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A self-excited friction pair is modeled by a mechanical system of two degrees-of-freedom with a
normal force varying during the block displacement. Two different friction coeflicients are used,
and a normal force pressing the sliding body to a belt depending on an angle bar motion of the
analyzed system is applied. In addition, the numerical analysis is supported by the investigation
of a real laboratory object modeling the feedback reinforcement of friction forces acting on the
block. Both numerical and experimental results are compared showing good agreement.
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. 1. Introduction

The nature of sliding components with .an occur-
rence of intermittent stick and slip leads to unpre-
dictable behaviors. These problems are exhibited
in many industrial applications including bearings,
disc brake systems, electric motor drives, rail mass
transit systems, and machine tool/work piece sys-
tems [Ibrahim, 1992]. A fuller understanding of the
stick-slip phenomena, which in consequence might
help in elimination of its effects, is of considerable
importance for applications requiring high precision
motion [Armstrong-Hélouvry, 1992].

The relative sliding of two solid bodies is a
nonequilibrium process where the kinetic energy of
the motion is transferred into the energy of an irreg-
ular microscopic motion. This dissipative process
is responsible for creation of a dry friction phe-
nomenon. The phenomenological laws of dry fric-
tion, like Coulomb’s laws, are well known and there
is a well-established theory in the applied physics
[Bowden & Tabor, 1954] related to this subject.

The simplest models describe friction as a
function of the difference in the velocity of sliding
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bodies. Models such as the Coulomb’s friction one
are called static models. In fact, Coulomb’s dry fric-
tion laws simplify a highly complex behavior that
involves mechanical, plastic and chemical processes
[Singer & Pollock, 1992). Application of Coulomb’s
law often brings results that bear experimentally
observable differences [Andreaus & Casini, 2001;
Galvanetto et al., 1995]. Computer simulations of
mechanical systems with friction are complicated
not only due to the strongly nonlinear behavior of
the friction force near the zero velocity but also
because of the lack of a universally considered fric-
tion model. For rigid bodies with dry friction, the
classical Coulomb law of friction is usually applied
in engineering contact problems exactly because
of its simplicity. It can explain several phenomena
associated with friction and it is commonly used for
friction compensation [Friedland & Park, 1991].

A well-known velocity-limited friction model
given by Oden and Martins [1985] uses a smooth
quadratic function when the sliding velocity is near
zero. However, although the value of the limit-
ing velocity is essential here, there is no standard
method for its estimation.
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Using a different approach, Antunes et al.
[1988] developed a spring-damper friction model
that introduces both tangential spring and damper
during sticking. The phase of motion is detected
by a change in sign of the tangential velocity. The
sticking spring force is expressed by a product of
the adherence stiffness and contact distance from
a zero tangential velocity. A viscous damper force
is incorporated in parallel with the spring to damp
out any residual numerical velocity.

Karnopp [1985] developed a force-balance
model for one-dimensional motion with a small-
velocity window. Outside the velocity window, the
friction force may be any function of the sliding
velocity. Inside the window, the friction force is
estimated so as to balance the other forces in the
system, the velocity remains small constant until
the loss of the contact value of force is reached.
This model has been used to describe many prac-
tical actuator and mechanism problems. Basing on
Karnopp’s model, Tan and Rogers [1996] developed
a two-dimensional friction model often used for sim-
ulations of multi degrees-of-freedom systems with
friction acting on a surface.

The problem of friction force modeling is not
solved because the physics and dynamical effects
are not sufficiently understood. There are two main
theoretical approaches to the modeling of dry fric-
tion interfaces: the macro-slip and micro-slip ones
[Feeny et al., 1998; Singer & Pollock, 1992]. In
the micro-slip approach, a relatively detailed anal-
ysis of the friction interfaces should be made. In
this case, investigations can provide accurate results
only when the preload between interfaces is very
high. In the macro-slip approach, the entire sur-
face is assumed to be either sliding or sticking.
The force necessary to keep sliding at a constant
velocity depends on the sliding velocity of the
contact surfaces. With this respect, smooth and
nonsmooth velocity-dependent friction laws have
been cited in the references [Popp et al., 1996;
Oden & Martins, 1985; Makris & Constantinou,
- 1991]. :

Generally speaking, the various modifications
of the Coulomb model, and the Karnopp model
are all static in the sense that the friction model
is a function of velocity. They can be substituted
when friction is recognized to be in fact a dynamic
phenomenon that should be modeled as a dynam-
ical system. Under this convention, some of the
dynamical dry friction models need to be specified:
Dahl’s models [Dahl, 1976]; Bliman-Sorine model

[Bliman & Sorine, 1995]; LuGre model [Canudas de
Vit et al., 1995; Altpeter et al., 1998].

