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By the variational principle, the chaotic vibrations of deterministic geometrically nonlin-
ear elastic spherical and conical axially symmetric shells with non-homogeneous thick-
ness subjected to a transversal harmonic load are analyzed. The material of the shells is
assumed to be isotropic and of the Hookean type. Inertial forces tangent to the averaged
surface and inertia of rotation of the cross-section are neglected. By the Ritz procedure,
the original PDEs are transferred to the ODEs (Cauchy problem), which are then solved
by the fourth-order Runge-Kutta method. In the numerical studies, scenarios of tran-
sitions from harmonic to chaotic states for vibrations of flexible spherical and conical
shells are detected. Various vibrational states for different combinations of the following
~control parameters: shell’s deflection arrow, the amplitude and frequency of the exciting
force, number of modes considered, boundary conditions, and the thickness and shape
of the shell cross-section are studied. By adjusting the above parameters, we can detect
the transition of a continuous system to the lumped one, and the transition from the
harmonic to chaotic vibrations.

Keywords: Ritz method; shells; chaos; ordinary and partial differential equations.

1. Historical Introduction

The variational methods play a key role in the formulation of dynamic problems for
shells. Beginning from the pioneering work of Ritz! who, in 1908, proposed the min-
imization of a series of functions, a new challenging area of applications in applied
mechanics has been opened. Many difficult problems have been solved successfully
by the Ritz method. Other researchers, particularly Timoshenko, developed and
applied this method to various problems of applied sciences and engineering. Meth-
ods of Ritz and Bubnov—Galerkin require essentially smaller numbers of operation
in comparison with the other methods. They require less computational time, and
in some cases allow the analytical solution to be obtained.
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The stability of the Ritz process is an important issue. For instance, Mikhlin?3
has shown that for linear stationary processes, the stability of the Ritz procedure is
determined by certain properties of coordinate elements, whereas Dovbysh*5 has
analyzed the stability of the Ritz process in various spectral problems.

In the field of nonlinear problems the following problems have been success-
fully solved. The nonlinear stationary problem of shells governed by the hybrid
type equations has been solved by the Ritz process by Kantor.® Various forms of
variational equations have been formulated from the variational principle through
the use of different variational functions (see for instance the works of Ainola,’
Galimov,® Mushtari and Galimov,? Reissner!?).

One application of the variational methods is associated with the proof of exis-
tence and the formulation of solutions for nonlinear problems of elasticity and
plasticity. Here, the works of Vorovich!! for the nonlinear theory of shells should
be mentioned, in which the original problem is reduced to the solution of the sys-
tem equations with the nonlinear and continuous operators reserved. Applying the
topological methods, Vorovich proved the compactness of the approximate solu-
tions obtained by Ritz’s method. In addition, he proved that each of the points of
the Ritz manifold corresponds to one solution of the Cauchy problem. The series
of theorems, proved by Vorovich,!! give an estimation of the approximate solution
to the stationary problems.

By the Ritz approach, an equation of the hybrid form can be derived with
respect to the deflection and stress functions. This equation is associated with the
variational principle situated between Lagrange and Castigliano principles, where
displacements and stresses are variated in a mean surface. A peculiarity of this
- equation is exhibited by a functional standing under the variational sign. Namely,
this functional is not equal to the total energy of the system, although a variation
of this functional coincides with that of the total energy.

Usually, four different approaches are adopted for searching the solution of a
stationary nonlinear Ritz system:

the Newton—Kantorovich method,

method of differentiation with respect to the parameter,

method of successive approximations,

“set-up method” proposed firstly by Fedos’ev!? and widely applied in works.13:20

W=

It has been shown in Ref. 5 that differentiation with respect to the parameter and
the Cauchy problem for ODEs with independent variable ¢ should be solved on
the fixed time interval 0 < t < 1, if the initial system behaves as the Ritz system
for a certain functional. The aforementioned functional should posses a polynomial
increase up to infinity. For this case, an identity of the Ritz and Bubnov—Galerkin
processes is established. o

To the knowledge of the authors, an appropriate numerical solution to the
chaotic processes of the deterministic systems represented by spherical and shallow
shells with homogeneous and non-homogeneous thickness has not been made
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available. The aim of this work is to fulfil such a gap. It is noted that for spherical
shallow shells, rectangular plates, and plates of infinite length subjected to longi-
tudinal sinusoidal loadings, similar approaches have been presented in Refs. 13-21.

