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Abstract

By using Tichonov theorem for singularly perturbed differential equations, we study the relationship
between dynamics of discontinuous differential equations and their continuous approximations along
periodic solutions.
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1. Introduction

There are many physical systems in which the mathematical modeling leads to discontin-
uous dynamical systems which switch between different states, and the dynamics of each
state is given by a different set of differential equati¢hs3,5,10] From the mathemati-
cal point of view, several ways exist to handle such discontinuous differential equations.
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Fig. 1. The considered one-degree of freedom mechanical system with friction.
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One way is to use the theory of differential inclusigid®]. Another way is a continuous
approximation of discontinuities to get smooth differential equatjdhs

In this paper we follow the second way. So we consider differential equations with dis-
continuous nonlinearities. Then we continuously approximate those nonlinearities by using
one-parametric families of continuous functions. The parameter 8 ands goes to 0. To
study the dynamics of the approximated equation, we split it for variables near and far from
the discontinuities. We scale the variables near discontinuities to get singular differential
equations. Then we use results from the theory of singularly perturbed differential equations,
like Tichonov theorenfil 1]. Finally, we combine the dynamics of singularly perturbed and
normal differential equations to get the dynamics of the original approximated differential
equations. We use this method for the study of persistence and stability of a periodic solution
of the discontinuous systems under continuous approximation. Summarizing, the method
is based on the construction of Poincaré maps along periodic solutions of discontinuous
systems and their continuous approximations. Then Tichonov theorem is applied to study
the relationship between those Poincaré maps. Some transversal assumptions are needed to
derive those Poincaré maps.

The plan of this paper is as follows. In Section 2, we present a simple model of one-
degree-of-freedom mechanical system to illustrate the main idea of the method used. Then
in Section 3, we extend this method for higher-dimensional general discontinuous systems.
In both sections, we study the persistence of periodic solutions of discontinuous systems
under continuous approximation.

2. An illustrative example

Let us consider a one-degree-of-freedom mechanical systerfifse® consisting of a
massn oscillating on a belt which moves with constant veloeityand which is connected
to a nonlinear oscillator with the elastic support characterized by congtaautslk,. Such
a model is governed by the following equation of motion:

m§ —kiy + kay® — T =0, (2.1)
where friction forcel is applied here in the following form:
T=———t0 g —uy).

S 145 — vpl
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Consideringn = k1 = k2 = vp = 1 and static friction coefficienty = 0.5, the following
simplified equation governs the dynamics of our dynamical system:

0.5
. 3 .
—y4+y°——Fsgnl-y)=0. 2.2
Y=y =150 gnl—y) (2.2)
By puttingy = —w + 1, we get the system
y=—w+1,
0.5
. 3
w=y>—y— sgnw. 2.3
A PR (2.3)

Now we approximate (2.3) by the system

y=—w+1,
w=y3—y— fu(w) (2.4)

for e > 0 small and a functiorf; : R — R defined as follows:

0 sghw for |w|>¢
P — w w|>e,
1+ |wl J

0.5w
(1+ee
Then (2.4) forw > ¢ has the form

y=—w+1,

Sfe(w) =

for |Jw|<e.

0.5
1+w’

w=y3—y- (2.5)

which is (2.3) forw > 0. For|w| < e, we takew = ¢v, |v| <1, and (2.4) has the form

y=—¢ev+1,
0.5

1+¢

If we check the vector field of (2.5) (s&ég. 2) near the linaw = 0 for w > 0, we see that
for y < yo the linew = 0 is attracting, and foy > yq the linew = 0 is repelling. Of course,
the variabley is increasing. Hergg —y0= 0.5, yo = 1.19149.

