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Abstract

ByusingTichonov theorem for singularly perturbeddifferential equations,westudy the relationship
between dynamics of discontinuous differential equations and their continuous approximations along
periodic solutions.
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1. Introduction

There aremany physical systems in which themathematical modeling leads to discontin-
uous dynamical systems which switch between different states, and the dynamics of each
state is given by a different set of differential equations[1–3,5,10]. From the mathemati-
cal point of view, several ways exist to handle such discontinuous differential equations.
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Fig. 1. The considered one-degree of freedom mechanical system with friction.

One way is to use the theory of differential inclusions[7,9]. Another way is a continuous
approximation of discontinuities to get smooth differential equations[4].
In this paper we follow the second way. So we consider differential equations with dis-

continuous nonlinearities. Then we continuously approximate those nonlinearities by using
one-parametric families of continuous functions. The parameter is�>0 and� goes to 0. To
study the dynamics of the approximated equation, we split it for variables near and far from
the discontinuities. We scale the variables near discontinuities to get singular differential
equations.Thenweuse results from the theory of singularly perturbeddifferential equations,
like Tichonov theorem[11]. Finally, we combine the dynamics of singularly perturbed and
normal differential equations to get the dynamics of the original approximated differential
equations.Weuse thismethod for the study of persistence and stability of a periodic solution
of the discontinuous systems under continuous approximation. Summarizing, the method
is based on the construction of Poincaré maps along periodic solutions of discontinuous
systems and their continuous approximations. Then Tichonov theorem is applied to study
the relationship between those Poincaré maps. Some transversal assumptions are needed to
derive those Poincaré maps.
The plan of this paper is as follows. In Section 2, we present a simple model of one-

degree-of-freedom mechanical system to illustrate the main idea of the method used. Then
in Section 3, we extend this method for higher-dimensional general discontinuous systems.
In both sections, we study the persistence of periodic solutions of discontinuous systems
under continuous approximation.

2. An illustrative example

Let us consider a one-degree-of-freedom mechanical system (seeFig. 1) consisting of a
massm oscillating on a belt whichmoves with constant velocityvb, and which is connected
to a nonlinear oscillator with the elastic support characterized by constantsk1 andk2. Such
a model is governed by the following equation of motion:

mÿ − k1y + k2y3 − T = 0, (2.1)

where friction forceT is applied here in the following form:

T = − �0

1+ |ẏ − vb| sgn(ẏ − vb).
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Consideringm = k1 = k2 = vb = 1 and static friction coefficient�0 = 0.5, the following
simplified equation governs the dynamics of our dynamical system:

ÿ − y + y3 − 0.5

1+ |ẏ − 1| sgn(1− ẏ)= 0. (2.2)

By putting ẏ = −w + 1, we get the system

ẏ = − w + 1,

ẇ = y3 − y − 0.5

1+ |w| sgnw. (2.3)

Now we approximate (2.3) by the system

ẏ = − w + 1,

ẇ = y3 − y − f�(w) (2.4)

for �>0 small and a functionf� : R → R defined as follows:

f�(w) :=




0.5

1+ |w| sgnw for |w|��,

0.5w

(1+ �)�
for |w|��.

Then (2.4) forw�� has the form

ẏ = − w + 1,

ẇ = y3 − y − 0.5

1+ w , (2.5)

which is (2.3) forw>0. For|w|��, we takew = �v, |v|�1, and (2.4) has the form

ẏ = − �v + 1,

�v̇ = y3 − y − 0.5

1+ �
v. (2.6)

If we check the vector field of (2.5) (seeFig. 2) near the linew = 0 forw>0, we see that
for y <y0 the linew= 0 is attracting, and fory >y0 the linew= 0 is repelling. Of course,
the variabley is increasing. Herey30 − y0 = 0.5, y0 = 1.19149.