2. Ritz Method

Consider a double-curvature shallow shell in a three-dimensional space R® with a
curvilinear system of coordinates «, 3,7, as shown in Fig. 1, in which 4 = 0 denotes
the mean surface. The axes oa and o8 are directed along the main curves of the
two curvatures associated with the surface, whereas the axis o7y is oriented toward
the center of the curvatures. With the given coordinates, the shell is defined as a
3D object as @ = {a,8,7/(a, B) € [0,a] x [0,b], -2 <y < &}

It is assumed that the function h(a,3) does not possess first-order discontinu-
ities, and the maximal thickness hmax = hg is much smaller than the main curvature
radius Rpy,. It is also assumed that the Kirchhoff-Love hypothesis for normal coor-
dinates holds. By the principle of virtual displacements, one gets

—0(Uu + Ue) +/ Réwds =0. (1)

The first term of Eq. (1) represents the virtual work of elastic forces acting on the
shell, and the second term the virtual work due to the applied loads and D’ Alembert
and dissipative forces of the form

hye .
R=q—%(w+sw), 2)

where 7. is the unit weight, g the gravitational acceleration, g the transversal load,
€ the coefficient of dissipation, and A the thickness of the shell.

“'ﬁo
a'“.

Fig. 1. The geometry and mean surface of the shell.
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Notice that in Eq. (1), 8U, is the variation of the potential energy, caused by
bending deformations of the form

6U, = // (Ml(le + Msbx2 + 2M125X12)ds, (3)

where M7, M3, M2 are the bending and rotational moments, X1, X2, X12 are param-
eters describing the curvature changes of the mean shell surface, and dU, is the
energy variation, associated with the deformation of the mean surface:

(SUC = //(Tl(s€1 + T2(s€2 + T125€12)d3

=0 //(T1€1 + Toeo + T10e12)ds — / (e16T1 + 20T+ €126T12)ds, 4)

where T1, T3, T12, €1, €2, €12 are, Tespectively, the stresses and deformations occurring
in the mean surface.

Since the hypothesis of straight normals holds, the strains at an arbitrary point
of the shell have the following form:

e1 = €1+ vX1,
es = €2 +YX2, (5)
e12 = €12 + 2vx12,

where the strains at the mean surface are given as
o = % n l Oun 2 _ l Owg
17 %2 " 2\ 6 2\ 0a )’

€2=@+1(@1)2_1(%)
a3 " 2\ a8 2\ 8a )’ (6)
€12 = @+Qg+ 6w1 6w1 _ Bwo Bwo
083 0Oa Oa OB Oa 08°
w1 = w+ wg.

In the above, u, v describe the displacements in the direction of a and 3, respec-
tively. w(wp) is the initial deflection. Notice that in Eq. (6) the quadratic terms
relate to the geometrical nonlinearity associated with the normal rotation (with
respect to the mean surface) resulting from extensions and rotations. Equation (6)
can be derived from more generalized formulas.??

It should be noted that Eq. (6) is approximate in nature even for the linear
part. In exact formulas (see Eq. (12.53) in Ref. 23) the terms u/R; and v/Ra,
where R; and R, are the main radii, are also included. Neglecting these terms is
one of the assumptions of the technical theory of shells adopted in this work. For
the case of plates or for the case with axially symmetric deformation (v = 0), such
as cylindrical and shallow shells (R; = o0), the aforementioned terms also reduce
to zero. The parameters characterizing the changes in the mean curvature are

0w 0w 0w
X\=—53 Xe=Tgmm X2 T gias (7)
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The relations between the stresses and strains are

E
o1 = Tzler tvez + 0 +vxe)l

1-
E
o1 = 75 lez +ver + v(xz +vxa)l (8)
E
- = 2
o012 20+ ) (e11 +27x12)

where FE is the elasticity modulus, and v Poisson’s ratio.

Integrating Eq. (8) with respect to the thickness, one gets the expressions for
forces. By multiplying Eq. (8) by v and integrating over the cross-section, one
obtains the expressions for moments. Having the stresses, one can compute the
deformations in the mean surface, which are required for expressing the functional
in a hybrid form. By substituting the expressions for the strains in the mean surface,
making use of the expressions in Egs. (3) and (4), one can derive from Eq. (1) the
following variational equation:

5//{ (l—u)szw)]—[Ak¢+L2(1w+wo, )Jw

2Eh[(A¢:) — (14 ) La(pr 0 }ds—//[ )]6wds=0 ©)

where D denotes the cylindrical stiffness; A(e) the Laplace operator; w, ¢ the deflec-
" tion and stress functions, respectively; wq the initial deflection; and Lz(e) the known
nonlinear operator for the theory of flexible shells.

The Ritz method cannot be directly applied to solving Eq. (9), where the deflec-
tion function w and stress function ¢ can be independently varied, since this equa-
tion does not have the form of functional variations (in fact they are equal to zero).
In order to find the approximate values of the elements w® and ¢, the coordinate
series w;i(a, 8) and ;(a,B) (i =1, 2, 3, ...) are applied. They should satisfy the
following four requirements:

1. w; € Ha,p; € Hy, where H, is the Hilbert space referred to as the energy
space;

2. Vi elements w; and ; are linearly independent;

3. the system of elements w; and ¢; is full (compact) in Hy;

4. the system of elements w; and ¢; satisfies the main boundary conditions.