There is an essential shortage of works that take
into account modeling problems connected with the
experimentally observable velocity-dependent fric-
tion force. The paper [Brandl & Pfeiffer, 1999] deals
with measurement of dry friction. A tribometer
was developed to identify both sticking and sliding
friction coefficients. The so-called Stribeck-curve
was determined for any material in the contact
zone. Similarly, a multi degrees-of-freedom model
of friction was investigated in [Bogacz & Ryczek,
1997], where an experimentally observable friction
characteristic expressed the kinetic friction force as
a function of the relative velocity of motion. The
experimental investigation of vibrations of a sys-
tem composed of a steel-polyester pair confirmed
that the friction static force increases with both
the increasing adhesion time and the growing force.
Additionally, the kinetic friction force depends also
on the sign of acceleration.

Despite numerous papers concerned with the
analysis of regular and chaotic dynamics of mechan-
ical systems with friction, not all possible nonlinear
phenomena seem to have been properly understood
or even detected and explained [Awrejcewicz, 1996;
Awrejcewicz & Delfs, 1990a, 1990b; Brogliato, 1996;
Galvanetto et al., 1995; Kunze, 2000; Monteiro,
1994; Oden & Martins, 1985]. Although this paper
is devoted to numerical and experimental investi-
gations, the problem is expected to be attacked
also from an analytical point of view. The stick-

*slip chaos has been predicted analytically using the

Melnikov technique by Awrejcewicz and Holicke
[1999], but such a prediction for a two degrees-
of-freedom system is in general more complicated.
Even if this problem has been solved, it will con-
tain only a special type of nonlinear terms and will
be valid only for special systems. Therefore, in this
paper we have focused on numerical simulations,
which are free from the mentioned drawbacks.

A self-excited system with friction analyzed in
this work requires a suitable algorithm to avoid
the problems that occur under integration of equa-
tions of motion with the sgn function and result
in sudden jumps and undesired errors. In what fol-
lows, the Hénon method [Hénon, 1982; Awrejcewicz
& Olejnik, 2002 is applied, which is particularly
useful for obtaining suitable uniform solutions of
nonsmooth systems (here with friction).

Estimation of Lyapunov exponents plays a cru-
cial role in the analysis and identification of chaotic



dynamics. The estimation belongs to the funda-
mental tools [Wolf et al., 1985; Van Wyk & Steeb,
1997] that allow learning about regularity of an
attractor under analysis. At present, however, a
novel approach, especially suitable for estimation
of the Lyapunov exponents of nonsmooth systems,
i.e. including those with friction, is applied.

2. The Modeled System with Friction

The study and prevention of unstable vibration
of systems with friction is of essential importance
in industry and there is a need for the friction
pair modeling that could provide a correct descrip-
tion of the kinetic and static friction forces change
between two moveable surfaces. The model can be
further developed to govern also the dynamics of
a brake mechanism [Awrejcewicz & Olejnik, 2003].
Therefore, the 2-DOF dynamical system illustrated
schematically in Fig. 1 is analyzed numerically and
investigated experimentally.

The self-excited system presented in Fig. 1 is
equivalent to a real experimental rig in which block
mass m is moving on the belt in z; direction, and
where the angle body represented by moment mass
of inertia J is rotating around point s with respect
to.angle direction ¢. The analyzed system consists
of the following parts: two bodies are coupled by
linear springs k2 and k3; the block on the belt is
additionally coupled to a fixed base by means of a
linear spring k;; the angle body is excited only by
spring forces; there are no extra mechanical actua-
tors; rotational motion of the angle body is damped
using virtual actuators characterizing air resistance
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angle bar

Fig. 1. The 2-DOF system under analysis.
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and denoted by constants ¢; and ¢»; damping of the
block is neglected; it is assumed that the angle of
rotation of the angle body is small and within the
interval [+5,—5] degrees (in this case, rotation is
equivalent to linear displacement y; of legs a of the
angle body); the belt is moving with constant veloc-
ity vp and there is no deformation of the belt in the
contact zone.

