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This paper addresses two main paths of investigations. First, a new numerical method to trace
regular and chaotic domains of any nonlinear system governed by ordinary differential equa-
tions is proposed. Second, the introduced approach is first testified using the well-known chaotic
behavior of a Duffing oscillator and Lorenz system, and is then applied to analysis of discon-
tinuous two-degree-of-freedom self-excited system with friction. Stick-slip and slip-slip chaos is

reported, among others.
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1. Introduction

Tracing the research devoted to investigation of
chaotic dynamics one may observe that- although
computations of the Lyapunov exponents are rig-
orously supported by theory for both smooth
[Oseledec, 1968; Wolf et al., 1985] and nonsmooth
[Oden & Martins, 1985; Kunze, 2000; Monteiro
Marques, 1994; Broglaito, 1999] dynamical systems,
many “technical problems” still remain regarding
their estimation.

Among others, long time computation is
required to trace their limits, and it is in gen-
eral very difficult to distinguish between slightly
exhibited chaotic and quasi-periodic orbits. The
mentioned drawbacks increase during analysis of
nonsmooth systems. The latter have been observed
during analysis of seven-dimensional strongly non-
linear system governing dynamics of the triple pen-
dulum [Awrejcewicz et al., 2002] with impacts,
and a special modified approach (see [Awrejcewicz
& Olejnik, 2003]) has been proposed to omit the
occurred difficulties.
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Therefore, our main goal is to propose an alter-
native approach, for quantifying both regular and
chaotic motions, and then to apply it to the analy-
sis of both continuous (Duffing oscillator and Lorenz
system) and discontinuous (a mechanical system
with friction) systems.

2. Analysis of the Wandering
Trajectories

A chaotic behavior of nonlinear deterministic sys-
tems supposes a wandering of trajectories of motion
around the various equilibrium states. They are
characterized by unpredictability and sensitive
dependence on the initial conditions. By analyzing
trajectories of motion of these systems, it is possi-
ble to find the chaotic vibrations regions in control
parameters space.

Consider a dynamical system, expressed as the
following set of ordinary differential equations

X‘—‘f(t,X), (1)
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where x € R" is the state vector, f(t,x) is defined
in R x R™, and describes the time derivative of the
state vector. It is supposed, that f(¢,x) is smooth
enough to guarantee existence and uniqueness of
a solution of the set (1). The right-hand side can
be discontinuous while the solution of the set of
differential equations (1) remains continuous. For
instance, in the cases of discontinuous vector fields
of “transversal intersection” and “attracting slid-
ing mode” types a solution to set (1) exists and
is unique. The continuous dependence property on
the initial conditions x(© = x(tg) of a solution of
set (1) will be used: For every initial condition x(©,
%© e R, for every number T > 0, no matter
how large, and for every preassigned arbitrary small
€ > 0 it is possible to indicate a positive number
§ > 0 such that if the distance p between x(© and
%0, p(x©,%0) < §, and |t| < T, the following
inequality is satisfied

p(x(t), x(t)) <e.

That is if the initial points are chosen close
enough, than during the preassigned arbitrary large
time interval =T < t < T the distance between
simultaneous positions of moving points will be less,
given positive number ¢.

A metric p on R™ can be determined in vari-
ous ways, for example p1(x,X) = /> 1 (zi — %:)?,
pa(x,%) = Y i@ — & or p3(x,X) = maxi<i<n |@;
— Z;|, where x = (z1,z9,...,2,) € R, X = (&1,
.'f:g,...,.’f:n)eRn. .

Being interested in tracing chaotic and regular
dynamics, we shall suppose that with the increase
of time all trajectories with remain in the closed
bounded domain of a phase space, i.e.

Ci € R:max|z;(t)| < G (i=1,2,...,n).

To analyze trajectories of the set (1), we intro-
duce the characteristic vibration amplitudes A; of

components of the motion z;(t) ({ =1,2,...,n):
. ,
== (t) — min z;(t)] (=1,2,...,n).
Ai = 5| max zi(t) - min z;(t)] (i=12...,n)

Here [t1,T] C [to,T) and [to,T] is the time
interval, in which the trajectory is considered. The
interval [tg,?;] is the time interval, in which all
transient processes are damped. The characteristic
vibration amplitudes A; can be calculated simulta-
neously to the integration of the trajectory.