The approximate solution is sought in the following form

n n

w=Y zwilep), o= tlt)eiep). (10)

=1 i=1
The coeflicients z;(¢) and y;(t) are the desirable functions of time. By sub-
stituting Eq. (10) into (9), carrying out the variational operation and compar-
ing the coefficients standing by dz; and dy;, the following system of equations is
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obtained
A(X+eX)+BX+CY +DXY = Qg
CX+EY+%DXX:0 (11)
where the following non-dimensional quantities are introduced: ¢t = i1,z = £/7, with
T= ,‘:—O\/gz; (a-shell radius), the loading parameter qo(t) = ¢(t)a*/Ehg, & = £,

L =8,¢= E%g’ ¥ = Ey,—‘;g, h = i(hfl, with h(p) = ho(1l + ¢p), p = r/a. Notice
that for simplicity the bars were omitted in Eq. (11).

For shallow rotational shells with axially symmetric deformations and thickness
h = ho(1 + ¢p), the deflection w and stress function ¢ have the form

w=Y ztywilp), »= vi()eilp), (12)
i=1

=1

where the matrix coefficients occurring in Eq. (11) have the form
1 1
i = / (L +epwiwpdp; Cip == / [Akpp + La(wo, 0p)lwip dp;
0 0
1 1 3
= Tor1 ) 1 Aw;Awg — (1 - .
12(1 —12) /0 (1+ cp)’[Aw; Awg — (1 — v) Lo(w;, wi)|pdp

1
Qi = /0 w;p dp; \ (13)

B

1
Digp = — / w; Lo(wk, wp)p dp;
1] .

1
1
Ejp = —/0 T+ o [Ap;jApp — (1 +v)La(pj, 0p)]p dp.

Solving the second equation of the system equations in Eq. (11) with respect to
Y yields '
Y= [E-lc + % (E7'DX) [ X. (14)

After multiplying the first equation of Eq. (11) by A~! and denoting X = R, the
equation can be reduced to the first order Cauchy problem of the form:

R=—-R+[A"IC+(A"!DX)]- Y - A"'BX + ¢({)A'Q,

% =R, (15)

The transformation is possible since the matrices A~! and E~! do exist, if the
coordinate functions are linearly independent. Equations (15) can be solved by the
fourth-order Runge-Kutta method with the following initial conditions:

$i=0, .'13,'=0 for t=0.
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Table 1. Approximate functions for different boundary conditions.

wi(p)
210 (1= p?)it? (1 —p?)?
o Unmovable clamping Unmovable ball-type support
(1-p?)ytt Movable clamping Movable ball-type support

The approximate functions for four types of the boundary conditions are listed in
Table 1.

In order to study the vibration of shallow conical shells, the shell is treated as
a plate with initial deflection wg = —k(1 — p),(k = H/h, is the arrow deflection).
For the four types of boundary conditions, the coefficients of the system in Eq. (15)
are given as follows:

1. ‘Unmovable clamping

o1 (4 4 2i + 2k)!
T 5y 2+ 2k C(Tt2+20)
g0 _ M+ DE+D [ 1 ik
w731 —v?)  litk+1 \G+R)(GE+k+1)
4 302 6ik _ 1+V]}
20+k+2) [G+k)(+k-1) 2
3c(2i + 2k — N . ;
@it 2k 53y 1otk — L+ V)G +R)GE+E - 1)]} ’ 19
1
CY) =-2(p+1)- ( / (1= p*)***1dp+2p / 4 _p2)i+pdp)’
1 c &
EY = 4ip[( +p—1)(1 —2'( - )’
o =4l +p - DU+ =2pl\ =T~ T, m1m T Ty
! 1
DY) = 4G+ 1)(k + 1)p-- 2 @

G+k+1)..G+k+p+1) T2G+2)
2. Movable clamping

AD Afi), B® — BD,

C(z) - 2h p(2p _ 1) / 2p—2 (1 2)1+1dp, Q(z) _ Q(l)

@ _ . pj
B = 166+ Do+ 0| g e T

2

+ — -
20 +p+1)(G+p+2)

(17)

x[u+mgip—n'lgu}
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- Cﬁiiﬁii—il?&iiuw— (1= )i +p)G+p- 1)]},
2 _ 4+ 1)(k+1)(p+1)

*2  (i+k+p+1)(it+k+p+2)
3. Unmovable ball-type support

3 ¢!

AD = 4D

i—1,k—1"
2+C(4+3c), keiz1,
6(1 -v)
BY ={ cld+8) o o ke
51— 0)’ i=1, k=2; i=2, k=1,
Bﬁ)l,k—l’
3 1 3 1 3 1 3 1
Y =c,, D =D, 1, Q¥ =00, EJ=E}. (8

4. Movable ball-type support

4 1 4 3 4 2
Az(‘k) = Az("—)l,k—l» B§k) = B§k)’ C'i(p) = 'i(—)l,p7 (19)
4 21 4 1 4 2

ngk;); = Dz(—l),k-—l,p’ QS ) = Qz('-)la EJ('p) = EJ('p)'
Note that in Egs. (17)-(19) the doubled factorial is computed in the following
way: 2nll=2-4-6..--. 2n; 2n+D!'=1-3-5.---- (2n+1).