Now we can check by the programMathematicathat the solution of (2.5) with the initial
conditionsy(0) = y0, w(0) = 0 hits the linew = 0 at time t0 = 6.73896 iny(t0) :=
ȳ0 = −0.100068∈ (−y0, y0). Of course, for the discontinuous system (2.3), we get a
periodic solutionp0(t) starting from the point(y0,0), which is infinitely stable, i.e. all
solutions starting near periodic solutionp0(t) collapse after a finite time top0(t). We
expect that its approximation (2.4) would also possess a unique periodic solution nearp0(t)

with a rapid attractivity. This phenomenon is numerically demonstrated in[4] for a two-
degree-of-freedom autonomous system with friction. To show analytically this property for
our simple system (2.4), we consider the dynamics of a Poincaré map of (2.4) near periodic
orbit p0(t) of (2.3). For the construction of this Poincaré map, we take the interval

I := [y0 − �, y0 + �]
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Fig. 2. Vector field of (2.3) for�0 = 0.2 and(a) w0 = −0.3, y0i ∈ (−1.2,2) for i = 0 · · ·32; (b)w0 = −0.2,
y0i ∈ (−1.3,1.3) for i=0 · · ·26; (c)w0=1.2,y0i ∈ (−1.5,1.5) for i=0 · · ·30, (d)w0=1.0,y0i ∈ (−1.6,1.6)
for i = 0 · · ·32; (e)y0 = 1.08803,w0i ∈ (−0.4,2.2) for i = 0 · · ·26; (f) y0 = −1.0, w0i ∈ (−0.4,2.3) for
i = 0 · · ·27; (g) y0 = 0.321889,w0i ∈ (−0.4,2.3) for i = 0 · · ·27; (h)w0k ∈ (−0.2,2.1) for k = 0 · · ·23,
y0i ∈ (−1.3,1.3) for i = 0 · · ·26.
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for a fixed small�>0. For anyȳ ∈ I , we consider the solution(y(t), w(t)) of (2.5) with
the initial value conditionsy(0)= ȳ, w(0)= �. Then for a small�>0, there is̄t ∼ t0 such
thatw(t̄)= �. We put

��(ȳ) := y(t̄).

We get a mapping�� : I → Ī for Ī = [ȳ0 − �̄, ȳ0 + �̄] and�̄ = �̄(�) is small. Concerning
(2.6), we put� = 0 and we get

V (y) := 2(y3 − y)
as a solution of the equation

f (V, y) := y3 − y − 0.5V = 0.

Moreover, we have

�f
�V

(V (y), y)<− 0.5V <0.

Let us consider the rectangle

Q := [−y0 − 1, y0 + 1] × [−1,1].
The graph ofV (y) leavesQ only at the points(−y0,−1) and(y0,1). So we can apply
Tichonov theorem[11] to thesingularly perturbedsystem(2.6).We takey(0)=ȳ ∈ Ī , v(0)=
1 and the corresponding solution(y(t), v(t)) of (2.6) leavesQ neary0 at timet̃ . We put

��(ȳ) := y(t̃).

We get a map�� : Ī → I . Finally, we put

P�(y) := ��(��(y))

for y ∈ I . Clearly,P� : I → I and this is the desired Poincaré map of (2.4) near periodic
solutionp0(t) of (2.3). The map�� depends smoothly on� small andy ∈ I . Similarly, the
map�� depends smoothly on�>0 small andy ∈ I . We need to find the limit of��(y) as
� → 0+. To do this, we apply Tichonov theorem[11]. For system (2.6), we have already
verified all assumptions of this theorem except Vth in[11, p. 31]: Namely, we must show
that for any(y, v0) ∈ Q, y ∈ Ī , it holds

(v(�), y) ∈ Q for ��0,

v(�) → V (y) as� → ∞, (2.7)

wherev(�) is the solution of the equation

v̇(�)= y3 − y − 0.5v(�),

v(0)= v0.
Clearly, we have

v(�)= e−0.5�(v0 − 2(y3 − y))+ 2(y3 − y).
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If v0�2(y3−y) then2(y3−y)�v(�)�v0.Since|v0|�1and|2(y3−y)|�1 then|v(�)|�1,
and condition (2.7) holds. Similarly, ifv0�2(y3− y) then 2(y3− y)�v(�)�v0 and again
|v(�)|�1, and condition (2.7) still holds. Summarizing, we can apply Tichonov theorem
to (2.6). Consequently, the solution(y(t), v(t)) of (2.6) with the initial value conditions
y(0)= ȳ ∈ Ī andv(0)= 1 has the asymptotic expansion

y(t)= ȳ + t +O(�),
v(t)= 2((ȳ + t)3 − ȳ − t)+ e−0.5t/�(1− 2(y3 − y))+O(�).