For the sake of our investigations it seems the

most convenient to use the embedding theorem and

to consider an n-dimensional parallelepiped instead
of a hyper-sphere with the center at point x. Recall
the embedding theorem:

If Sc(x) = {x € R": p(x,%X) < ¢} is the hyper-
sphere with center at the point x and with radius
eand P, ey cn(X) = {KER": |2; — T3] <&} is
the n-dimensional parallelepiped then for any ¢ > 0
there is parallelepiped F:, ¢, c.(X) such that
P es....en(X) C Se(x). And conversely, for any par-
allelepiped P, ., . .,(x) it is possible to indicate
€ > 0 such that S.(x) C P, ;... cn(X).

Let wus choose in the parallelepiped
Ps, 5s....60 (x(o)) two neighboring initial points x(®)
and %x© such that |x§0) — .%go) | < d;, where d; is
small in comparison with 4; (i = 1,2,...,n). In
the case of regular motion it is expected that the
g; used in inequality |zi(t) —Z;(t)] < & is also
small in comparison with A4;, for 1 = 1,2,...,n.
The wandering orbits attempt to fill up some
bounded domain of the phase space. At instant
to the neighboring trajectories diverge exponen-
tially. Hence, for some instant ¢; the absolute values
of differences |z;(t) — Z;(t)| can take any values
in closed interval [0, 24;]. If the differences
|zi(t) — Z;i(t)| are equal to zero for some instants
{t;}, (&} € [t1,T)), then the trajectories x(t) and
X(t) either are intersecting or have points of con-
tact at these instants. Obviously, 2A; are the max-
imal values for these differences, and for some time
instants this value is permissible. Let us introduce
an auxiliary parameter a,0 < o < 1 and let a4;
be referred to as divergence measures of observable
trajectories in the directions of generalized coordi-
nates z; (¢ = 1,2,...,n). By analyzing Eq. (1) and
its equilibrium states it is easy to choose parameter
«a,0 < a < 1, such that if the following statement
is satisfied,

"€ [t, T]: |zi(t") — ()] > a4,
(i=1,2,...,n). (2

It follows that there is a time interval or a set of
time intervals, for which the affixes of the trajec-
tories x(t) and Xx(¢), closed at the initial instant,
move around various equilibrium states or these
trajectories are sensitive to changing of the initial
conditions. Thus, these trajectories are the wander-
ing ones. Indeed, as it has already been mentioned,
all trajectories are in the closed bounded domain
in R™. With the aid of parameter « the divergence
measures of the trajectories awA; have been chosen,
which is inadmissible for the case of “regularity” of
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the motion. Note that this choice is nonunique and
the parameter « can take various values in inter-
val (0,1). It is clear, however, that if « is close to
0 and |z;(t) — Z;(t)| < aA; when t € [to,T], then
the trajectories do not diverge and the trajecto-
ries are regular. There are values of the parame-
ter «, which a priori correspond to inadmissible
divergence measures aA; (i = 1,2,...,n) of the
trajectories in the sense of “regularity”. For exam-
ple, a € {1/3,1/2,2/3,3/4} or other choices are
possible. If the representative points of the observ-
able trajectories move chaotically, then for another
choice « from the set of a priori “appropriate” «,
the divergence of the trajectories will be recorded
at another time instant t*. As numerical experi-
ments show, the obtained domains of chaotic behav-
ior with various a priori “appropriate” values of «
are practically congruent. Therefore, in this work
figures for different values of « are not presented.

A similar nonunique choice of parameters
occurs when applying other criteria for the chaotic
oscillations. For instance, consider the procedure for
calculating the Lyapunov exponents d(t) = do2*t.
Here A is the Lyapunov exponent, dy the initial dis-
tance measure between the starting points and d(t)
the distance between trajectories in instant ¢. The
base 2 is chosen for simplicity. In all other respects,
the parameter o > 1 in the relation d(t) = doa™
is arbitrary. That is, the parameter « can take dif-
ferent values, for example, a € {2,3,4,5} or other
choices are possible. In general, the specificity of
numerical approaches requires that all parameters
have to be fixed.