3. Reliability of the Results Obtained

The proposed Ritz algorithm allows us to solve a wide class of both static and
dynamic problems. Solutions to statical problems are realized through the “set-
up” method by Fedos’ev.!234 According to the solution of the Cauchy problem for
€ = g for a series of transversal contact loads uniformly distributed on the shell
surface, one obtains {¢;} — {w;, p;}, which yields a construction of dependencies
g[w(0)] and allows us to investigate the stress—strain state. The reliability of the
results obtained and the solution efficiency are verified through comparison with
results obtained by the Ritz method applied to various static problems for high
order approximations (m = n = 3).524

Let us apply the proposed approach to the spherical shell with £ = 5 and moving
clamping (Table 1). According to the “set-up” method, a stationary problem is
reduced to the hybrid hyperbolic problem as given in Eq. (15), and the parabolic
one. The latter is obtained from Eq. (15) by removing the second derivative in time
to yield

1

X = . ([A-lc +(AT'DX)] - [E—lc + %(E‘IDX)]

X — A-le+qo(f)A-1Q). (20)
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Fig. 2. Shell deflection for (a) hyperbolic, and (b) parabolic equations.

Table 2. Number of iterations.

€ Hyperbolic Problem Parabolic Problem
1 5096 50
10 512 492
100 5097 4929

The results obtained by the “set-up” method for the hyperbolic problem in Eq.
(15) and parabolic problem in Eq. (20) for € = 1,10, 100 are plotted in Fig. 2.

The number of iterations required for obtaining the solution with a relative error
€ = 1075 is shown in Table 2. It should be emphasized that the magnitude of ¢ essen-
tially influences the number of iterations and the character of their convergence.

For the parabolic (hyperbolic) system, £ = 1 (¢ = 10) is the optimal value for the
computational procedure. However, the number of iterations needed for a hyperbolic
problem is one order higher than that for a parabolic one. Hence, one may conclude
that the so-called parabolic set-up method is more suitable for the case considered.

4. Convergence of the Ritz Method vs Control Parameters

In order to observe the qualitative behavior of the continuous system, a phase-
space monitoring technique is employed. By this approach, the PDEs governing
the dynamics of the continuous system are replaced by ODEs with infinite dimen-
sions. However, some crucial points concerning such a reduction should be made
here. First of all, instead of using an infinite chain of equations, one takes only
its truncated version. It is realized that increasing the number of equations yields
the threshold value, and further increase in the number of equations does not bring
anything new, as the dynamical properties of the system have been stabilized. Obvi-
ously, such a reduction depends strongly on the finite dimension of the attractor
analyzed. However, even for the finite dimension of the attractor, the truncation
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procedure of Egs. (10) and (12) plays an important role. It is worth noticing that
for the case using an “improper” basis as the reduction tool to obtain the ODEs,
the “truncated system” obtained may exhibit attractors with properties not com-
parable with those of the original system.

One example is the analysis of a two-dimensional equation governing the heat
fluid convection. The Lorenz system,%® as the “truncated” one, exhibits chaotic
dynamics. However, an increase in the number of modes causes a non-regular
increase in the chaos space, which then suddenly decreases. For a sufficiently large
number of modes, chaos vanishes. It was shown in Ref. 26 that for large Prandtl
numbers § in the two-dimensional Boussinesque convection, there exist critical
- Rayleigh numbers Ra corresponding to the occurrence of one- and two-dimensional
vibrating motions. A further increase of Ra pushes the system to harmonic con-
vection. Both of the above examples show that in order to get qualitatively proper
correspondences between the dynamics of the original and truncated dynamical sys-
tems obtained either by the Bubnov—Glaerkin or Ritz methods, one has to include
an appropriate number of modes. This problem was addressed in consideration of
the parametric vibrations for flexible plates in Ref. 27.

In what follows, we investigate the problem of an appropriate choice of the modes
in the Ritz procedure using the example of vibrations of spherical and conical shal-
low and geometrically nonlinear shells with homogeneous and non-homogeneous
thickness, and movably clamped on their contours. We assume the load to be uni-
formly distributed along the shell surface due to the harmonic rule of the form

q = go sinwpt. (21)

For the present purposes, the vibrations computed for a conical shell simply
ball-type supported on its contour with different values of the control parameters
{90,wp} have been plotted in Figs. 3(a) and 3(b) for k= 5 with constant and non-
constant thickness (h = ho(14¢p)) for ¢ = 0.1, from which the convergence property
of the Ritz procedure related to the shell thickness can be analyzed, as given below.