Now we can check by the progravathematicahat the solution of (2.5) with the initial
conditionsy(0) = yo, w(0) = O hits the linew = 0 at timety = 6.73896 iny(ry) :=
yo = —0.100068 € (—yo, yo). Of course, for the discontinuous system (2.3), we get a
periodic solutionpg(z) starting from the pointyg, 0), which is infinitely stable, i.e. all
solutions starting near periodic solutigny(z) collapse after a finite time tpo(z). We
expect that its approximation (2.4) would also possess a unique periodic solutigiear
with a rapid attractivity. This phenomenon is numerically demonstratgd] ifor a two-
degree-of-freedom autonomous system with friction. To show analytically this property for
our simple system (2.4), we consider the dynamics of a Poincaré map of (2.4) near periodic
orbit po(z) of (2.3). For the construction of this Poincaré map, we take the interval

=y —y— v. (2.6)

I := [yo— 6, yo+ 9]
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Fig. 2. Vector field of (2.3) fopg = 0.2 and(a) wg = —0.3, yg; € (—1.2,2) fori =0---32; (b) wg = —0.2,
yoi € (—1.3,1.3)fori=0---26; (c)wg=1.2,yq; € (—1.5,1.5)fori=0---30, (d)wg=1.0, yp; € (—1.6, 1.6)
fori =0---32; () yo = 1.08803,wq; € (—0.4,2.2) fori =0---26; (f) yo = —1.0, wg; € (—0.4,2.3) for
i=0---27; (g) yo = 0.321889,wq; € (—0.4,2.3) fori =0---27; (h) wo; € (—0.2,2.1) for k =0---23,
voi € (—=1.3,1.3)fori =0---26.
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for a fixed smallo > 0. For anyy € I, we consider the solutioty(¢), w(z)) of (2.5) with
the initial value conditions(0) = y, w(0) = ¢. Then for a smalb > 0, there i ~ g such
thatw(r) = ¢. We put

Py(y) = y(@).

We get a mappin@;: I — I for I =[yo — 9, yo + 0] andd = 6(5) is small. Concerning
(2.6), we putt = 0 and we get

V(y) = 20°-y)
as a solution of the equation
f(V,y) = y>—y—05V =0.
Moreover, we have

2—‘]; V(y),y)<—0.5V <0.

Let us consider the rectangle
Q :=[-yo—Lyo+1 x[-11].

The graph ofV (y) leavesQ only at the points—yo, —1) and (yo, 1). So we can apply
Tichonov theorenfil1] to the singularly perturbed system (2.6). We tak@® =y € 1, v(0)=
1 and the corresponding solution(z), v(¢)) of (2.6) leavesD nearyq at timez. We put

Pe(3) = y(@).
We get a mapP,: I — I. Finally, we put
P:(y) = Pe(De(y))

fory € I. Clearly, P,: I — I and this is the desired Poincaré map of (2.4) near periodic
solution pg(¢) of (2.3). The mapp, depends smoothly ansmall andy € 7. Similarly, the
map ¥, depends smoothly an> 0 small andy € /. We need to find the limit o¥.(y) as

¢ — 04. To do this, we apply Tichonov theorehl]. For system (2.6), we have already
verified all assumptions of this theorem except Viijlifi, p. 31} Namely, we must show
that for any(y, v°) € Q, y € I, it holds

(v(1),y) € Q for >0,
v(t) = V(y) ast— oo, (2.7)

whereuv(7) is the solution of the equation
(1) = y* — y — 0.50(1),
v(0) = 0.

Clearly, we have

v(1) =& W0 — 203 —y) + 203 —y).



1322 J. Awrejcewicz et al. / Nonlinear Analysis 62 (2005) 1317-1331

If v0>2(y3—y) then 2y3—y) <v(r) <v°. Sincev? <1and2(y3—y)| < lthenjv(r)| <1,

and condition (2.7) holds. Similarly, i < 2(y® — y) then 2y3 — y) > v(1) >v° and again
lv(t)| <1, and condition (2.7) still holds. Summarizing, we can apply Tichonov theorem
to (2.6). Consequently, the solutign(z), v(¢)) of (2.6) with the initial value conditions
y(0) = j € I andv(0) = 1 has the asymptotic expansion

y)y=y+1+ 0(),
v =2 +03 =5 — 1) +e ¥ 1 -20° - y) + 0(o).
Time7 is determined from the equatiariz) = 0 and we get

y+i~yo+ O().