Nondimensional equations that govern the
dynamics of the system under investigation have
the following form:

1 = T,
Tg=—T1 — al—l[nl(@ +y2) — 11 — T,
U1 = Yo, (1)

Yo = oy (—Bsy1 — Mmays — T1 — MT2),

where x5, ys, are velocities of the block and angle
body, respectively; v = 2 — vy is a relative veloc-
ity between the bodies of the investigated system;
o] = w2m/k2, Qo = w2J/k27‘2, b = (kl + kg)/kg,
B2 = poks/ka, B3 = (ka+k3)/k2, m = aw/ks,
My = cowpo/ k2, Mo = w(cy + ¢2)/ky are the remain-
ing parameters; w is a periodicity of mass m. The
friction force is described in the following manner:

for vre = 0,

for Urel 7é 0,
(2)

where pu; (i = 1,2) are friction coefficients defined

for two various cases of our numerical analysis, i.e.
the negative slope characteristic

IT < (1 — Bayi — m2y2) o
T = sgn(veer) (1 — B2y1 — M2y2) 144

1

S, 3
1"")'ll'urell ( )

H1 ('Urel) =

and the Stribeck curve

pa(vrer) = 22 4 <1 - ﬂ)e>»<p(_72—|v’rel|>, (4)

to Ho 1o — pd

where pg, ug are the coefficients of sticking and slid-
ing (for ve] — 00) friction, respectively; v; (i = 1,2)
are certain constant coefficients. '

3. Numerical Analysié

In this paper the algorithm for numerical integra-
tion of the ODE including discontinuous term [see
Eq. (2)] describing dry friction is applied. It is worth
noticing that our self-excited system with friction
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requires a special algorithm to avoid the problems
occurring in the integration of Eq. (1). The used
algorithm is based on the Hénon method [Hénon,
1982; Awrejcewicz & Olejnik, 2002] that proves to
be extremely useful for locating and tracking of the
stick to slip and slip to stick transitions in non-
smooth systems.

Although the Hénon algorithm uses the Runge—
Kutta method of fourth order, separate procedures
can be introduced to detect the points belonging
either to stick or to slip phases for both increasing
and decreasing velocities. Special transformations
are applied to eliminate jumps. The procedure is
carried out with an automatically chosen step of
numerical integration.

3.1. Time histories

It is obvious that the use of numerical methods can
provide only approximate solutions of real trajec-
tories of systems under analysis due to the finite
step of numerical integrations and finite accuracy of
the numbers used in the floating-point arithmetic.
Nevertheless, if properly applied, numerical approx-
imations prove sufficient for engineering purposes,
which is important for our discontinuous system.
Duration of a transitional process depends on
initial conditions and system parameters. In Fig. 2,
one of the co-ordinates versus time is presented for
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Fig. 2. Quickly stabilized periodic motion for 11 (black line)

and pg (red line) friction models for the parameters: a1 = 3,
az = 1.159, By = 0.577, B3 = 1.825, m1 = 1o = m2 = 0,
v = 0.203, v2 = 0.813, vy = 0.6, pg = 0.7, ug = 0.18 and
initial conditions: 7 = 0, 7} = 150, £1(0) = 0, 22(0) = 0.6,
y1(0) = y2(0) = 0.