Consider point A(go = 2.4, wp = 3.5) € {qo,wp} in Fig. 3(a) which, for n = 6,
is situated within a chaotic zone. In Fig. 4, .the signals w(0;t) for 150 < ¢t < 156
and power spectra S(wp) were plotted. Observe that for n = 2 harmonic vibrations
with frequency wy, n = 3 show first the period doubling bifurcation; for n = 1, 4,
5, 6 chaos appears on the fundamental frequency. From these results, one concludes
that beginning with n > 4 the bifurcational process for k < 5 is described properly,
i.e. there is a convergent sequence,

[wo - gwi(t)wi(p)] = in

t€[50,53]

[ —;mt)wi(p)] = min

t€[50,53)

and it is the best approximation to the exact solution w® and ¢° in the metric Hy4.
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Fig. 3. Vibrations in terms of the control parameters {qo,wp} for conical shell for £ = 5 with

(a) constant, (b) non-constant thickness.
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Fig. 4. Dependencies w(0,t),t € [150; 156] and S(wp) vs n in (12) for conical shell with constant

thickness (k = 5) and movable simple ball-type support (constant thickness of the shell).
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Fig. 5. Dependence w(0,t),t € [150;156] and S(wp) vs n in (12) for conical shell with constant
thickness (k = 5) and movable simple ball-type support (non-constant thickness of the shell).

Consider now a shell with non-homogeneous thickness. Let us take the point
B(go = 24, wp = 3.57) € {qo,wp} in Fig. 3(b) which, for n = 6, is situated in a
chaotic zone. In Fig. 5 the following signals are reported: w(0;t) for 150 < ¢t < 156
and a power spectrum. For n = 2 and n = 3 harmonic vibrations with the exciting
frequency wyp occur, whereas n = 1 corresponds to harmonic vibrations with the
frequency of 1/5 wp, which means that the first approximation in Eq. (12) forces
the system to increase its period of vibrations five times. For n = 4, 5, 6, chaos
associated with fundamental frequency is produced. To sum up, similarly to the
case of constant thickness shell, beginning from n = 4, one may observe a conver-
gent averaged sequence exhibited by the power spectrum. Based on the previous
discussion, one may conclude that variation of shell’s thickness does not influence
the convergence property of the Ritz method.
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5. Spherical Shells with Non-Homogeneous Thickness

Although turbulence has been known for hundreds of years, mathematical model-
ing of the transition from smooth flows into chaos started with Landau’s work.2®
Following this, other models were proposed by Feigenbaum,?® Ruelle-Takens—
Newhous,® and Pomeau-Manneville.3? However, none of the mentioned existing
models (and others known to us) can properly describe the transition from harmonic
vibration to chaos in our deterministic vibrations of the spherical and conical shells
with constant and changeable thickness for an arbitrary set of boundary conditions
and deflection arrow values. The mentioned control parameters play an essential
role in the transition to chaos owing to the change of amplitude and frequency
of excitation. In what follows, we are going to study the infiuence of the assumed
thickness change of the form h = ho(1 + ¢p) on the vibrations characteristics with
respect to the boundary conditions and the shape of the shell cross-section. Let us
analyze spherical shells with £ = 5. We consider the spherical shell with moving
clamped and deflection (convexity) arrow k = 5 constant (¢ = 0) and non-constant
thickness (¢ = 0.1, —0.1).

To this end, charts were plotted in Fig. 6 for various combinations of control
parameters {qo,wp} through a computation of 400 x 500 points. An algorithm is
used for analyzing the vibration characteristics, including the Lyapunov exponents,
in terms of the control parameters {go,wp} from the power spectrum.

As can be seen from Fig. 6, the influence of thickness change is remarkable for
low frequencies and those close to eigenfrequency of free vibration. For the shell
with ¢ = 0.1, the surface area of bifurcation and chaotic vibration is essentially
smaller than that of constant thickness and that for ¢ = —0.1. In other words, the
variation of thickness has forced chaotic vibrations to transit into harmonic ones,
and into a series of bifurcations. For ¢ = —0.1, on the contrary, the area of chaotic
vibrations increases remarkably. It is clearly visible for frequencies higher than
the eigenfrequency value, namely, one may control the vibration of the mechanical
system considered through the change in thickness.

It was reported?* that for a shell with constant thickness after harmonic vibra-
tions with the excitation frequency, a further increase of gy excites a new linearly
independent frequency, and a transition to chaos is associated with the series of
linear combinations of these two frequencies and Hopf bifurcations. However, the
aforementioned scenario does not appear for h(p) = (1 + ¢p), where ¢ > 0.2. Con-
trary to ¢ < 0.2, for the considered case, a linear combination of two indepen-
dent frequencies does not lead to chaos or “stiff” stability loss. Rather, the system
exhibits harmonic vibrations. Let us analyze this scenario in some detail using the
example of the shell with a varying frequency of the form h{p) = (1 + ¢cp), where
¢ = 0.2. The vibration characteristics considered are: signal w(0,t), phase portrait
w(w), power spectrum S(wp), Poincaré section w(w(¢t+T')). In Table 3, for simplic-
ity, the following notation is used: w; = w(t), wy+1 = w(t+T), where T is the period
of excitation, and the vibration characteristics are expressed in the threshold value
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Fig. 6. Vibrational charts in terms of the control parameters {go,wp} for spherical shells for
k =5 (moving damping).

of qo, in the sense that between successive threshold values of q¢ a picture remains
practically unchanged. The following is the behavior observed from Table 3:

1. Vibrations which occur on the fundamental excitation frequency ai are har-
monic. Phase portrait represents a manifold of one rotational cycle (go = 15).