Hence,
Y.() =y =y+i+ 0@ =y + 0.
This gives
Pe(y) = Ve (Pe(y) = yo + O(e). (2.8)

We note that the limit ma@o(y) = yo in (2.8) is just the Poincaré map along the periodic
solution po(z) of (2.3). Furthermore, the identity (2.8) holds also in @fetopology, i.e. it
holds

Pl(y) = O(e). (2.9)

Hence the maP;: I — I has a unique fixed point, € I of the formy, = yo + O (¢),
which is according to (2.9) also rapidly attractive. Summarizing, we get the next theorem.

Theorem 1. The discontinuous systef.3) has the periodic solutiopg(?) starting from
the point(yg, 0), which is infinitely stablgei.e. all solutions starting neapo(#) collapse
after a finite time topo(r). Its approximation(2.4) has also a unique periodic solutign,

starting from the pointy,, ¢) which approximatego(z) and which is rapidly attracting
This coincides with the infinite stability pf (7).

Theorem 1 analytically explains numerical results[4f concerning stable periodic
solutions.
Finally, we note that functiorf; is an approximation of the multivalued mapping

__Jsgnw  for w # 0,
Sgnw = { [-1,1] for w=0.
Hence (2.4) is an approximation of the discontinuous differential inclusion

)‘):_w-’_ll
1+ |w]

which is a differential inclusion version of (2.3). But, of course, these arguments fit into the
general theory of differential inclusioifig,9].

w—y3+ye— Sgnw,
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3. Higher dimensional systems

In this section, we consider a general discontinuous systeRi .ifror the sake of sim-
plicity, we assume that a system has a discontinuity at levelO for dim x = 1. Hence
z=(x,y) € R" and dimy = n — 1. The system is given by the equation

= f(), (3.1)
where

= | f+(x,y) for x>0,
f(Z)_{f_(x,y) for x <O.

The functionsfy : R" — R" are smooth ang (0, y) # f—(0, y) in general. We put

fer=(ht(x,y), g£(x, ),

wherehs: R" - Randgy: R" — R"~1. Now we takes > 0 small and consider a
continuous approximation of (3.1) given by

i=f() for |x|>e, (3.2)
and for|x|<e:

. _hyey)—h(=&y) | hi(ey)+h (=&Y
X = X+

2¢ 2 '
. ) —&8—-\UT06 ) + —\7 G
5= g+(&,y) —g—(—¢ y))hL g+, y) +g-(—¢ y)_ (3.3)
2¢ 2
We putx = ew, |w| <1, in (3.3) to get the system
. hy(ey) —h_(—¢y) hi(e,y) +h_(—¢, )
cw = w + ,
2 2
. & y) — 8&-(—¢& & y)+8-(—¢,
y:g+( y) —g-( y)w+g+( y) +8-( y)_ (3.4)
2 2
In order to apply Tichonov theorem, we consider the assumption

If (3.5) fails, then we use (3.2)—(3.3), since the right-hand side of (3.2)—(3.3) belongs to the
set

F(z) := conV f_(x, ), f+(x, )]
= {Af-(x,y) + (L= A) fy(x, »I4 € [0, 11},

and
ze F(z) (3.6)

is the differential inclusion corresponding to (3.1).
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Now we suppose condition (3.5) along with the following assumption.

(Al1): There is a solutiop(z) of (3.1) defined ori0, 7'] such that the:-coordinateps (¢)
of p(¢r) satisfiesp1(t) >0 forr € (0, T) and p1(0) = p1(T) = 0. Moreoveri, (p(0)) =
0, h4(p(T)) <0, and the gradier¥, s (p(0)) # 0.

The conditioV,h 4 (p(0)) # 0 implies that the sét;l(O) is a manifoldM onR" ! near
the pointp(0). Here we consider the restrictidn (0, -) : R > R

The reduced system of (3.4) foe= 0 has the form

_ 8+0,y) —g-(0,y) g+(0,y) +¢g-(0,y)

y=H(y) = 5 V(y)+ >

(3.7)

for

— h+(07 )’) + h*(o’ )’)
h—(0,y) —h4(0,y)

We suppose the following assumption.

