positions in the
cylinder barrel: two skew positions (with the con-
tact between one corner of the piston and one side
of the cylinder and between the opposite corner
and the second side of the cylinder barrel), and two
positions of the piston adjoining to one of the two
sides of the cylinder surface; (ii) four displacements
(turns) of the piston with one of the four corners
being in contact with the cylinder.

In addition, in each of the four piston posi-
tions three equilibrium states of dynamic forces are
distinguished, whereas in each of the four piston
displacements two such states are distinguished.
Therefore, the piston can be in one of the twenty
equilibrium states of the dynamic forces. The pis-
ton movement from one side of the cylinder to the
opposite side has been assumed to consist of two
piston turns and one skew piston peosition. A direct
piston movement with loss of contact with cylinder
has not been analyzed.

Assuming the constant rotational speed of the
crankshaft, the schedule of the forces acting on
the piston and the connecting rod has been made,
including tangent forces of interaction between

the cylinder and the piston surfaces, forces of
interaction between the piston and the cylinder via
the piston rings, and assuming more real friction
model in the bearings. In that way, the system of
six equations of equilibrium of the dynamic forces
has been obtained for the piston with the connect-
ing rod system.

The obtained equations can be solved for one of
the possible piston states for each crankshaft posi-
tion. The obtained values of both normal and fric-
tion forces verify the admissibility of the assumed
piston state. If the piston state is not admissible,
the next piston state is assumed and the calcula-
tions are repeated until the admissible piston state
is found. In that way, by varying the crankshaft
position with a small angle step, for each crankshaft
position one admissible piston state can be found.

Summarizing, although the model presented
in [Sygniewicz, 1991| satisfies the assumed role, it
does not take into account the full piston dynamics
including a lateral motion of the piston in the cylin-
der barrel. In contrast, the full dynamical model of
the piston — connecting rod — crankshaft system
presented in this work, although simplified, governs
the full dynamics of the piston analysis including
impacts between the piston and the cylinder.

8. Numerical Examples

The nondimensional pressure distribution function
p(p1) used in this section and shown in Fig. 4
applies the data included in [Sygniewicz, 1991],
and concerns the real pressure function obtained
experimentally from the engine 1HC102 (stationary,
mono-cylinder, high-pressure engine of the power of
18 KM). The period of the function is 47 (N = 2 for
the four-stroke engine), maximal pressure ppa.x =
8 MPa for the rotational crankshaft speed n = 1200
[rot./min.] and the full engine loading.

@)

Fig. 4. Gas pressure function used for calculations.



The function p(p;) is developed into the
Fourier series with K = 25 terms. The remaining
parameters are as follows: m; = 10kg, my = 1kg,
m3 = 0.4kg, J,1 = 1kgm?, J,» = 0.0075kgm?,
J.3 = 0.001kgm?, I; = 0.04m, [ = 0.15m,
ey1 = 0m, ey = 0.12m, ey3 = 0.0l m, d = 0.08 m,
s = 0.08m, h = 0.04m, 5, = 0.85, co1 = 0.2,
c31 =0.1, g = 9.81 ms~2. The following real param-
eters are found owing to the introduced values:
My = 24.7Nm and &; = 0.0288Nm~!s. The cal-
culations are performed for different values of the
restitution coefficient and the external diameter D.

The differential equations are integrated with
the time step hgrixs = 27/400, and the obstacle
detection accuracy is €5 = 10712, the detection
accuracy of the zero of the normal component of
the relative velocity is g;, = 108 and the detec-
tion accuracy of the zero of the normal force to the
barrier surface is €y = 10712 (see Fig. 1).

The initial conditions at the time instant # =0
are the same for all examples: 19 = @20 = @30 = 0,
8210——— 1, Q%QO = &3(): 0. In Figs. 5-10 the steady
state solution is shown within the time interval
€ (5000, 5500).