2. Further increase of qg up to gg = 15.9 causes an occurrence of the second inde-
pendent frequency by, i.e. two-frequency motion with frequencies a; and b, is
observed. The occurring motion is not synchronized because %} =T = 8.850...
is an irrational value.

3. The increase of gy up to go = 16 causes the occurrence of the series of linearly
dependent frequencies b, = n-b1 and a, = a1 — (n—1)b;. The mentioned process
continues until the frequencies approach each other, i.e. a, bx € [b1,a1].

4. For gp = 16.4, period doubling associated with the frequency b; occurs, i.e. Hopf
bifurcation takes place.
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Table 3. Signals, phase portraits, power spectra and Poincaré sections.

Signal w(0,t) Phase portrait w(w) Power spectrum S(@ ) Poincaré section
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Table 3. (Continued)
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5. Further, the number of frequencies in linear combination decreases to only two
independent ones (gp = 17.8).
6. For go = 17.9, a collapse of the torus occurs, and only one frequency a; remains.

From the above discussion, it is clear that the “stiff” stability loss and chaos do
not occur for the case considered. In other words, owing to an appropriate variation
of the shell thickness one can avoid chaotic vibrations and “stiff” stability loss of
the shell. Such an observation seems to have an important meaning in applications.

6. Chaotic Vibrations of Conical Shells with
Non-homogeneous Thickness

Consider a shallow conical shell with constant and non-constant thickness: h =
(1+¢p), with clamped moveable and ball-type movable support. They are treated as
plates with initial deflection wp = —k(1 — p), where k = H/h, denotes a deflection
arrow of the shell. The boundary conditions can be approximated by the following
functions: .

(i) movable ball-type support

wi(p) = (1= 9% ws(0) = Q- P, (22)
(ii) movable clamping support
wi(p) = 1= p")™*, pj(p) = (1 - p?)*H. (23)

The applied loading ¢ = gp sinwyt and the initial conditions are equal to zero.

In Fig. 7, vibrational charts were plotted in terms of the control parameters
{g0,wp} for conical moveably supported shell with deflection arrow & = 5 of constant
(¢ = 0) and variated thickness (¢ = 0.1, —0.1). Notice that we have changed the
algorithm of chart construction in order to exhibit zones of independent frequencies.
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(b) c=-0.1

Harmonic vibrations

Modified Ruelle-Takens scenario

Feigenbaum scenario

Chaos

©c=0

Fig. 7. Vibrational charts in terms of the control parameter {go,wp} for conical shells for k =5
{movable clamping).

As can be seen from Fig. 7, at the shell center (¢ = —0.1), now zones of chaos occur.
They are associated with high frequencies, as well as frequencies close to the free
vibration frequency for the exciting amplitude go > 35. Contrariwise, for ¢ = 0.1,
both the chaotic and bifurcation zones decrease.

Consider a conical shell that is moveably ball-type supported with non-constant
thickness. In Fig. 8, the vibration charts in terms of the control parameters {qo, wp}
for constant and non-constant thickness for ¢ = 0.1, —0.1, 0.2 for the shell with k = 5
were plotted. The same notation as that for Fig. 7 holds. In this case, the influence
of thickness variation on the system dynamics is different from the one previously
considered. For ¢ = —0.1, a chaotic zone with low frequencies (about 2.5) occurs,
which does not exist for ¢ = 0.1, ¢ = 0.2 and ¢ = 0. A chaotic zone associated with
high (about 5.5) frequencies exists for ¢ = 0, but it does not exist for ¢ = 0.1, 0.2.
Contrariwise, for ¢ = —0.1, on frequencies close to the eigenfrequency of vibration
(= 3.5), the area of chaotic (harmonic) zones becomes smaller (larger) than those
for other values of the parameter c. To conclude, the influence of shell thickness
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Fig. 8. Vibrational charts in terms of the control parameters {go,wp} for conical shell for k =5
(movable ball-type support).

variations depends essentially on the geometry and boundary conditions of the shell.
Thus, the vibrations of the mechanical system considered may be controlled by
changing shell’s cross-section, boundary conditions and load parameters qo and wy.

For the case of ball-type supported shells, an interesting behavior of signal
intermittency has been observed. In Table 4 the same characteristics as those in
Table 3 were listed, i.e. signal, phase portrait, frequency spectrum, and Poincaré
map. They are associated with the conical shell with deflection arrow & = 5 and
frequency of external excitation wp = 3.5.