(A2): Let p2(t) be they-coordinate ofp (7). Then the solutiomg(z) of (3.7) with the initial
conditionyg(0) = p2(T) passes through the poipt(0) at time Ty, andh 4 (0, yo(r)) <0
forr € [0, To), h— (0, yo(r)) > 0 for ¢ € [0, Tp]. Moreover,yo(Tp) is transversal td/, i.e.
g+(p(0)) is not orthogonal t67, 44 (p(0)).

We note that Eq. (3.7) is related[tt0, formula (2.12)] Condition (A2) implies condition
(3.5) alongy = yo(1), t € [0, Tp], and it also gives a sliding solutig®, yo(?)), ¢t € [0, Tol,
of (3.6). Moreover, we get a periodic solutigg(z) of (3.6) given by

V()

_[pw fort € [0, T1,
po(t) = {(0’ yo(t = T)) fortelT, T+ Tol

Now we construct a Poincaré map of (3.2)—(3.3) alongo(z) as follows. LetBs(p2(0))
be the small ball if?"~* centered inp2(0) with the small radiu® > 0. We take a solution
z(t) of (3.2) starting from the point, y), y € Bs(p2(0)). This hits the surface = ¢ near
p(T) at the point(e, y(7)). We consider the map

D:(y) = y(1),
@;: Bs(p2(0)) — Bs, (p2(T)),

forasmalld; > 0. Now we consider the solutidm (r), y(¢)) of (3.4) starting from the point
(L, y),y € Bs,(p2(T)). It will hit the surfacew = 1 at a timer near the point1, p2(0)).
Like in Section 2, Tichonov theorem implies that

1=w(®) =V (@) + 0(), (3.8)
y(@) =3 + O(e),

wherey(r) is the solution of (3.7) with the initial conditiop(0) = y. Sincey is near to
p2(T), condition (A2) and (3.8) imply thab (¢) transversally crosses the lime= 1 atr.
Hencer is locally uniquely defined. We also note tHaty (7)) + O(¢) = 1. Hencey(7) is
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O (¢) near to the poin®(y) € M which is the crossing point a¥ with ¥ (7). Thus we can
put

Pe(y) = y(@),
@, : Bs,(p2(0)) - R" .
Finally, we consider the Poincaré map

Py(y) == Ye(P:(y), y € Bs(p2(0).
We have?.(y) = O(y) + O(¢) and

Py(y) = O(Po(y)) + O(e),

DP:(y) =DO(Po(y)) + O(¥). (3.9)
In order to find a periodic solution of (3.2)—(3.3) neay(r), we must solve the equation

y=Piy). (3.10)

We havepo(0) = Po(po(0)). Now we take a tubular/normal neighborhodtx W of M
in R"~1 near the pointpg(0), whereW C R is an open neighborhood of & R. The
corresponding projections are as follows:: M x W — Wandl'z: M x W — M. Then
Eq. (3.10) is splitted to the system

vi=T1P:(y1,y2), y1€W,
y2=1I2P(y1,y2), y2€ M. (3.11)

Since®(y) € M, (3.9) gives
yl = Flpr()’l’ y2) = 0(8)5
y2=T2P:(y1, y2) = Q(y2) + O(¢),

where we getamaf2: M — M defined neapg(0) by

Q(y2) = O(Po(0, y2)).

The mapQ is a Poincaré map gfg(z) for (3.6) when the dynamics on the levek 0 is
given by (3.7) like in[10, p. 111] Clearly, 2(po(0)) = po(0). Hence, if the linearization
I — DQ(po(0)) is nonsingular, then we can solve (3.11) neafO) by using the implicit
function theorem. Moreover, DQ(po(0)) is stable, i.e. all eigenvalues XQ(po(0)) are
inside the unit circle of, then also the corresponding periodic solutigiy) of (3.2)—(3.3)
is stable. Of course, the stability 6fQ( po(0)) gives the stability of periodic solutiopg ()
for (3.6) when again the dynamics on the levek 0 is given by (3.7). Summarizing, we
arrive at the following result.