Tt can be commented that this paper’s approach
and well-known Wolf’s algorithm of determining the
Lyapunov exponents are both realized by computer
simulation. According to Wolf’s algorithm, the cal-
culation of the Lyapunov exponent A as the mea-
sure of the trajectory divergence begins with the
choosing of a basic trajectory x*(t,x(®). At each
time step tj the dynamical system (1) is integrated
again with any neighboring points x*(¢x) + 1 acting
as the initial conditions. Thus, to find A the govern-
ing equations (1) and the corresponding variational
equations 7 = A -7, in which A is matrix of partial
derivatives V f(x*(tx)), are solved N times (where
N is the number of the time steps). Averaging over
a long time results in a reliable value of A variations
of distances between the trajectories. To realize this
paper’s approach it is enough to solve the equations
governing the dynamical system only two times for
each selected trajectory.
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The a parameter might have another physi-
cal interpretation. Assume that for the nonlinear
dynamical system under investigation, it is possible
to identify the singular points (equilibria). In the
case, for instance, of two-well potential systems we
have two nodes and one saddle. An external periodic
excitation applied to such one-degree-of-freedom
system may cause a chaotic response. Chaos is char-
acterized by the unpredictable switches between
the two potential wells. A phase point may wan-
der between all three singular points. Consider two
neighboring nodes. As a result of switching neigh-
bors at the initial instant, representative points of
the phase trajectories are in motion about various
equilibrium states afterward. Hence a choice of «,
on the relation a4; = (1/2)d, is related to the dis-
tance d between the two nodes separated by a sad-
dle. However, many of nonlinear dynamical systems
do not have analytical solutions, and sometimes it
is laborious to find the singular points. This situa-
tion occurs often in nonsmooth dynamical systems.
In this case it is recommended to take the o« param-
eter from a priori “appropriate” values.

Our approach has been successfully applied to
the case of smooth and nonsmooth systems. By
varying parameters and using condition (2), it is
possible to find domains of chaotic motion (includ-
ing transient and alternating chaos) and domains of
regular motion,

Remark. All inequalities (2) do not have to be
checked for the case, when the equations of motion
under investigation can be transformed to normal
form. It means that the inequalities related to veloc-
ities z; = &; may be canceled. In other words,
solutions related to regular motion with respect to
x; are also regular in relation to xz; = Z;, where
i,j € {I,n}.

3. Chaos in the “Smooth” Duffing
Equation and the Lorenz System

Let us Duffing
equation:

consider the nonautonomous

1
4z — §$(1 ~ z?) = feoswt. (3)

For this system A; = (1/2)| maxy, <t<7 () —
ming, <¢<7 z(t)| and the condition (2) has the form:

3t* € [t1,T) : |z(t*) — 2(t*)| > cAs.

Using this condition, different planes of param-
eters of Duffing equation have been investigated.
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The dynamics of this equation is determined by
three parameters f,w,~ and the initial conditions
z(0) and 2(0). In Fig. 1(a), dots represent the
domains of chaotic behavior in the amplitude —
frequency of excitation (w, f) plane for fixed value
of parameter v = 0.15 and initial conditions z(0) =
0.1, £(0) = 0.01. The time period for the simu-
lation is 1007 /w nondimensional time units. Dur-
ing computations, one half of the time period
corresponds to the time interval [to,¢1], where
transient processes are damped. The integration
step size is 7/30w. The space of parameters has
been uniformly sampled in the rectangular (0 <
w < 115 0 < f < 0.55) by 40 x 40 nodal
points. Initial conditions of the closed trajec-
tories are distinguished by 0.5% with ratio to
characteristic vibration amplitudes A;, e.g. the
starting points of these trajectories are in the
two-dimensional parallelepiped (|z(to) — Z(to)] <
0.005A4,, |&(to) — £(tg)| < 0.005A43). The parame-
ter « is chosen equal to 1/3.

The obtained domains agree well with the
smooth threshold, that is, corresponding to the
homoclinic trajectory criterion [Holmes, 1979].
The domains are remarkably conforming to the
results of the investigations based on the calcula-
tion of the Lyapunov exponents, which was carried
out with Wolf’s algorithm [Moon, 1987; Wolf et al.,
1985].

