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How to predict stick-slip chaos in R*
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Abstract

Chacotic dynamics in four-dimensional self-excited systems with Coulomb-like friction is predicted analytically. The obtained
Melnikov’s function yields thresholds for two types stick-slip onsets of chaos,
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After occurence of first reports concerning deterministic chaos (including pioneering works of Lorenz, Toda and
Réssler), a naturally motivated attempt to detect onset of chaos in possibly simplest dynamical systems appeared.
There exists a series of papers initiated by Gottlieb [5] focused on existence and detection of simple jerk equa-
tions exhibiting deterministic chaos [4,7,10]. Examples of dissipative jerk equations with only one quadratic [10]
and only one cubic [7] nonlinearities have been reported. A systematic rumerical examination of third order or-
dinary differential equation with nonlinearity form x? carried out by Malasoma [8] yields deterministic chaos.
In all mentioned cases the exhaustive numerical investigations to detect deterministic chaos have been carried out.
However, cne may give remark that it is rather impossible to scan numerically all possible parameter ranges of
an investigated equation. Note that difficulties increase while analysing high-dimensional systems. Therefore, we
have decided to choose an analytical approach to predict an intersection of stable and unstable manifolds associated
with a saddle in our four-dimensional autonomous mechanical system governed by the following non-dimensional
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equations
r=u,
i=x—x+ fe(x,y) - e1T{(u — w), W
y=v, '
v=y—y ~ fi(x,y) ~e3T3 (v —w),
where
T)(X — w) = T)y(X — w) — Bj(X = w')+ Bly(X —w')?, @
i@ =Ex - —Ex -y ©)
The following relations hold between dimensional and non-dimensional equations -
/ k Bi1 k2B km
! ' t ' ] L P
i0 = fioyf 73+ n= B:‘2__m;";_3! w=wy oo i=112, €Y

-where w is the tape velocity,! and B;y, Biz, Tio are the friction coefficients. For £) = g2 = 0 we obtain the unper-
turbed system, which possesses a homoclinic orbit of a hyperbolic point 2 = 0. The investigated system belongs
to classical ones, since it approximates many real engineering high-dimensional self-excited objects (see mono-
graph [2] and references therein). .

This Letter is mainly motivated by two references, i.e., [1,6]. In the first one [6] an extension to R" of the
original Melnikov’s approach [9] is proposed, which is applied in our analysis and this method is further referred
as the Melnikov-Gruendler approach. In the second reference [1] for the first time an analytical prediction for both
smooth and stick-slip onset of deterministic chaos in R? is reported. Note that in the latter case it is possible to get
a critical state of autonomous one degree-of-freedom mechanical system with Coulomb-like friction cast by the
Melnikov’s function. In other words, an infinitely small external harmonic perturbation convert immediately the

- system into chaotic state. In what follows we match ideas given in two cited references to predict chaotic threshold
in two self-excited coupled oscillators with friction analytically using the Melnikov-Gruendler technique.

Qur research includes three fundamental steps. First, a linearization along a homoclinic orbit is applied and
the fundamental solutions are formulated. Let us denote by y(¢) the homoclinic orbit of the point a. It has the
following form '

q(t)
|4
q()
q(n)

The linearized system of the unpenurﬁed equations (1) in' vicinity of the homoclinic orbit y(¢) reads

Y = ,  where g(r) = v2sech(?). : _ (5)

¥ =1,
@:(1 +& =32 NY — &y, ()
Y1 =1,

Pa =148 —3420))¥s — £y

1" See Fig, 1 in [1].
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‘We seek the fundamental solution of the above equations, It can be shown thal'w(") = y () is a solution to Egs. (6).
Next, applying the following substitution: ¢ (#) — r(¢)4{(¢) and substituting into (6), one gets the second solution

r{)§ ()
F)g() + r()g()
r{H)q(n
F(0)§(0) +rg()

@ =

where
3 1 1 .
r@) = cht - 5C1 ctgh() + §C1 sinh(27) + (.