Theorem 2. Let assumption§Al) and (A2) hold. If the linearization/ — DQ(pg(0)) is
nonsingular then the approximate systgi3.2)—(3.3)possesses a periodic solutigr(r)
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near po(0). If DQ(po(0)) is stable then also the corresponding periodic solutipg(z) of
(3.2)—(3.3)is stable

Remark 1. Conditions (Al), (A2) and Theorem 2 contain some transversal/generic assump-
tions, namely thaV s (p(0)) # 0, g+ (p(0)) is transversal ta/ and that the linearization

I — DQ(po(0)) is nonsingular. If one of them fails, then the construction of the Poincaré
map P, as well as the solvability of Eq. (3.10) becomes problematic. Some bifurcations of
periodic solutions are expected.

Remark 2. Theorem 2 states the persistence of a generic periodic solution of discontinuous
systems crossing a discontinuity level under a continuous approximation. This persistence
could be proved by using the Leray—Schauder degree tfiglobut since we use the implicit
function theorem, we get uniqueness and stability of periodic solutions as well. Also, this
approach is constructive. Finally, we assume that the discontinuity level has a codimension
1. Higher-codimension problems could also be interesting to study.

We note thaipg(0) = p(0). For application of Theorem 2, we need to fibd2(p(0)) as
a map fromT,) M to T,0) M, whereT, M is the tangent space of manifald at point
p(0) and is given by

TyoM = {ne Ry L Vyhi(p(0)).

From the definition of map® and &g, we can derive after some algebra that for any
n € TpoyM, the vectorDQ(p(0))n € Ty M is given by

(Vyh i (p(0)), w(To)) .
= To), 3.12
(V2 (p(0)), Jo(To)) 01O (3.12)

where(-, -) is the scalar product and functien(¢) (depending om) is the solution of the
initial value problem

W () = DH (yo(t))w(®),
w© =20y Ly, (3.13)
pu(T)

where functions (¢), y(¢) (depending also om) are the solutions of the initial value problem
X(1) = hyx (p(0)x(@) + hyy(p(@))y(2),

V(@) = g4x(p()x (1) + g4y (p (1)) y (1),
x(0 =0, yO) =n. (3.14)

DQ(p(0)n =w(To) —

Formulas (3.12)—(3.14) can be used to comp€&(p(0)). For instance, let us consider an
extension of system (2.2) to higher dimension given by

0.2

. 3 .

_ == 1— =
vV—v+4v 1101 sgn( V) +zf(z,v) =0,

7+ 0z+zg(z,v)=0, (3.15)
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wherez € R, § > 0 andf, g are smooth functions. Eq. (3.15) has the form

E=y] -y 1+' ] sgnx + y2.f (2, y1),

yi=1-x,

y2=ys,

)"z = j 0y3 — y28(¥2, y1)- (3.16)
Since now

0.5
he(x, ) =y3 =1 F Tix + y2.f(y2, y1),

for y = (y1, y2, y3), assumption (Al) holds with" = rp = 6.73896 and withp(r) =
(w (@), y(), 0, 0), wherew(z), y () solve (2.5) with the initial conditions(0)=yp=1.19149
andw(0) = 0. We note thap(T) = (0, yo, 0, 0) for yo = —0.100068¢ (—yo, yo). Further-
more, the reduced system (3.7) now has the form

=1
V2 =y3,
y3=—0y3 — y28(y2, y1).
Hence we haveo(r) = (yo + ¢, 0, 0) with Tp = yo — yo for assumption (A2). Next, since
Jo(To) = (1,0,0),  Vyh4(p(0) = (3§ — L, f(0. 30), 0),

and @8 —1=3.25893+# 0, we see thafo (7o) is not orthogonal t&/, /4 (p(0)). Summa-
rizing, we get that also assumption (A2) holds. So in order to apply Theorem 2 for system
(3.16), we need to find the spectrumBf2(p(0)). We note that now