In Fig. 1(b) the chaotic domains for the equa-
tion # + y& — (1 — 22) = fcoswt are depicted in

the amplitude — damping coefficient plane (v, f),
for fixed frequency w = 1.7, and initial conditions
z(0) = 0.1, £(0) = 0.01. The time period for the
simulation is 1007 /w nondimensional time units.
We have decided that the half of time period cor-
responds to the time interval [¢g,?1] in the space of
which all transient processes are damped. The inte-
gration step size is w/20w. The space of parameters
is uniformly sampled in the rectangular (0 < v <
1.35; 0 < f < 2.15) by 40 x 40 nodal points. As
in the previous case, the initial conditions of the
closed trajectories are distinguished by 0.5% with
ratio to characteristic vibration amplitudes A;, and
the parameter « is set equal to 1/3.

The computed domains agree with the smooth
threshold corresponding to the homoclinic trajec-
tory criterion [Holmes, 1979],

f> é,.),Ch(ﬂ-w/ 2)

V27w
(In a case of Eq. (3) a change of variables has been
introduced.) The real boundary of chaotic oscilla-
tions in the plane (v, f) is not linear and qualita-
tively corresponds to that found by our numerical
method. In both cases (a) and (b) the chaotic
domains are multiply connected.

Phase planes of the initial conditions have been
analyzed for Eq. (3) for fixed values of parame-
ters v = 0.15, w = 0.8. Figure 2 shows the phase
planes of the initial conditions for different values
of the amplitude of excitation: (a) f = 0.06 and

0.6+ 2.4+
;. ? p'
1 °
° i 1.8-
°
0.4+ . i ]
g rels
S~ ; ! i ~ °
0.2 .' ; ] .. '
' ":;: 0.6- l"
0.0 , T . T . . v , 0.0 r T v T v T - 1
0.0 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
() Y
(a) (b)
Fig. 1. Domains of chaotic behavior for the Duffing equation: (a) in the (w, f) plane (y = 0.15, z(0) = 0.1, £(0) = 0.01);

(b) in the (v, f) plane (w = 1.7, z(0) = 0.1, £(0) = 0.01). The smooth threshold corresponds to the homoclinic trajectory

criterion.



Quantifying Smooth and Nonsmooth Regular and Chaotic Dynamics

1.2
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= o o - - ge ¢
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0.0+ Y . : v
0.0 05 1.0 15 20
x(0)
(a)
Fig. 2.

(y=0.15, w=0.8): (a) f =0.06; (b) f=0.1.

(b) f = 0.1. Depending on the initial conditions
both chaotic and regular motion may appear. The
instability peculiar to chaotic vibrations is observed
close to the separatrix branches. While increasing
the f value the domains of chaotic vibrations are
fast augmenting. The time period for the simu-
lation has been taken as 100w /w nondimensional
time units, and the integration step size is equal to
m/20w. The space of parameters is uniformly sam-
pled in the rectangular (0 < z(0) < 1.8; 0 < £(0) <
0.8) by 40 x 40 nodal points. Initial conditions of the
closed trajectories are distinguished by 0.5% with a
ratio to characteristic vibration amplitudes A; (the
parameter « has set equal to 1/3).

Now we consider the Lorenz system, of the form

T =o(y—x),
y=pz—y— a2 (4)
t=1xy— Bz

Using the conditions (2), which for the system
(4) has the form

It e [tl,T] :
{(lz(t*) = 2(t")| > aAz) V (Jy(t") — §(E)| > ady)
V ([2(t7) — 2(t%)| > @A)},
Agczl max z(t) — min m(t)’,
214 <t<T t <t<T
1
== ) — min y(t
tfrgl?‘%(:ry( ) tfg%l:r U )"

L)
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00 03 06 09 12 15 18
x(0)

(b)

The initial conditions phase plane for the Duffing equation for different values of the amplitude of excitation

1
A, = —| max

2|, max, z(t) — min_ 2(¢)|,

t1<t<T
the different planes of parameters of the Lorenz sys-
tem are investigated.

In Fig. 3, the phase space of the initial con-
ditions for the Lorenz system is presented at fixed
values of parameters ¢ = 10, § = 8/3, p = 16.
The time period for the simulation is 90 nondi-
mensional time units. We decided that 2/3 of the
time period should be equal to the time inter-
val [tg,t1], during which all transient processes
are damped. The integration step size is 0.03

Fig. 3. The phase space of the initial conditions for the
Lorenz system (o = 10, 8 = 8/3, p = 16).