7o = 0. In this case, the masses are in the equilib-
rium positions, whereas their initial velocities are
equal to the belt velocity. In practice, from the very
beginning the system starts to move on an attrac-
tor. When the initial conditions are changed, dura-
tion of the tranmsitional process becomes equal to
about 7 = 400 (see Fig. 3). Our numerical analysis
shows that in some cases the transitional state can
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Fig. 3. Slowly stabilized periodic motion for p (black line) and ug (red line) friction models for the parameters: a; = 2.4,
az = 0928, B2 =084, B3 =22, 1 =12 = m2 =0, y1 = 0203, y2 = 0.813, vy = 0.2, yg = 0.7, g = 0.6 and initial
conditions: 7g =0, 7 = 150, £1(0) = 0, 22(0) = 0.2, y1(0) = y2(0) = 0.



be many times longer, which may be of importance,
especially in the engineering practice.

3.2. Phase spaces

The phase space of a dynamical system is a math-
ematical space in orthogonal coordinates that rep-
resents all of the variables which are necessary to
determine a momentary state of the system. A
typical projection of a trajectory associated with
our system with friction is shown in Fig. 4. Two
parts are easily distinguishable: a stick part (where
zp = vy = 0.55, which is represented by the hori-
zontal line) and a slip part.

A more complicated motion is presented in
Fig. 5. Time moments of an occurrence and dura-
tion of a stick are unpredictable. The mentioned
phases appear with different velocities illustrated
with small and large arcs in the phase plane. This
means that the corresponding static friction force
is smaller than an absolute value of the resulting
horizontal forces.

3.3. Poincaré sections

Construction of a Poincaré section can be per-
formed to replace investigations of the properties of
the n-dimensional phase trajectory by an analysis
of an (n — 1)-dimensional discrete system. Different
definitions are assumed for autonomous and nonau-
tonomous dynamical systems. For our autonomous
system the map construction is deﬁn(.ed in the
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Fig. 4. Phase space projection of periodic motion in (z,
x2) plane for u; (black line) and ug (g = 1.25, red line,
g = 0.3, blue line) models for the parameters: a; = 2.4,
Qg = 0.927, ﬁ2 = 2.304, ﬁg = 2.8, m = 1N2 = M2 = 0,
v = 0.289, v2 = 1, v, = 0.55, yg = 1.28 and initial con-
ditions: 7¢9-= 3000, 7, = 3500, z;(0) = 0, z2(0) = —0.1,
1 (0) = y2(0) = —0.1.
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Fig. 5. Phase space projection of chaotic motion in (zi,

z2) plane for p; model for the parameters: a; = 2.83,
Qp = 1.093, ﬁg = 1.873, ﬁg = 2.44]_, m = N2 = M2 = 0,
1 = 0.132, y2 = 0.66, vp, = 0.4, yg = 1.3 and initial con-
ditions: 79 = 2000, 7, = 4000, z1(0) = 0, x2(0) = —0.1,
y1(0) = y2(0) = -0.1.

following way:

if 21,21 <T1;> 141 = Ymi = (Y14, Y2,

. _ (5)
if Y121 <Y1, > YLit1 = Tmy = [T1,4, T2,4)s

where yp, i, Tm,; are Poincaré map points of the
angle body and the block, respectively; i denotes
the iteration number of the solution of Eq. (1).
In what follows, we are going to show that our
autonomous system can exhibit stick-slip periodic
(Figs. 6 and 7), quasi-periodic (Fig. 8) as well as
chaotic dynamics (Fig. 9).
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Fig. 6. Phase space projection of 1-periodic motion of the
block in (z1, z2)-plane and its Poincaré section (red circle)
for p; model for the parameters: a3 = 2.4, ag = 0.927,
Bg = 2304, B3 = 2.8, m = m = mz2 = 0, y1 = 0.289,
v2 = 0.999, v, = 0.55, pyo = 1.28 and initial conditions:
T¢ = 4000, T = 4300, z1(0) = 0, z2(0) = —0.1, ¥, (0) = 0,
y2(0) = —0.1.
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Fig. 7. Phase space projection of periodic motions of the
block in (z1, x2)-plane and their Poincaré section for z11 (blue
circle) and pg (red triangle) model for the parameters: a; =
2.5, ag = 0.966, B2 = 3.712, 83 = 2.125, 51 =12 =712 = 0,
y1 = 0.577, 72 = 2.047, v, = 0.63, po = 3.3, pg = 0.3
and initial conditions: 79 = 700, 7, = 1000, z1(0) = O,
23(0) = 0.1, %1 (0) = 0, 1(0) = —0.L.
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Fig. 8. Phase space projection of quasi-periodic motion of
the block in {(x;, x2)-plane and its Poincaré section for
p1 (yellow curve) model for the parameters: a; = 2.874,
ag = 1.111, B9 = 0412, B3 = 2472, m = 12 = Mg = 0,
71 = 0.035, v2 = 0.141, v = 0.1, po = 0.28 and initial
conditions: 79 = 4000, 7, .= 7000, x£1(0) = z2(0) = O,
y1(0) = y2(0) = 0.