Time t̃ is determined from the equationv(t̃)= 0 and we get

ȳ + t̃ ∼ y0 +O(�).
Hence,

��(ȳ)= y(t̃)= ȳ + t̃ +O(�)= y0 +O(�).
This gives

P�(y)= ��(��(y))= y0 +O(�). (2.8)

We note that the limit mapP0(y)= y0 in (2.8) is just the Poincaré map along the periodic
solutionp0(t) of (2.3). Furthermore, the identity (2.8) holds also in theC1-topology, i.e. it
holds

P ′
�(y)=O(�). (2.9)

Hence the mapP� : I → I has a unique fixed pointy� ∈ I of the formy� = y0 + O(�),
which is according to (2.9) also rapidly attractive. Summarizing, we get the next theorem.

Theorem 1. The discontinuous system(2.3)has the periodic solutionp0(t) starting from
the point(y0,0), which is infinitely stable, i.e. all solutions starting nearp0(t) collapse
after a finite time top0(t). Its approximation(2.4)has also a unique periodic solutionp�
starting from the point(y�, �) which approximatesp0(t) and which is rapidly attracting.
This coincides with the infinite stability ofp0(t).

Theorem 1 analytically explains numerical results of[4] concerning stable periodic
solutions.
Finally, we note that functionf� is an approximation of the multivalued mapping

Sgnw :=
{
sgnw for w �= 0,
[−1,1] for w = 0.

Hence (2.4) is an approximation of the discontinuous differential inclusion

ẏ = −w + 1,

ẇ − y3 + y ∈ − 0.5

1+ |w| Sgnw,
which is a differential inclusion version of (2.3). But, of course, these arguments fit into the
general theory of differential inclusions[7,9].
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3. Higher dimensional systems

In this section, we consider a general discontinuous system inRn. For the sake of sim-
plicity, we assume that a system has a discontinuity at levelx = 0 for dim x = 1. Hence
z= (x, y) ∈ Rn and dimy = n− 1. The system is given by the equation

ż= f̃ (z), (3.1)

where

f̃ (z)=
{
f+(x, y) for x >0,
f−(x, y) for x <0.

The functionsf± : Rn → Rn are smooth andf+(0, y) �= f−(0, y) in general. We put

f± = (h±(x, y), g±(x, y)),

whereh± : Rn → R and g± : Rn → Rn−1. Now we take�>0 small and consider a
continuous approximation of (3.1) given by

ż= f̃ (z) for |x|��, (3.2)

and for|x|��:

ẋ = h+(�, y)− h−(−�, y)
2�

x + h+(�, y)+ h−(−�, y)
2

,

ẏ = g+(�, y)− g−(−�, y)
2�

x + g+(�, y)+ g−(−�, y)
2

. (3.3)

We putx = �w, |w|�1, in (3.3) to get the system

�ẇ = h+(�, y)− h−(−�, y)
2

w + h+(�, y)+ h−(−�, y)
2

,

ẏ = g+(�, y)− g−(−�, y)
2

w + g+(�, y)+ g−(−�, y)
2

. (3.4)

In order to apply Tichonov theorem, we consider the assumption

h+(0, y)− h−(0, y)<0. (3.5)

If (3.5) fails, then we use (3.2)–(3.3), since the right-hand side of (3.2)–(3.3) belongs to the
set

F̃ (z) := conv[f−(x, y), f+(x, y)]
:= {�f−(x, y)+ (1− �)f+(x, y)|� ∈ [0,1]},

and

ż ∈ F̃ (z) (3.6)

is the differential inclusion corresponding to (3.1).
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Now we suppose condition (3.5) along with the following assumption.
(A1): There is a solutionp(t) of (3.1) defined on[0, T ] such that thex-coordinatep1(t)

of p(t) satisfiesp1(t)>0 for t ∈ (0, T ) andp1(0) = p1(T ) = 0. Moreover,h+(p(0)) =
0, h+(p(T ))<0, and the gradient∇yh+(p(0)) �= 0.
The condition∇yh+(p(0)) �= 0 implies that the seth−1+ (0) is a manifoldM onRn−1 near

the pointp(0). Here we consider the restrictionh+(0, ·) : Rn−1 → R.
The reduced system of (3.4) for� = 0 has the form

ẏ =H(y) := g+(0, y)− g−(0, y)
2

V (y)+ g+(0, y)+ g−(0, y)
2

(3.7)

for

V (y)= h+(0, y)+ h−(0, y)
h−(0, y)− h+(0, y)

.