2046 J. Awrejcewicz & L. Dzyubak

nondimensional time units. The space of parame-
ters is uniformly sampled in the rectangular par-
allelepiped (—30 < z(0) < 30; —30 < y(0) <
30 — 10 < 2(0) < 50) by 20 x 20 x 20 nodal
points. Initial conditions of the closed trajecto-
ries are distinguished by 0.5% of the character-
istic vibration amplitudes A;, Ay, A,, e.g. the
starting points of these trajectories are in the
three-dimensional parallelepiped (|z(t9) — Z(to)| <
0.005A, |y(to) — §(to)] < 0.005A4,, |2(te) — 2(t0)] <
0.005A4,). The parameter « is set equal to 1/3.

As in the case of the Duffing equation, the insta-
bility peculiar to chaotic vibrations is observed close
to the separatrix branches and by increasing p the
domains of chaotic vibrations expand fast.

In Fig. 4, the domain of chaotic vibrations
in the (3,p) parameter plane is shown for fixed
o =10, z(0) = 5, y(0) = 5, 2(0) = 10. The time
period for the simulation is 90 nondimensional time
units. We have chosen as 2/3 of the time period to
be the time interval [to, 1], during which all tran-
sient processes are damped. The integration step
size is 0.03 nondimensional time units. The space
of parameters is uniformly sampled in the rectan-
gular (0 < B8 < 15; 0 < p < 50) by 30 x 30
nodal points. Initial conditions of the closed trajec-
tories are distinguished by 0.5% of the characteristic
vibration amplitudes A, A4,, A,. The a parameter
is set equal to 1/3. These results conform well with
the investigations and diagrams presented in [Moon,
1987].

B

Fig. 4. The domain of chaotic vibrations for the Lorenz
equations in the (83, p) plane (¢ = 10, z(0) = 5, y(0) =
5, z(0) = 10).

4. Discontinuous Autonomous
Two-Degree-of-Freedom System
with Dry and Viscous Friction

4.1. The model

Consider two masses m; and my (as shown in Fig. 5)
which are moving on a driving belt. The belt is
moving at a constant velocity vg. The mass my is
attached to inertial space by a spring k;. Masses
my and mgy are coupled by a spring k2. A friction
force T; acts between the mass m; and belt which
depends on the relative velocity w; (1 = 1,2). These
two-degree-of-freedom autonomous oscillations are
governed by the following second-order set of differ-
ential equations

{m1fi1 = —ki1x1 — koxy + koxo + T1(w1) 5)
maeZe = —koto + koxy + To(w2),
where

(i=1,2).

We will consider the following friction model
(see Fig. 6):

w; = Vg — Ty,

X

1

k2
W~ m

X
-

E— -
—-—-——-——*
Vo
Fig. 5. Analyzed 2-DOF model with friction.

Vo

——_ v, W %,
=] ~

Fig. 6. Dry and viscous friction model.
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T (w;) = To; sign w; — a;(Tos)ws + ,@i_(TOi)w? ,

_ 3Ty, T
= AT ﬁz - _*_3
4 v} 4(v})

Here the maximum static friction force is
denoted by Tp; and v} is the velocity which cor-
responds to the local extremum value of T;(w;)

(i=1,2).

(073 (i= 1,2).

4.2. A stick-slip and slip-slip
motion

Let us find the stick-slip and slip-slip domains of
the chaotic or regular motion. If the solution x(t)
of the set (5) is known, it is easy to obtain the set
of time intervals {Ats; ; } during which the following
condition holds

(1=1,2). (6)

This corresponds to the presence of “stick”
in the vibrations of ist oscillator. The maximum
time interval max Atg; from the set {Ats;} can

be considered as the characteristic of the specific
motion.