In this scenario, two-period doubling bifurcations were observed, and then inter-
mittency behavior was detected, which pushed the system into a chaotic state. More
details on this phenomenon are given below:
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Table 4. Signals, phase portraits, power spectra and Poincaré sections.

4o Signal w(t) Phase portrait Power spectrum S(@,) Poincaré section
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1. Vibrations associated with the frequency of excitation a; are harmonic (go = 1).
Phase portrait contains one rotational cycle.

2. The first soft Hopf bifurcation appears at go = 1.674.

3. Two Hopf bifurcations occur for go = 1.92. A loop occurs in the phase portrait.
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4. Further regular parts are mixed with chaotic splashes, which increase with the
increase of gp (g0 = 1.95). This behavior is in agreement with that observed
by Pomeau~Manneville and is referred to as intermittency.3! In the power spec-
trum, chaos is observed already on the first Hopf bifurcation. Phase portrait
successively becomes broad band.

5. In the signal, there are only few regular parts, and in the power spectrum chaos
associated with excitation frequency exists.

In general, for conical ball-type movably supported shells, chaos is realized
through the scenario described in Table 4. However, there are also parameter zones
where follow the scenario reported in Table 3. Let us consider this scenario in a
more detailed way.

In Table 5, the same characteristics as in Tables 3 and 4 for conical shells with
changeable thickness (for ¢ = 0.1 and with excitation frequency w, = 3.3) were
presented.

1. Vibrations associated with the fundamental excitation frequency a; are harmonic
(90 = 1.3).

2. The increase in gg (qo = 1.43) results in the occurrence of a new independent fre-
quency by, i.e. there is a two-frequency motion with frequencies a; and b;, but not
synchronized, i.e. %i- =2 =2.7661.... In the phase space two-dimensional torus
is observed. The signal characteristic changes quickly. The vibrations possess
relaxating property, and their impulse peaks are associated with highly ener-
getic modes. Besides, the third independent frequency occurs, i.e. az = a3 — b;.
In this case the birth of a stable invariant two-dimensional torus is observed.

3. The increase of qg up to go = 1.45 results in the occurrence of the series of
linearly dependent frequencies b, = n - b; and a, = a1 — (n — 1)b;.

4. For g9 = 1.5, the eleven time period of vibrations is observed (this behavior
has been predicted by Sharkovsky’s theorem33), and then (go = 1.7) vibrations
include again two-frequencies but with the addition of dependent frequencies of
the form Cn = Gn * €2, € = by, £ C2, Where ¢3 = —4;—”2

5. Further, changing go up to the value of 1:8, the second independent frequency
is destroyed, and a transition through one Hopf bifurcation is observed. This
causes the occurrence of stiff stability loss (deflection increase sharply). Further
increase of qo causes the occurrence of intermittent behavior which pushes the
shell into a slightly developed chaotic state.

Let us analyze the Poincaré section as the amplitude of the transversal load ¢q
changes. The distribution of points shows that for go = 1.45, 1.48 there exists one
attractor, which is localized in a subspace of the phase space. Its structure changes
with the increase of qg. For qo¢ = 1.7, a chaotic motion with two fundamental
frequencies and with large amount of linear combinations of these frequencies is
observed. Further increase of qp leads to the collapse of this attractor and the
birth of two attractors lying in different zones of the phase space. These attractors
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Table 5. = Signals, phase portraits, power spectra and Poincaré sections.
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are represented by points with ¢g = 1.8 corresponding to one Hopf bifurcation. A
slight variation of qo (go = 1.828) pushes the conical shell into the chaotic regime
associated with the existing frequency and first Hopf bifurcation. Attractors do not
have their orbits in the phase space. The increase of go to the amount of 2 - 1073
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Table 5. (Continued)
10 w(t) r 10 w(\ir)' Sdb
N
*® 0 ok r -
— . : . | .,
2 -5
855 8675 830 -40 0 40
1Pt )

1.83
1 U
[
j
L
1

! i -10) L L L %A L I

E

(go = 1.83) causes the occurrence of interaction between attractors. Their collapse
and matching appears, i.e. one attractor is merged into the other. Besides, owing
to the birth of this common attractor, matching of attracting zones of previous
attractors also appears. A detailed study of this new common attractor shows that
it permanently changes its position in the phase space, returning in the periodic-like
manner to the initial attractors’ places in the phase space. In such a process, one
observes the turbulent splashes (go = 1.828 and go = 1.832) in w(t).