Points of the Poincaré sections presented in
Figs. 6-9 are matched by solid black circles against
the background of their phase spaces. Moreover,
Fig. 8 presents attractors in the shape of black
closed curves confirming occurrence of a quasi-
periodic motion. An unpredictable form of the
chaotic attractor is presented in Fig. 9. Long-
time solution provides location of randomized
points.

41,1

-1,3 — T T T T T T T — T T T

1,1 0,7 0,3 0,1 0,5 0,2 13 x,
Fig. 9. Phase space projection of chaotic motion of the block
in (z1, xz2)-plane and its Poincaré section for p; (yellow
points) model for the parameters: a; = 4.5, as = 1.739,
B2 = 6.766, B3 = 3.333, n1 = 2 = 2 = 0, 91 = 0.976,
2 = 3.551, v, = 0.689, pug = 2.9 and initial conditions:
T = 2000, 75 = 20000, z;(0) =0, x2(0) = —0.1, y1(0) = 0,
y2(0) = —0.1.

3.4. Bsifurcation diagrams

Bifurcation diagrams are constructed by changing a
parameter in the interval [0.2, 0.7] with step 0.001,
wherefrom 500 Poincaré maps are obtained. Then,
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Fig. 10. Bifurcation diagram of a; € (2.72;4.32) parameter
versus x1 displacement in the time interval from 79 = 1000

to 7% = 51000 (remaining parameters are as in Fig. 2).



one of the phase axes is selected and all results are
presented versus the parameter. Another way is to
increase parameter values by changing the initial
conditions. In this case, we leave an attractor, con-
trary to the first case in which we stayed on an
attractor all the time.

An example of the bifurcation diagram is shown
in Fig. 10. Beginning from the smallest considered
values of a; we observe the one-periodic motion,
but for oy & 3.1 a period tripled bifurcation with an
increase of a; occurs. In the vicinity of bifurcation
point a; = 4.0, the period tripled bifurcation with
a decrease of the bifurcation parameter is observed
once again. It should be emphasized that for a large
interval of changes of the bifurcation parameter only

Friction Pair Modeling by a 2-DOF System 1937

the periodic motion can be reached by our analyzed
system. ;

An interesting example of more complex bifur-
cations is shown in Fig. 11. It may be traced
how the successive period doubling (accompanying
the decrease of a; parameter) leads to a chaotic
motion, which exists for a; ~ 2.9. Additionally,
period-n windows for a; = {3.15,3.05,2.95} are
reported.

3.5. Lagrange interpolation and
Lyapunov exponents

The Lagrange polynomial scheme is applied to
estimate Lyapunov exponents numerically from a

3,44

3,28

2,80 T
0,30

X

Fig. 11. Bifurcation diagram of a; € (2.83;3.58) pérameter versus 1 displacement for po model for the parameters: ag =
1.093, B2 = 1.729, 83 = 2.441, jy1 =2 = m12 = 0, v1 = 0.152; v2 = 0.609, v, = 0.1, po = 1.2, pg = 0.3 and initial conditions:
7o = 1000, T, = 51000, z1(0) = 0, z2(0) = 0.1, y1(0) = y2(0) = 0.



1938 J. Awrejcewicz & P. Olejnik

stored time series in hard computer memory. The
time series with a variable time step of the Hénon
integration procedure is obtained by solving Eq. (1).
The Lagrange interpolation is performed for each
time history of the phase coordinates of the sys-
tem. The series is then interpolated using standard
Lagrange interpolation scheme by a new one, where
points are distributed in equal intervals of time.
The latter ones are then used to estimate Lyapunov
exponents. The convergence of Lyapunov’s expo-
nents versus iterations n for a chaotic attractor are
illustrated in Fig. 12.