Z; = Vo,

a* e [t1,T)
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Let a space of parameters under investigation
have the velocity of the belt vy as a coordinate.
The dynamics of the oscillators will increase with
magnification of vg. Hence, even a very small value
of max Aty ; will indicate a presence of a “stick”
during vibrations. In this case, under an appropri-
ate choice of the auxiliary parameter 0 < § < 1, a
check of the following control condition

(i=1,2) (7)

allows one to trace the presence of a “stick” motion.
The constant § defines the smallness of the “stick”-
segments on the phase plane in comparison with
the characteristic vibration amplitudes A; of the
components of motion z;(¢t) (¢ = 1,2). Thus, if
condition (7) holds, then the i-oscillator is in the
slip-slip motion, and the other one is in the stick-slip
motion.

vomax Atg; < 04;

4.3. Chaotic and regular stick-slip
and slip-slip oscillations

Note that conditions (2) for the system (5) can be
presented in the following form

{2 () = 21(87) > @Ay) V (Je2(t7) — £2(7)] > ads)}

J

J

chaos of the first oscillator chaos of the second oscillator

In addition, the conditions (6), (7) of the
space of parameters (vo,7p1,702) for the system
(5) have been investigated after a coordinate sam-
pling. The domains, where chaotic behaviors of the
first and second oscillators are possible, were found,
including stick-slip and slip-slip motion. All numer-
ical calculations are carried out for the following
fixed values (all of the parameters are considered
in the system “SI”): m; = 4, mg = 3, k; =
11.77, ky =7.85, vi =4, v; =3.

The following initial conditions are taken:
JJ](O) = 001, 1131(0) = 05, 1132(0) = 001, 1:2(0) =
0.5. The time period for the simulation is 120 time
units. During computations, a half of time period
corresponds to the time interval [tg, t1], where tran-
sitional processes are damped. The integration step
size is chosen equal to 2.5 x 1073 time units. The
space of parameters is uniformly sampled in the
rectangular parallelepiped (0 < vg < 4; 0 <
Tor < 50, 0 < Tpe < 50) by 40 x 50 x 50

nodal points. Initial conditions of the closed trajec-
tories are distinguished by 0.5% with ratio to char-
acteristic vibration amplitudes 4; (¢ = 1,2), e.g.
the starting points of these trajectories are in the
four-dimensional parallelepiped |z;(to) — Zi(to)| <
0.0054;, i = (1,4). The parameter a is set equal
to 1/3. :

Figure 7 in a section Tge = 19.62 of the parame-
ters space (vg, To1, To2) displays the domains, where
chaotic vibrations of the (a) first and (b) second
oscillators are possible. It is interesting, that these
regions are almost congruent. In other words, dur-
ing numerical simulation we do not encounter the
situation when only one of the oscillators moves
chaotically. It is remarkable also, that there appear
chaotic “islets” in domains of periodic motion. In a
section Tp; = 29.43 (see Fig. 8) the chaotic vibra-
tions domains of (a) first and (b) second oscillators
are also almost practically congruent.
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Fig. 7. Domains of chaotic vibrations of the (a) first and (b) second oscillators in the (vg, Tp1) plane (Toe = 19.62, z1(0) =

0.01, &1(0) = 0.5, 2(0) = 0.01, £2(0) = 0.5).
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(b)

Fig. 8. Domains of chaotic vibrations of the (a) first and (b) second oscillators in the (v, To2) plane (Tp; = 29.43, z1(0) =

0.01, &1(0) = 0.5, £(0) = 0.01, i(0) = 0.5).

In Figs. 9 and 10 the domains of stick-slip oscil-
lations are shown, which correspond to Aty ; var-
ious “adhesion” time of the oscillators to the belt
[when 5 < maxAtgq, 2 < maxAtg; < 5, 0.5 <
max Atg; < 2, maxAtgy; < 0.5 (1 = 1,2)]. The
mentioned domains are reported in a section
Toz = 19.62 (see Fig. 9) of the parameters space
(vo, To1, Toz) for the (a) first and (b) second oscil-
lators and also in a section Tp; = 29.43 (see Fig. 10)

for the (a) first and (b) second oscillators. Both
in Figs. 9 and 10 blue dots represent the domains,
where the maximum time interval max At ; < 0.5
and the inequality (7) is not satisfied [¢ = 1 for cases
(a), ¢ = 2 for cases (b)]. Though the maximum time
interval of “adhesion” is too little, one observes that
owing to the dynamical process, the segment on a
phase plane corresponding to “adhesion” of an oscil-
lator is more than § of the characteristic vibration
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Fig. 9. Domains of stick-slip oscillations of the (a) first and (b) second oscillators in the (v, To1) plane (Tog = 19.62, z1(0) =
0.01, 1(0) = 0.5, z2(0) = 0.01, #2(0) = 0.5) with various “adhesion” times of the oscillators to the belt.

amplitude A;. In the present investigations, it has
been taken 6 = 0.1. ‘

Figure 11 shows the trajectories of the first and
second oscillators on a phase plane corresponding to
the domain of the chaotic vibrations [see Figs. 7(a)
and 7(b)]. Stick refers to 2 < maxAtg; < 5 for
the first oscillator and to 5 < max Atg; for the
second oscillator, [see Figs. 9(a) and 9(b)]. The
phase portraits plotted in Fig. 12 correspond to

chaotic behavior domains observed in Figs. 8(a)
and 8(b).