Two remaining solutions are the following (see [3]):

w,]l _ w,f“
w,l'z wfﬂ
‘J’(I) = w_lg_ ’. '#(3) = }(J’SS ,
¢14 w,34 Rk
where

&t
¥ = S (38h() (14 1gh()) + G+ D@ + 1) = 36 + Dsech? (1),

81 ’ .

y'2= ‘% (—35((1 + 2tgh(#)) sech?(s) + & tgh(2)(1 + tgh(t))))
+8(5 +2)( + 1) = 35 + (5 — 2tgh(®)) sech(),

w13=_wll‘ w14=_w12, '

¥l = %_(33 tgh(t) (14 tgh(r) + (§ — )@ — 1) + 3¢ = 1) sech’(n)),

3de—%
2

w2 = ((1 4 21gh(t)) sech®(£) — S1gh(e) (1 + tgh(r)))

=
- =G -2E - D+301 -5 - 21gh(®) sech’(t)), -
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Fig. 1. Critical surface in three-dimensional paraméter space.
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Fig: 2. Phase portraits of (a) type 1 (w’ = 0.87, By, = B, =0.09) and of (b) type 2 (w’ = 0.6, By = B[, =1.7).

The second step ineludes computation of the Melnikov—Gruendler function (see [3,6] for details), which is the
following :

SE-DE+DE+2 5(583 +582 208 +52
0= 3= . YOy vy - & - ) (Via + Vi)
5(58° + 582 — 206 — 56
B ) (Vi3 + Vas) + 12(14+26%) (Vi + Vaa), (10)
where § = /1 2£ and
12842 642 . 2
Vi = o B/, — T (990w’ + 103) B/,

+ %"19 (—é - w') [(79 — 3w'?)(sech(z1) — sech(z2)) — 17v'1 — 2w'2 (sech(r1) + sech(s))], (11)
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Fig. 2. (continuedy -
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Vi = - 2 1B,
2= g5 B ~ a5 OO0 +13)B
2o, ( 1 Al 15 5 7 7
+ —3—9 % —w ?(sech_ (1) — sech’(22)) -+ 4(sech’ (1} — sech’ (12)} |,
O 16v2, 1642 2T, (1 '
Vig = Bl — 33w'? +4)B! ——';QG("—— ! b (1)) — sech®(z ,
i3 105 Cil 1155( w4+ ) in + 5 \/5 w [SCC (1)) —sec (2)]
n rw ,  aw 2
Vie = —1cTio+ = Bi1 — T35 (Bw'* +9) B

16

() eo(2)) (3]

In the above #(x) is the Heaviside’s function and

[ 11 '
t1=ln(L, 1+V1—2w'2(1—_\/§+5\/1—2w’2)),
w

kTR

(12)

(13)

(14)
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{1 T 1
I2=ll'l(—’ 1—v1—2w’2(l— §—5v1—2w’2)).
w

The third step consists of a graphical representation of the Melnikov—Gruendler function in three dimensional
parameter space (see Fig. 1), where we set B, = T{, =02, B;; =0.3, T;, =0.1.

The surface consists of two subsurfaces which correspond to stick-slip chaos of type 1 and stick-slip chaos of
type 2. Two sets of parameters {two points) correspond to type 1 (Fig. 2a) and type 2 (Fig. 2b) stick-stip chaos. Type
1 stick-slip motion corresponds to the case where a sign of w’ is not changed. The reported numerical computations
have been carried out using the Runge-Kutta method of order 8 with step 0.001,

In conclusion we have applied the Melnikov—Gruendler technique to predict two types of non-smooth chaotic
behaviour in R* of two self-excited coupled oscillators with friction. The obtained analytically chaotic threshold
has been verified numerically showing surprisingly good agreement. Furthermore, our results give good prognosis
for investigations of chaos occurence in wide class of continuous and discontinuous coupled oscillators.
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