We suppose the following assumption.
(A2): Letp2(t)be they-coordinate ofp(t). Then the solutiony0(t)of (3.7)with the initial

conditiony0(0) = p2(T ) passes through the pointp2(0) at timeT0, andh+(0, y0(t))<0
for t ∈ [0, T0), h−(0, y0(t))>0 for t ∈ [0, T0]. Moreover,ẏ0(T0) is transversal toM, i.e.
g+(p(0)) is not orthogonal to∇yh+(p(0)).
We note that Eq. (3.7) is related to[10, formula (2.12)]. Condition (A2) implies condition

(3.5) alongy = y0(t), t ∈ [0, T0], and it also gives a sliding solution(0, y0(t)), t ∈ [0, T0],
of (3.6). Moreover, we get a periodic solutionp0(t) of (3.6) given by

p0(t) :=
{
p(t) for t ∈ [0, T ],
(0, y0(t − T )) for t ∈ [T , T + T0].

Now we construct a Poincaré mapP� of (3.2)–(3.3) alongp0(t) as follows. LetB�(p2(0))
be the small ball inRn−1 centered inp2(0) with the small radius�>0. We take a solution
z(t) of (3.2) starting from the point(�, y), y ∈ B�(p2(0)). This hits the surfacex = � near
p(T ) at the point(�, y(t̄)). We consider the map

��(y) := y(t̄),

�� : B�(p2(0)) → B�1(p2(T )),

for a small�1>0. Nowwe consider the solution(w(t), y(t)) of (3.4) starting from the point
(1, y), y ∈ B�1(p2(T )). It will hit the surfacew = 1 at a timet̃ near the point(1, p2(0)).
Like in Section 2, Tichonov theorem implies that

1= w(t̃)= V (y(t̃))+O(�), (3.8)

y(t̃)= ȳ(t̃ )+O(�),
whereȳ(t) is the solution of (3.7) with the initial condition̄y(0) = y. Sincey is near to
p2(T ), condition (A2) and (3.8) imply thatw(t) transversally crosses the linew = 1 at t̃ .
Hencet̃ is locally uniquely defined. We also note thatV (ȳ(t̃)) +O(�) = 1. Henceȳ(t̃ ) is
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O(�) near to the point�(y) ∈ M which is the crossing point ofM with ȳ(t). Thus we can
put

��(y) := y(t̃),

�� : B�1(p2(0)) → Rn−1.

Finally, we consider the Poincaré map

P�(y) := ��(��(y)), y ∈ B�(p2(0)).

We have��(y)= �(y)+O(�) and
P�(y)= �(�0(y))+O(�),
DP �(y)=D�(�0(y))+O(�). (3.9)

In order to find a periodic solution of (3.2)–(3.3) nearp0(t), we must solve the equation

y = P�(y). (3.10)

We havep0(0) = P0(p0(0)). Now we take a tubular/normal neighborhoodM ×W of M
in Rn−1 near the pointp0(0), whereW ⊂ R is an open neighborhood of 0∈ R. The
corresponding projections are as follows:	1 : M×W → W and	2 : M×W → M. Then
Eq. (3.10) is splitted to the system

y1 = 	1P�(y1, y2), y1 ∈ W ,

y2 = 	2P�(y1, y2), y2 ∈ M. (3.11)

Since�(y) ∈ M, (3.9) gives

y1 = 	1P�(y1, y2)=O(�),
y2 = 	2P�(y1, y2)= 
(y2)+O(�),

where we get a map
 : M → M defined nearp0(0) by


(y2) := �(�0(0, y2)).

The map
 is a Poincaré map ofp0(t) for (3.6) when the dynamics on the levelx = 0 is
given by (3.7) like in[10, p. 111]. Clearly,
(p0(0)) = p0(0). Hence, if the linearization
I − D
(p0(0)) is nonsingular, then we can solve (3.11) nearp0(0) by using the implicit
function theorem. Moreover, ifD
(p0(0)) is stable, i.e. all eigenvalues ofD
(p0(0)) are
inside the unit circle ofC, then also the corresponding periodic solutionp�(t) of (3.2)–(3.3)
is stable. Of course, the stability ofD
(p0(0)) gives the stability of periodic solutionp0(t)
for (3.6) when again the dynamics on the levelx = 0 is given by (3.7). Summarizing, we
arrive at the following result.

