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Continuous models for chain of inertially linked masses
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Abstract

The paper focuses on 1D continuous models derived from a discrete micro-structure. A new continualization proce
takes into account the nonlocal interaction between variables of the discrete media is proposed. The proposed proced
contains an application of two-point Padé approximations and allows obtaining continuous models suitable to analyze
vibrations with arbitrary frequencies.
 2004 Published by Elsevier SAS.
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1. Introduction

It is well known that difference and difference-differential equations are often used for the numerical solution of
differential equations. A natural problem is to obtain a difference-differential equation, whose solution approximates a
of a given partial differential equation. But an analytical study of the difference and difference-differential equations
more difficult than a study of the corresponding partial differential equation. Therefore the following important problem a
how one can construct a partial differential equation approximating a given difference-differential equation?

On the other hand, it is well known that a discrete micro-structure plays a crucial role in mechanical behavior of m
Investigation of this research direction plays an important role in today’s micro-mechanics, which is well documente
existing literature devoted to this subject. In the considered cases a magnitude of excitation is of order of the char
micro-structure scale. Micro-structural effects are important in damage and fracture mechanics (Askes and Sluys, 200
et al., 2002), during modeling of softening effects (Peerlings et al., 2001), molecular dynamics (Blanc et al., 2002)
of plasticity (Fleck and Hutchinson, 1993), and wave dispersion in granular materials (Lisina et al., 2001). Let us als
importance of nano-scale effects modeling (Dowell and Tang, 2003). In addition a challenging task in to days physics
construction of continuum mechanics from the ‘first principles’ (Braides and Gelli, 2004; Paroni, 2003).

Although the mentioned effects may be analyzed within the frame of discrete models, a required result is difficult t
using high tech computers in an economical way. Therefore, continuous modeling of micro- and nano-effects plays a cr
in mechanics. Note that applicability of classical continuous models in dynamics is restricted to limited ranges of freq
(Filimonov, 1991; Filimonov et al., 1991; Kunin, 1982). A construction and development of improved theories yielding
results is reduced to consideration of either higher order partial differential equations (Filimonov, 1998; Filimonov et al.
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Fig. 1. 1D mass chain.

or to application of one-point Padé approximations (Rosenau, 1986, 1987, 1988, 2003) or to using of composite e
(Obraztsov et al., 1991; Andrianov and Awrejcewicz, 2003), or finally it is associated with some physical ideas (As
Metrikine, 2002a, 2002b). In this paper two-point Padé approximations are applied. They have been already used durin
of analogous lattices (Andrianov, 1991).

The outline of this paper is as follows. In Section 2 the input discrete system is described. In Section 3 constru
continuous system on the basis of Taylor series is studied. In Section 4 one-point Padé approximations is applied. C
models are proposed in Section 6 (this is the main result of this paper). In Section 6 some conclusions are drawn
remarks are given.

2. Discrete model

Consider linear chains composed of the equal masses and springs. The masses are supported by stiff weightless r
the point masses (see Fig. 1).

The vibration governing equations of these chains can be derived through the Lagrange functions to yield

m(2ÿs − ÿs+1 − ÿs−1)

4
+ cys = 0, s = 1,2, . . . , n, (1)

where:(· · ·) = d
dt

(· · ·).
System of Eqs. (1) may be rewritten in the following form

0.25mDÿs − cys = 0,

whereD is difference operator.
The boundary conditions should be attached to Eq. (1). One can choose, without loss of generality,

y0 = 0, yn+1 = 0. (2)

An exact solution of problem of natural oscillations of system (1), (2) is written by Landa (2001). The solution to E
is sought in the form of the following normal oscillations:xs = as cosωt , whereω one of the normal frequencies is,as is the
amplitude ofs-th mass.

The system frequencies read

ωk =
√

c

m
sin−1 kπ

2(n + 1)
, k = 1,2, . . . , n. (3)

3. Continuous model: application of Taylor series

For large values ofn usually a continuous approximation is used

mh2 ∂2ÿ

∂x2
− 4cy = 0, (4)

y(0) = y(l) = 0, (5)

where:l = (n + 1)h.
Having a solution of boundary value problem (4), (5), one may easily find the solution of the discrete system du

formulas

y (t) = y(kh, t), k = 0,1, . . . , n.
k
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Both numerical and analytical investigations (Kunin, 1982) proved that for study of lower part of the frequency spec
the discrete system a transition to a continuous system is correct. However, investigation of high frequency spectrum
or forced vibrations requires improved governing equations. Therefore an interesting and challenging research objec
Is it possible to describe the whole spectrum of vibrations of a discrete system using continuous approximation?

From the mathematical standpoint our problem is focused on accuracy improvement of nonlocal (difference)
through a local (differential) one.

As a criterion serving for estimation of continuous approximation accuracy, a comparison ofn-th frequency of the continuou
system with the corresponding frequency of the discrete system (3) is used. It is worth noticing that an estimation of an
of continuous approximation with respect to estimation of the largest frequency of the discrete chain is rather convent
the simplest one. For larger values ofn formula (3) yieldsωn ≈ √

c/m, and hence from system (4), (5) one findsωn ≈√
c/m(2/π) (amount of the error is of 36%).
In what follows we consider a possibility of continuous approximation improvement.
Note that system (1) can be reduced to one pseudo-differential equation. For this purpose the translation operator(± ∂

∂n
)

is introduced, and the following formal identity holds: exp(± ∂
∂n

)f (n) = f (n±1). On the other hand we may replace a discre
difference operatorD by a high-order differential operator, using the following pseudo-differential operator (Maslov, 197

D = sin2
(

− iH

2

∂

∂x

)
.