A good convergence is achieved after about n =
500 iterations of the computation procedure. The
friction still affects the presented convergence form
in an essential way. Lyapunov exponents have
been estimated for Figs. 6-9 and summarized in
Table 1.

In this table, R denotes a relation between the
number of points of the trajectory solved by means
of the Hénon method and its Lagrange interpolated
equivalent.
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Fig. 12. Lyapunov exponents A; convergence for the chaotic
motion shown in Fig. 9.

Table 1. Lyapunov exponents spectrum for the motions’
illustrated in Figs. 6-9.

Lyapunov Exponents

Fig. A1 Ao A3 A4 R T[-103]
6 —0.0047 -0.0174 -0.0480 -0.4566 30 3-12
7 —0.0031 -0.0419 —-0.1521 -0.3645 28 3-12
8 +40.0001 -0.0002 -0.0733 —0.8381 23 4-11
9 +40.0146 —-0.0030 -0.0400 —-0.5869 21 2-10

4. Experimental Investigations

In this section, the numerical analysis is supported
by experimental investigations. For that purpose a
laboratory rig designed for observations and exper-
imental research of the friction effects including the
friction force measurement is constructed. Photos
of the rig are presented in Fig. 13.

The general view, component parts and some
connectors, like coil springs, correspond to the ele-
ments schematically indicated and presented in
Fig. 1.

Displacement of the block and the angle
of rotation are measured using a laser proxim-
ity switch and a Hall-effect device, which guar-
anties a nonsticking method of the measurement.
Both provide the linear dependency of the mea-
sured quantity versus the analogue voltage out-
put. Measurement instruments connected through
PCI computer card to LabView software enable
the dynamic acquisition of the two measured sig-
nals. Disturbances of the entire construction, noise
in electrical circuits, and other additional mainte-
nances influence significantly the accuracy of any
measured signals. Therefore, some signals are fil-
tered digitally (elliptic topology) and a real dif-
ferentiation preventing formation of high peaks is
applied.

4.1. Results of experimental
measurements

Measurement results are obtained following the
methodology described in Sec. 3. The examples of
time characteristics of state variables are shown in
Fig. 14.

A characteristic positive slope (slip phase of the
block) of the time history and a negative slope (stick
phase of the block) can be seen in Fig. 14(a). A time
dependency of velocity of the block is presented in
Fig. 14(b). There are some time intervals between
nodes where velocity is almost constant and equal
to the belt velocity. This happens if the consid-
ered block is in the stick phase. Otherwise, the stick
phase can be observed on a time history graph of
acceleration, where some of the intervals (at the zero
value of veloeity) are parallel to t-axis.

The phase planes give an opportunity to
explore the dynamics of the investigated system
more comprehensively. The well-known shapes of
phase curves usually visible in the stick-slip motion
are presented in Figs. 15(a) and 15(b). The stick
(almost straight lines) and slip (arcs connecting
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of the belt v, = —0.13m/s.
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Fig. 16. Friction force characteristics for positive (T) and negative (T-) relative velocities.
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Fig. 17. Linear fitting (solid black line) of the branch of the
real friction force characteristics (solid red points) for the
positive relative velocity.

In the case of the Ty branch, the equation of
the friction force dependence describing the friction
force model for the positive relative velocity have
the following form:

T, — T,
— |vrel —mln’ (6)

rel, max

T, =T

where T is a static friction force, vrel, max is & max-
imum positive relative velocity. The T_ branch can
be described by an exponentially decaying function
of second order describing the friction force model

1,00

vim/s] 0,25 0,18 0,11 0,04 0,03

SURA

TIN] -

Fig. 18. Exponential fitting (solid black line) of the branch
of the real friction force characteristics (sohd red points) for
the negative relative velocity.

for the negative relative veloc1ty of the following
form:

T_ =T, + A exp (_lll_tng_>
1
4 (_ [vrel

— Urel, min) 7 (7)

ta

where Vrel min 1S @ maximum negative velocity, Aj,
Ay, t1, to are constant values. The main multival-
ued function describing friction force changes (red

- line in Fig. 16) occurring in our investigated 2-DOF
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system with a variable normal force is determined
from the following equation:

sgn(vpel) Ty if vper > 0,
T =< sgn(vge) T if vy < 0, (8)
|Ts| if v = 0.