Figures 13 and 14 display periodic vibrations of
both oscillators. In Fig. 14, the first oscillator moves
without a stick condition. All these data demon-
strate a very good agreement with the obtained
chaotic and regular vibration domains (see Fig. 7)
and with the domains’ of stick-slip and slip-slip
motion (see Fig. 9).
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Fig. 10. Domains of stick-slip oscillations of the (a) first and (b) second oscillators in the (v, Tp2) plane (Tp1 = 29.43, z1(0) =
0.01, £1(0) = 0.5, z2(0) = 0.01, #2(0) = 0.5) with various “adhesion” times of the oscillators to the belt.

In Figs. 15(a)-15(c) one may observe the ori-
gin of chaos with a passage (sec also Fig. 8) from
the stability domain [Fig. 15(a)] to the instability
domain [Figs. 15(b) and 15(¢)]. In the first case a
regular motion around all three states is displayed.
Then the first oscillator moves around various states
with unpredictable jumping between states.

The comparison of Figs. 7 and 9 and also of
Figs. 8 and 10 testifies that our system mainly

exhibits stick-slip chaos. Slip-slip chaotic motion :
is possible in the small domain of neighborhood
of vy = 3.3—3.4 only for the second oscillator.
The corresponding examples are shown in Figs. 16
and 17.

The coupled oscillators with friction have many
aspects to investigate. Though its dynamics is
determined by exterior factors such as velocity of
the belt, stiffness springs, masses of the oscillators,
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Fig. 11. Phase portraits of the trajectories of the first and second oscillators (vgp = 1, Tp1 = 30, To2 = 19.62, z:(0) =

0.01, £1(0) = 0.5, z2(0) = 0.01, #2(0) = 0.5), which are corresponding to the domains of the chaotic vibrations in the
(vo, To1) plane. Stick refers to the maximum “adhesion” time of the oscillators to the belt 2 < max Atg1 < 5, 5 < max Atg 2.

Fig. 12. Phase portraits of the trajectories of the first and second oscillators (vp = 0.9, Tp1 = 29.43, Tpe = 15, z1(0) =
0.01, £1(0) = 0.5, z2(0) = 0.01, £2(0) = 0.5), which are corresponding to the domains of the chaotic vibrations in the (vg, Toz2)
plane. Stick refers to the maximum “adhesion” time of the oscillators to the belt 2 < max Aty 1 < 5, 5 < max Atg 2.

friction forces characteristic and initial conditions,
questions emerge concerning the influence of oscil-
lators on each other, to its interaction. For example,

e Does only one oscillator move chaotically or the
chaotic motion of one of them involves the chaotic
motion of other oscillator?

e Do the the oscillators move in different regimes:
one oscillator moves with “adhesion” to the belt
and the other one moves without “adhesion”?

Our investigations show that the situation
when only one of the oscillators moves chaotically

is not observed. However, there are conditions
when only the first oscillator moves with “adhe-
sion” to the belt and the other oscillator moves
without “adhesion”, and vice versa. It seems,
that the motion without “adhesion” should be
expected either for small values of the maximum
static friction force (MSFF) or for comparatively
large values of velocity of the belt. In considered
conditions, critical values of the velocity of the belt
vg exist for i-oscillator (¢ = 1,2) such that if
vo > vg;, then i-oscillator moves without “adhesion”
to the belt for any values of MSFF. Thus, if we fix
the MSFF of the second oscillator Tpe = 19,62 (this
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Fig. 13. Phase portraits of the trajectories of the first and second oscillators (vg = 2.5, Tp1 = 30, Tpg = 19.62, z1(0) =
0.01, £1(0) = 0.5, z2(0) = 0.01, £2(0) = 0.5), which are corresponding to the domains of regular motion in the (v, To1)
plane. Stick refers to the maximum “adhesion” time of the oscillators to the belt 0.5 < max Atg11 < 2, max Atg o < 0.5.
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Fig. 14. Phase portraits of the trajectories of the first and second oscillators (vg = 1.5, Tp1 = 0.5, Tp2 = 19.62, 77,(0) =
0.01, ¢1(0) = 0.5, z2(0) = 0.01, &2(0) = 0.5), which are corresponding to the domains of regular motion in the (vg, To1)
plane. The first oscillator moves without stick. Stick of the-second oscillator refers to the maximum “adhesion” time to the