Hence, with a help of translation operator system of Eqs. (1) is transformed into the following pseudo-differential e

msin2
(

− ih

2

∂

∂x

)
ÿ + cy = 0. (6)

Owing to application of the Maclaurin series to the difference operatorD one gets

D = −0.25h2 ∂2

∂x2

(
1+ h2

12

∂2

∂x2
+ h4

360

∂4

∂x4
+ · · ·

)
. (7)

Keeping in the series (7) only the first term, continuous approximation (4) is obtained.
Furthermore, approximation accuracy can be increased by keeping more terms in series (6). Remaining three first

following higher order approximation is obtained

mh2 ∂2

∂x2

(
1+ h2

12

∂2

∂x2
+ h4

360

∂4

∂x4

)
ÿ − 4cy = 0. (8)

Observe that a similar like model is called as an intermediate continuous model (Filimonov, 1998).
However, the problem associated with boundary conditions requires more subtle analysis. Namely, it occurs that the

of equivalence of boundary conditions for Eq. (8) cannot be solved uniquely. We need to knowyk(t) for k < 0 and fork > n+1.
If we chooseyk(t) for k < 0 and fork > n + 1 to satisfy periodicity extension of boundary conditions to keep the transl
symmetry (y−1(t) = −y1(t), etc.), the following boundary conditions associated with Eq. (8) are obtained

y = ∂2y

∂x2
= ∂4y

∂x4
= 0 for x = 0, l. (9)

Although continuous approximation (8), (9) yields an amount of error of 5% with respect to estimation ofωn, but it includes
high order differential operator.

4. Continuous model: application of the Padé approximations

A construction of intermediate continual models is based on approximation of the difference operator by the Taylo
However, more effective way is associated with the Padé approximations (PA). Rosenau (1986, 1987, 1988, 2003) a
(2000) constructed continuous models (a so called quasi-continuum approximation) applying one-point PA.

A brief description of the PA follows. Let the functionF(ε) is represented by the Maclaurin series

F(ε) =
∞∑
i=0

aiε
i for ε → 0. (10)

The PA [m/n] is defined through the fractional rational function

F[m/n] =
∑m

i=0 βiε
i∑n i

,

1+ i=1 γiε
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whose firstm + 1 coefficients of the associated Maclaurin series overlap with the first terms of the series (10).
The PA [2/2] for series (7) has the following form

D ≈ ∂2

∂x2

/(
1− h2

12

∂2

∂x2

)
.

The corresponding model of quasi-continuum follows

mh2 ∂2ÿ

∂x2
− 4c

(
1− h2

12

∂2

∂x2

)
y = 0. (11)

The boundary conditions for Eq. (11) have the form (5).
Quasi-continuum approximation (11), (5) yields the error of 14% in estimation ofωn. Notice that this estimation is bette

than the standard approximation of (4), (5), but is worse than that yielded by intermediate continuous model (8), (9)
other hand, an advantage of quasi-continuum model (11), (5) in comparison to intermediate one (8), (9) is mainly e
through a lower order of the differential equations.

5. Continuous model: application of two-point PA

Since two-point PA in many cases yields more accurate results than one point ones, therefore it is essentially to a
approach for construction of continuous approximations of the difference operator (7). Recall briefly the definition of tw
PA. Let

F(ε) =
∞∑
i=0

aiε
i for ε → 0, (12)

F(ε) =
∞∑
i=0

biε
i for ε → A. (13)

Two-point PAFp is represented by the following fractional functionFp =
∑m

i=0 βiε
i

1+∑n
i=1 γiε

i , whose firstk coefficients of the

associated Maclaurin series andm + n + 1 − k first coefficients of its development into the Taylor series in the neighborh
of the pointx = A overlap with the first coefficients of the series (12) and (13).

Taking into account the first term of the series (7) and requiringωn = √
c/m, the following new approximate differentia

operator for difference one is obtained using the two-point PA

∂2

∂x2

/(
1− α2h2 ∂2

∂x2

)
,

where:α2 = 0.25− π−2.
In what follows the continuous approximation is governed by the following equation

m
∂2ÿ

∂x2
+ 4c

(
1− α2h2 ∂2

∂x2

)
y = 0 (14)

and the boundary conditions have the form (5).
The largest error in eigenfrequencies estimation does not exceed 3%. Observe that Eq. (14) is of second order w

to spatial coordinate, i.e. essential increase of accuracy is not achieved in a way of increasing the order of differential

6. Conclusions

To sum up, using two-point PA gives mathematically justified continuous models of 1D mass chain, valid for spec
discrete systems.

One may use the proposed method for constructing of continuous media, when taking into account the main micro-
effects, for 2D and 3D cases.

Also generalization of obtained results for chains with unequal elements (Landa, 2001) and investigation of nonlin
posses a challenging problem for further study.
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