In order to study the vibrations of conical shells in relation to the param-
eter qo, the dependence wmax(go) and scales of the vibrational characters will be
constructed. Some phenomena as those for Figs. 7 and 8 hold. In Fig. 9, these
characteristics are presented for the shell’s top for deflection arrow k = 5 for
¢ = 0,0.1,-0.1, and for shell vibrations (w, = 3.5, 3.57 and 3.38 respectively).
The first stability loss occurs for wmax(go) go = 1. In the vicinity of go = 2, a
zone corresponding to the second stiff stability loss appears. For both critical loads,
the shell with non-homogeneous thickness and with ¢ = 0.1 possesses larger criti-
cal loads, whereas for ¢ = —0.1 the critical loads are smaller, and the amount of
a splash is smaller than that for the previous case. Also, for ¢ = —0.1, the phe-
nomenon of convexity, but not concavity, was detected, and the graph is smoother
than for ¢ = 0,0.1. Conical loads for constant thickness are found in the mentioned
interval. The first critical load is associated with both the first Hopf bifurcation
¢ = —0.1 and second independent frequency (for ¢ = 0, 0.1), which are marked in
scales by the vertical lines. On bifurcation scales we observe that a chaotic zone is
smaller for ¢ = —0.1, which is in a good agreement with the charts shown in Fig. 8.

In what follows, we are going to investigate the occurrence of spatial-temporal
chaos for the described scenario. Figures 10 and 11 show both the signal w(0.5,¢)
and deflection of the mean shell surface for some time instants for harmonic
and chaotic vibrations, respectively, for k¥ = 5 and w, = 3.3. Besides, there
are given dependencies w(p,t) for ¢ € [151;154.5] (Fig. 10(a)), t € [167.5;169]



Chaotic Vibrations of Spherical and Conical Azially-Symmetric Shells 381

max
10 T T T T T T T T

s
.............

c=0
c=01

c=-0]1

Fig. 9. Dependencies wmax(go) of conical movably ball-type supported shell with k = 5 for
constant (c = 0) and variated (¢ = 0.1, —0.1) thickness.

(Fig. 11(a)). In addition, the phase portrait in space (Figs. 10(e), 11(e)), modal
portrait (Figs. 10(g), 11(g)), and power spectrum (Figs. 10(h), 11(h)) (p = 0.5)
were given. Simultaneous consideration of the mentioned factors allows us to ana-
lyze the signal in the spatial-temporal plane. The number of points in Figs. 10(b)
and 11(b) correspond to the associated curves shown in Figs. 10(c)—(e), and Figs.
11(c)—(e). We are going to analyze the vibrations of deflection in time, separately
for harmonic and chaotic vibrations. Curve 1 in Fig 10(b) characterizes the max-
imal deflection of the central shell point, and the quadrants are left below (Fig.
10(c)). Owing to the shell center movement down on the curve w(t), points 2 and
3 are obtained in Fig. 10(b). The shell center moves down, whereas the shell quad-
rants start to move up (curves 2 and 3 in Fig. 10(c)). Further, harmonic vibrations
around the neutral equilibrium state take place (curves 4-9 in Figs. 10(d), (e)).

Qualitatively, a similar picture is observed in Fig. 11, but the number of
halfwaves appears to be higher (Figs. 11(d), (e)).

In order to have a picture of the system change in time, the following charac-
teristics are required: signal w(t), its velocity %(t) and acceleration % (t). Let us
construct the graph of the function f(w,w, @), which will be further called a three-
dimensional phase portrait. Analogously, in order to study the bending characteris-
tics of the deflection function w(t, p), the angle of the tangent slope w/(t, p) and the
surface curvature wy, (t,p) are constructed for the point p. The mentioned set of
functions allows us to study the space state of the shell surface, as well as to analyze
the transition of the mechanical system from harmonic to chaotic vibrations. The
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Fig. 10. Spatial-temporal characteristics of the system behavior in harmonic vibrations regime.

dependence f(w,w),, wy,) is called the modal portrait. In the following, the phase
and modal portrait of harmonic and chaotic vibrations is studied.

Figures 10(f) and 10(g) show that the phase and modal portraits represent one
rotational cycle of vibrations in the space. Figures 11(f) and 11(g) show the phase
and modal portraits for the system in a chaotic state. Both graphs represent a
structure typical for chaotic vibrations. This discussion leads to the conclusion that
spatial and temporal chaos appear simultaneously.

7. Conclusions

We have proposed an approach for investigating the chaotic vibrations of elastic
shallow spherical and conical shells with non-homogenous thickness in relation to
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Fig. 11. Spatio-temporal characteristics of the system in a chaotic regime.

both the amplitude and frequency of the exciting transversal load. Vibration charts
are plotted for conical and spherical shells with variated thickness in terms of the
control parameter {qo,wp} for two types of boundary conditions. The influence
of shell thickness variation, as well as the shape of transversal shell cross-section
and boundary conditions, have been studied. In addition, the question of chaos
control through shell thickness adjustment has been addressed. A novel scenario
of transition from harmonic to chaotic vibrations for the spherical and movably
supported shells has been detected. It is associated with the occurrence of a second
independent frequency and the series of linear combinations with the excitation
frequency, which has been referred as the modified Ruell-Takens scenario.
Secondly, a novel scenario transition from harmonic to chaotic vibrations
for movably-ball-type supported conical shells with variated thickness has been
detected. It is associated with intermittency and a new scenario of matching of
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intermittency and non-dependent frequencies. Spatial chaos and its interaction with
temporal chaos have also been illustrated.
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