4.3. Comparisons

The friction force model given by Eq. (8) is trans-
formed to a nondimensional one, and then a numer-
ical analysis based on the T} and T_ friction force
characteristics is carried out. The parameters of the

0,14
" 0,0
0,14
0,21

0,34

04 T
0.5

0,11

0,0

0,14

(b)

Fig. 19. Verification of the results obtained via computer
simulation (red line) with experimental measurement of state
variables (black line) of the analyzed system: friction force
model: (a) T_, (b) T; parameters: a; = 1.87, az = 0.72,
f1 = 287, B2 = 162, B3 = 247, 1 = m2 = N2 = 0,
vy = 0.06, po = 1.1; initial conditions: tg = 400, t; = 5000,
z1(0) = 0, z2(0) = 0, y1(0) = y2(0) = 0.

two models are obtained by both measurement and
identification: Ty = 3.63, Tmin = 0.86, Urel, max =
0.27 (T4 branch); Ty, = —5.94, Ty = —1.42,
—Vrel,max = 0.28, A1 = 3.23453, A, = 2.87362,
t; = 0.0342, to = 0.30529 (T_ branch). The numer-
ical analysis with implementation of the introduced
friction force dependency yielded the results pre-
sented in Fig. 19.

The numerical trajectory (red line) illustrated
in Fig. 19(a) is satisfactorily close to its experi-
mental counterpart recorded for the investigated
dynamical systemn. The sticking velocity is almost
the same, but in the sliding phase some distin-
guishable differences are observed. T friction force
model can be used after the friction effects occurring
in the systems with the variable normal force acting
between cooperated surfaces have been analyzed.

A significant difference between the trajecto-
ries under consideration [cf. Fig. 19(b)] is visible,
but the sticking phase still coincides for the posi-
tive relative velocity. The comparison of the results
with those in Fig. 19(b) shows nonsymmetry of the
system under analysis, which is the information of
considerable usefulness.

5. Conclusions

The 2-DOF self-excited system with friction is ana-
lyzed using numerical methods. A special numer-
ical scheme based on the Hénon approach and
exhibiting good suitability for investigations of non-
smooth dynamical systems is applied. Many inter-
esting dynamical nonlinear behaviors are reported
and analyzed, including stick-slip periodic (Figs. 4,
6 and 7), quasi-periodic (Fig. 8) and chaotic (Fig. 9)
motions. In the analysis, all standard techniques are
applied, i.e. time histories, phase planes, Poincaré
maps, bifurcation diagrams and the Lyapunov
exponents. The calculation of Lyapunov’s expo-
nents from an interpolated time series offers suf-
ficient accuracy and correct values of its spectrum.
The expected estimation accuracy of the Lyapunov
exponents for each type of the motion yields dif-
ferent R relations between the number of the tra-
jectory points solved by the Hénon method and its
equivalent Lagrange interpolation.

In addition, the numerical analysis is supported
by the investigation of a real laboratory object
modeling the feedback reinforcement of the friction
force (model of T_ branch) and the friction force
without the feedback (model of Ty branch). The
numerical solution (red curve) obtained using the



T_ branch model has not proved a transition, which
can be observed in our experimental measurement
(black curve). The sticking velocity is almost the
same, but in the sliding phase some distinguish-
able differences are observed. It is suggested that
the T_ friction force model should be used after an
analysis of the friction effects occurring in the sys-
tems where the normal force acting between coop-
erated surfaces is fluctuated. Application of the T
branch friction force model leads to rapid entries on
the\stick phase and rather smooth backslides from
it [see red line in Fig. 19(b)].

To conclude, a new idea for the friction
pair modeling using both laboratory equipment
and numerical simulations is proposed allowing
for observation and control of the friction force.
The experimental data are compared with those
obtained via numerical simulations showing good
agreement.
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