belt 2 < max Atg; o < 5.

value comparatively large), slip-slip regimes for the
second oscillator are not observed when vy < v}
(see Fig. 9). But for comparatively small values
of the MSFF of first oscillator Tp; < 10 the slip-
slip motion of the first oscillator is observed in the
neighborhood 1,5 < vy < 3 (see Fig. 9). Simi-
larly for sufficiently large value of the MSFF of the
first oscillator Ty, = 29.43 the slip-slip motion of
the first oscillator is not observed when vy < v
(see Fig. 10). But for small values of the MSFF of
the second oscillator Tpe < 5 the second oscillator

is in a slip-slip motion in the neighborhood 0,5 <
vy < 2,5.

Intending to find a slip-slip chaos, we compare
Figs. 7 and 8 to 9 and 10 correspondingly. The
small domain of chaotic vibrations is depicted in
the neighborhood of vy = 3, 4. Accordingly to Fig. 9
the stick-slip motion of the first oscillator and the
slip-slip - motion of the second oscillator are corre-
sponding to this domain. As chaos is found in the
neighborhood of vg = 3,4 and v{; < 3.4-< vgi, then
only the second oscillator is in the slip-slip chaotic
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Fig. 15. Phase portraits of the trajectories demonstrating “chaos origin” with a passage from the stability domain
(a) (vp = 14, Tor = 2943, Toz = 40) to the instability domain. (b) (vo = 1.4, Toy = 29.43, Ty = 34), and
(c) (vo =14, Tp1 = 29.43, Tpa = 30).
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Fig. 16. Phase portraits of the trajectories of the first and second oscillators (vg = 3.4, Tp1 = 41, Ty = 19.62, z1(0) =

0.01, #1(0) = 0.5, x2(0) = 0.01, #2(0) = 0.5). The second oscillator is in slip-slip chaotic motion.
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Fig. 17. Phase portraits of the trajectories of the first and second oscillators (vg = 3.3, Ty = 29.43, To2 = 36, z1(0)

24

0.01, £1(0) = 0.5, z2(0) = 0.01, £2(0) = 0.5). The second oscillator is in slip-slip chaotic motion.

motion. Here, for considered conditions vg, < v§).
One can suppose that the largest domains of slip-
slip motion of the oscillators are located in the
parameter space (vg, Tp1, To2) sections that corre-
spond to more small values of the maximum static
friction forces Tp; and Tpo. However, more detailed
investigation (other parametric spaces, various sec-
tions of this spaces) exceeds the limits of the present
work.

5. Conclusions

A direct and slightly modified application of the
classical approach to quantify trajectories of a

nonlinear system by choosing the observation of two
close initial points of a phase space is outlined. The
proposed method, in general, is much ‘'more simple
and faster from a computational point of view than
the well-known Wolf’s algorithm.

The proposed method has been tested for dif-
ferent dynamical systems: the smooth one-degree-
of-freedom Duffing oscillator, the Lorenz system
and a nonsmooth self-excited two-degree-of-freedom
mechanical system with friction. In the first case, a
comparison with the results obtained via calcula-
tion of the Lyapunov exponents using Wolf’s algo-
rithm shows remarkable agreement. Also, in this
case, domains of regular and chaotic motions in the
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parameter (Fig. 1) and initial conditions (Fig. 2)
planes are reported.

In our second case, various regular and chaotic
stick-slip and slip-slip dynamics are numerically
traced and briefly discussed. Among others, it has
been shown that for our investigated two-degrees-
of-freedom system stick-slip chaos dominates, and
slip-slip chaos is found to exist only for a narrow vy
domain and for the second oscillator only.
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