In order to construct some diagrams, the fol-
lowing nondimensional co-ordinates describing the
position of the piston pin axis are used:

Zo3 . .
zo3 = T = —sinp1 — A2 sin vy,
Yo3
Yoz = o cos 1 + Ag COS 2.
The response of the system for the restitution
coefficient ¢ = 0 and the cylinder diameter D =
0.08008 m (the backlash of the piston in the barrel
is 0.08 mm) is shown in Fig. 5. It is seen from the
figures that the piston moves six times from one
side of the cylinder to the other side during one
cycle of the engine work, and most of the time the
piston adjoins to one or the other side of the cylin-
der surface. This result confirms the well-known
fact and the results presented in [Sygniewicz, 1991].
However, the piston loses contact with the cylinder
while moving from one side of it to the other with a
small rotation angle. This phenomenon differs from
the results presented in [Sygniewicz, 1991] where
it was assumed that the piston did not lose the
contact with the cylinder, i.e. the piston after los-
ing contact with the cylinder barrel at some edge,
suddenly rotates until it touches the barrel on its
opposite side (the rotation phase of the piston is
not analyzed). But that approach does not take into

(57)
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account real dynamics of the piston, which is ana-
lyzed here, where the rotation phase takes a finite
time interval, and impacts appear additionally. The
crankshaft angular positions at the beginnings and
ends of the phases of the piston adjoining and slid-
ing along the cylinder (see the example shown in
Fig. 5) differ also from the results presented in
[Sygniewicz, 1991] up to 35°. The exhibited differ-
ences follow straightforwardly from the neglect of
certain essential technological details in our study,
as mentioned in the previous section. The most
important details neglected, having most signifi-
cant influence on the mentioned angles, are tangent
forces of interaction between the surfaces of the pis-
ton and the cylinder and the interaction forces of
the piston-cylinder introduced by the piston rings
(by means of the friction forces in the ring grooves in
the direction perpendicular to the cylinder surface).

In Fig. 6, the results for the larger restitution
coefficient e = 0.5 are shown. It is seen that in gen-
eral the states of the piston adjoining to the cylinder
surface are the same as previously. Only the begin-
ning of each of them is lightly delayed since the pis-
ton bounces against the cylinder a few times before
the sliding occurs. Figure 7 depicts successive pis-
ton positions yielded by this solution. The results
for the restitution coefficient e = 0.9 (Fig. 8), for the
five times larger backlash between the cylinder and
the piston (D = 0.08040 m), and for the restitution
coefficient e = 0.5 (Fig. 9) and e = 0.9 (Fig. 10)
are also reported. It is worth noticing that the sys-
tem is at least inclined to reach the same states of
the piston adjoining and sliding along the cylinder,
and lasting in the same crankshaft positions as pre-
viously. Since multiple impacts between the piston
and the cylinder occur, it happens that before the
piston gains the motion stabilization at one cylin-
der side, it rapidly leaves the contact and transits
into the other side of the cylinder.

It should be also noticed, that results shown in
Figs. 6-10 are closer to reality since the restitution
coeflicient is nonzero and few impacts appear before
each sliding state, but the solution shown in Fig. 5
exhibits more clearly the mentioned six stages of
the piston sliding along cylinder, in particular, the
ends and beginnings of each state are more distinct
and easier to compare with the results in the work
[Sygniewicz, 1991]. Here arises also a problem, not
solved here, of proper choice of the restitution coeffi-
cient in a model, which simplifies real system, where
the oil film exists between the piston and the cylin-
der surface.
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Fig. 7. Successive positions of the piston in cylindrical barrel for e = 0.5 and D = 0.8008 m.
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9. Concluding Remarks

The presented solutions exhibited by the piston —
connecting rod — crankshaft system modeled as a
special case of the triple physical pendulum with
impacts are generally similar to those described and
illustrated in the monograph [Sygniewicz, 1991],
although certain differences cannot be overlooked.
In particular, six piston movements from one side
of the cylinder to its opposite side during one cycle
of the engine have been detected. Lasting states of
the piston adjoining and sliding along one or the
other side of the cylinder surface have mainly been
observed. Some differences discussed in the previ-
ous section are due to the neglect of some essential
technological details in this model. The presented
model can be treated as the first step to describe
the real piston-connecting rod-crankshaft system,
and after taking into account certain technological
details, a much better convergence with the real sys-
tem behavior can be expected. Moreover, the pro-
posed model describes the full dynamics of a piston
motion in a cylinder and hence it can be very use-
ful for the noise analysis generated by the impacts
between the piston and the cylinder barrel.
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