Theorem 2. Let assumptions(A1) and (A2) hold. If the linearizationI − D
(p0(0)) is
nonsingular, then the approximate system(3.2)–(3.3)possesses a periodic solutionp�(t)
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nearp0(0). If D
(p0(0)) is stable, then also the corresponding periodic solutionp�(t) of
(3.2)–(3.3)is stable.

Remark 1. Conditions (Al), (A2)andTheorem2contain some transversal/genericassump-
tions, namely that∇yh+(p(0)) �= 0, g+(p(0)) is transversal toM and that the linearization
I − D
(p0(0)) is nonsingular. If one of them fails, then the construction of the Poincaré
mapP� as well as the solvability of Eq. (3.10) becomes problematic. Some bifurcations of
periodic solutions are expected.

Remark 2. Theorem2 states the persistence of a generic periodic solution of discontinuous
systems crossing a discontinuity level under a continuous approximation. This persistence
could beprovedbyusing theLeray–Schauder degree theory[7], but sinceweuse the implicit
function theorem, we get uniqueness and stability of periodic solutions as well. Also, this
approach is constructive. Finally, we assume that the discontinuity level has a codimension
1. Higher-codimension problems could also be interesting to study.

We note thatp0(0)= p(0). For application of Theorem 2, we need to findD
(p(0)) as
a map fromTp(0)M to Tp(0)M, whereTp(0)M is the tangent space of manifoldM at point
p(0) and is given by

Tp(0)M := {� ∈ Rn−1|� ⊥ ∇yh+(p(0))}.
From the definition of maps� and�0, we can derive after some algebra that for any
� ∈ Tp(0)M, the vectorD
(p(0))� ∈ Tp(0)M is given by

D
(p(0))� = w(T0)− 〈∇yh+(p(0)), w(T0)〉
〈∇yh+(p(0)), ẏ0(T0)〉 ẏ0(T0), (3.12)

where〈·, ·〉 is the scalar product and functionw(t) (depending on�) is the solution of the
initial value problem

ẇ(t)=DH(y0(t))w(t),

w(0)= − ṗ2(T )
ṗ1(T )

x(T )+ y(T ), (3.13)

where functionsx(t),y(t) (dependingalsoon�) are the solutionsof the initial valueproblem

ẋ(t)= h+x(p(t))x(t)+ h+y(p(t))y(t),
ẏ(t)= g+x(p(t))x(t)+ g+y(p(t))y(t),
x(0)= 0, y(0)= �. (3.14)

Formulas (3.12)–(3.14) can be used to computeD
(p(0)). For instance, let us consider an
extension of system (2.2) to higher dimension given by

v̈ − v + v3 − 0.2

1+ |v̇ − 1| sgn(1− v̇)+ zf (z, v)= 0,

z̈+ �ż+ zg(z, v)= 0, (3.15)
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wherez ∈ R, �>0 andf, g are smooth functions. Eq. (3.15) has the form

ẋ = y31 − y1 − 0.5

1+ |x| sgnx + y2f (y2, y1),

ẏ1 = 1− x,
ẏ2 = y3,
ẏ3 = − �y3 − y2g(y2, y1). (3.16)

Since now

h±(x, y)= y31 − y1 ∓ 0.5

1± x + y2f (y2, y1),

for y = (y1, y2, y3), assumption (A1) holds withT = t0 = 6.73896 and withp(t) =
(w(t), y(t),0,0), wherew(t),y(t) solve (2.5)with the initial conditionsy(0)=y0=1.19149
andw(0)= 0.We note thatp(T )= (0, ȳ0,0,0) for ȳ0 = −0.100068∈ (−y0, y0). Further-
more, the reduced system (3.7) now has the form

ẏ1 = 1,

ẏ2 = y3,

ẏ3 = −�y3 − y2g(y2, y1).

Hence we havey0(t)= (ȳ0 + t,0,0) with T0 = y0 − ȳ0 for assumption (A2). Next, since

ẏ0(T0)= (1,0,0), ∇yh+(p(0))= (3y20 − 1, f (0, y0),0),

and 3y20 − 1= 3.25893�= 0, we see thaṫy0(T0) is not orthogonal to∇yh+(p(0)). Summa-
rizing, we get that also assumption (A2) holds. So in order to apply Theorem 2 for system
(3.16), we need to find the spectrum ofD
(p(0)). We note that now

Tp(0)M := {� ∈ R3|� ⊥ (3y20 − 1, f (0, y0),0)}

=
{(

−f (0, y0)
3y20 − 1

�2, �2, �3

)
|�2, �3 ∈ R

}
.