TpoM = {ne R3n L (3y5 — 1, £(0, yo), 0)}

£(0, yo)
=11- s N2, M3 eRy.
{( 3 -1 N2, M2, M3 | M2, N3

According to (3.12), (3.13) and (3.14), we now have

/0, yo)
32 -1

Q(pO)n = (— w2(To), wa2(To), w3(¢o)) : (3.17)
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wherew1 (1), w2(r), w3(t) solve the following ordinary differential equations:

w1 =0,
w2 = w3,
w3 = — dys — g(0, yo + Hwo, (3.18)

with the initial value conditions
y(T)
— X
w(T)
w2(0) = y2(T), w3(0) = y3(7),

whenxi (1), y1(t), y2(t), y3(t) solve the following ordinary differential equations:

w1(0) = y1(T) — 1(T),

0.5
‘1= (3y(1)% — y(t + ——— x1+ f(0, y())y2,
x1= @y = y(®))y1 1t wi)? x1+ (0, y(@®)y2
V1= — X1,
V2 =3,
y3= —0dy3—g(0, y(1)y2, (3.19)
with the initial value conditions
£(0, yo)

0)=0, 0)=— ,

x1(0) v1(0) 3y§ 1 2

y2(0) =ny,  w3(0) =13,

for n,, 13 € R. We can easily see from (3.17) and from the initial value problems (3.18),
(3.19) that the spectrum(DQ(p(0))) is the spectrum of the fundamental matrix solution
of the ordinary differential equation

Y2 =1Yy3,
y3=—0y3 —q(t)y2,
where

(1) = g0, y(1)) fort € [0, T,
=1 ¢0,50+t—T) forte(T,T + Tol.

We note thatg(¢) is (T + Tp)-periodic andT + Tp = 8.03052. By using results of
[8, Section 2.5]ve obtain that if

2

q(t) > e

T+To 52 4
<—(T + Tt , .20
./o q(t)dt 4( + 0)+T—|—To (3.20)
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then the spectruna(DQ(p(0))) is inside the unit disk. Summarizing, condition (3.20)
implies the stability of periodic solutiopg(z) as well as the existence and stability of
periodic solutiong,(r) from Theorem 2 applied to system (3.16).

More general criteria for system (3.16) than condition (3.20) can be derived by using
results from[6]. Of course, condition (3.20) trivially holds for a smooth functigfz, v)
wheng(0, v) = 52/4 + 2/(T + Tp)2. To find a nontrivial example, we use the numerical
method. We tak¢g (y1, y2) = y2 andg(y2, y1) = y2 + y1. S0g(0, v) =v. Sincey(¢) changes
the sign over the interv@d, T'], soq (1) defined above also changes the sign over the interval
[0, T + Tp]. Hence, we cannot use criterion (3.20). Instead, we use a criterion by Einaudi

from [6] of the form

T+To T T
/ q(t)dr tan 5(—:0)<25,
0

since now 0T+T° q(t)dt =0.174225> 0. Consequently, we get the following in equality:

tan(4.0152) <11.4794

for paramete when our theory is applied to get the existence and stability of periodic
solutionsp,(¢) from Theorem 2 to this concrete system (3.16). Finally, we present sev-
eral numerical solutions to system (3.16) f6ty1, y2) = y2 and g(y2, y1) = y2 — y1,
since theng(0, v) = —v with fOHTO g(t)dt = —0.174225< 0 and then the above con-
siderations fail. Taking into account various initial conditions as weld garameter, an
occurrence of stable (Fi@) and unstable (Fig4) periodic orbits has been confirmed.
On the other hand, we can analytically check by using the result 4.3[@] dhat for
0>2.60768 this concrete system (3.16) has the unstable periodic solytignsfrom

Theorem 2.

Ty Y1 T T T €T

0.25

-0.875 b 0.25 | 1

-2 L L 1 0.5 ! L 1
(a) 0 5 10 15 t (b)) -2 -1 0 1 n

Fig. 3. Stable solution to (3.16)ig=0.2), (xg=0): (a)x(r), y1(t) and (b)x(y1) for jo=[0.3218890, 0], 6=0.1.
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Fig. 4. Unstable solution to (3.16Xug = 0.2), (xo = 0): (a) x(r), y() and (b) x(y1) for
Jo = [1.08803 0.01, 0.01], § = 0.1; x(¢) for g = [0.3218890.1, 0.1] if (c) d = 0.2 and (d)d = 0.07; y(7)
for yo =[0.3218890.1, 0.1] if () 6 = 0.5 and (f)0 = 0.2.
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