According to (3.12), (3.13) and (3.14), we now have


(p(0))� =
(

−f (0, y0)
3y20 − 1

w2(T0), w2(T0), w3(t0)

)
, (3.17)
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wherew1(t), w2(t), w3(t) solve the following ordinary differential equations:

ẇ1 = 0,

ẇ2 = w3,

ẇ3 = − �y3 − g(0, ȳ0 + t)w2, (3.18)

with the initial value conditions

w1(0)= y1(T )− ẏ(T )

ẇ(T )
x1(T ),

w2(0)= y2(T ), w3(0)= y3(T ),
whenx1(t), y1(t), y2(t), y3(t) solve the following ordinary differential equations:

ẋ1 = (3y(t)2 − y(t))y1 + 0.5

(1+ w(t))2 x1 + f (0, y(t))y2,

ẏ1 = − x1,
ẏ2 = y3,
ẏ3 = − �y3 − g(0, y(t))y2, (3.19)

with the initial value conditions

x1(0)= 0, y1(0)= −f (0, y0)
3y20 − 1

�2,

y2(0)= �2, w3(0)= �3,

for �2, �3 ∈ R. We can easily see from (3.17) and from the initial value problems (3.18),
(3.19) that the spectrum�(D
(p(0))) is the spectrum of the fundamental matrix solution
of the ordinary differential equation

ẏ2 = y3,
ẏ3 = −�y3 − q(t)y2,

where

q(t)=
{
g(0, y(t)) for t ∈ [0, T ],
g(0, ȳ0 + t − T ) for t ∈ [T , T + T0].

We note thatq(t) is (T + T0)-periodic andT + T0 = 8.03052. By using results of
[8, Section 2.5]we obtain that if

q(t)>
�2

4
,

∫ T+T0

0
q(t)dt� �2

4
(T + T0)+ 4

T + T0 , (3.20)
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then the spectrum�(D
(p(0))) is inside the unit disk. Summarizing, condition (3.20)
implies the stability of periodic solutionp0(t) as well as the existence and stability of
periodic solutionsp�(t) from Theorem 2 applied to system (3.16).
More general criteria for system (3.16) than condition (3.20) can be derived by using

results from[6]. Of course, condition (3.20) trivially holds for a smooth functiong(z, v)
wheng(0, v) = �2/4+ 2/(T + T0)2. To find a nontrivial example, we use the numerical
method.We takef (y1, y2)=y2 andg(y2, y1)=y2+y1. Sog(0, v)=v. Sincey(t) changes
the sign over the interval[0, T ], soq(t) defined above also changes the sign over the interval
[0, T + T0]. Hence, we cannot use criterion (3.20). Instead, we use a criterion by Einaudi
from [6] of the form

∫ T+T0

0
q(t)dt tan

�(T + T0)
2

�2�,

since now
∫ T+T0
0 q(t)dt = 0.174225>0. Consequently, we get the following in equality:

tan(4.01526�)�11.4794�

for parameter� when our theory is applied to get the existence and stability of periodic
solutionsp�(t) from Theorem 2 to this concrete system (3.16). Finally, we present sev-
eral numerical solutions to system (3.16) forf (y1, y2) = y2 and g(y2, y1) = y2 − y1,
since theng(0, v) = −v with

∫ T+T0
0 q(t)dt = −0.174225<0 and then the above con-

siderations fail. Taking into account various initial conditions as well as� parameter, an
occurrence of stable (Fig.3) and unstable (Fig.4) periodic orbits has been confirmed.
On the other hand, we can analytically check by using the result 4.3.7 of[6] that for
��2.60768 this concrete system (3.16) has the unstable periodic solutionsp�(t) from
Theorem 2.

Fig. 3. Stable solution to (3.16)(�0=0.2), (x0=0): (a)x(t), y1(t) and (b)x(y1) for ȳ0=[0.321889,0,0], �=0.1.
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Fig. 4. Unstable solution to (3.16)(�0 = 0.2), (x0 = 0): (a) x(t), ȳ(t) and (b) x(y1) for
ȳ0 = [1.08803,0.01,0.01], � = 0.1; x(t) for ȳ0 = [0.321889,0.1,0.1] if (c) � = 0.2 and (d)� = 0.07; y2(t)
for ȳ0 = [0.321889,0.1,0.1] if (e) � = 0.5 and (f)� = 0.2.
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