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Abstract

A new one-dimensional thermoelastic frictional pair contact model of a shaft-bush system is proposed.
The assumed model includes a study of vibration processes and contact characteristics exhibited by a
relative velocity between the two mentioned bodies, contact temperature, pressure and wear. Some im-
portant conclusions are formulated.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Theoretical studies of one-dimensional frictional contact model of a shaft-bush system are
mainly devoted to analysis of periodic vibrations caused by friction [1,4,5,10,14]. The classical
problem of vibrations of a pad lying on a rotating shaft and linked to a base through the massless
springs (a so-called Pronny’s clamp) has been analyzed in [1]. In [9,14] a dry friction is investigated
and its computational models are proposed. On the other hand, a thermoelastic contact between
two bodies is often analyzed without an account of dynamical behavior (see, for example, a review
given in [7]). For instance, a study of thermal conduction and wear of a cantilever beam being in
frictional contact with a moving with a constant velocity rigid part is carried out in [12].

It is worth noticing that problems associated with friction, heat transfer and wear processes
are less investigated. On the other hand, a deep analysis of friction generated vibrations and
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variations of the associated frictional characteristics (relative velocity, contact temperature,
pressure and wear) may essentially contribute for explanation of various engineering phenomena
occurred in machine tools with high treatment, torsion couplings, frictional dampers and other
mechanisms with frictional pairs. A thermoelastic contact occurring between a rotating shaft and
non-movable pad assuming that a shaft is non-inertial is investigated in [18,19]. In [6] the axially
symmetric problem of thermoelastic contact of a shaft rotating with constant velocity and with
attached pad is reported. The pad is fixed to the housing via massless springs, and self-excited
vibrations caused by friction (taking into account wear and frictional heat generation) are ana-
lyzed. It is shown [6,18], among other results, that when the relative velocity achieves its critical
value, then the so-called frictional thermoelastic instability occurs [7].

In this paper we analyze more complicated axially symmetric problem of self-excited vibrations
of thermoelastic contact between rotating shaft and a pad elastically supported taking into ac-
count wear processes.

Since a frictional process is usually non-stationary one, all ‘frictional’ parameters are mutually
coupled and depend on each other. Our investigation are mainly focused on the following question:
if and to which extend both wear and frictional heat generation processes may influence a motion
(and associated parameters) during braking and acceleration regimes of the shaft-pad system.

2. Mechanical model and formulation

An elastic and heat transferring shaft with a radius R, is inserted into a full braking pad
(bush)—see Fig. 1. The pad with the internal R, and external R; radii is attached to the housing by
the springs with stiffness coefficients k, and the damper with viscous coefficient ¢. The applied
moment Myhy,(?) is related to the shaft length unit, where M is a constant with units of a moment
and hy(¢) is the known dimensionless time varying function (A () — 1, t — cc0). We assume that
a pad transfers heat perfectly and that at the initial time moment pad temperature is governed by
the formula Tyhz(¢), where Tp is a constant measured in units of temperature, hr(t) is the known
dimensionless time varying function (h7(0) = 0, and A7 (t) — 2, t — o0), and that between pad and
shaft the so-called Newton’s heat exchange takes place. The shaft begins to expand and a contact
between two bodies occurs (note, that earlier both bodies were not in a contact). We assume that

Fig. 1. The analyzed system (1—shaft; 2—braking pad).
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between the pad and shaft, dry friction governed by the function F,(¥,) occurs, where
Vo = @Ry — @,R, is the relative velocity between the bodies, i.e. pad and shaft. B, and B, are the
inertial moments of shaft and pad (bush) measured in relation to their length units, respectively.
We assume that the friction force is governed by the formula F; = f(¥,)N(t), where N(¢) is the
normal reaction and f(¥,,) is the coefficient of kinetic friction. Note that in the contact surface
between two bodies and for R = R, heat is generated by friction and the pad wear. T;(R, t) denotes
shaft temperature, which is equal to zero at the initial time instant.

Both thermal and stress—strain state of the shaft are considered using the cylinder coordinates
R, ¢, Z rotating with the angular velocity © with its origin situated in the center of the rotating
elastic body. The shaft center is rigidly fixed. The governing equations of motion of uncoupled
thermoelastic problem along Z-axis have the following form [16,20]:

. 0?
m V2 + (A + py)graddiva + p,Q*Reg = (34 + 2u,)o; grad Ty + p, G_t;l’ (1)
1 o7
2p 2 1
V'h _01 o’ (2)

where V2 is the Laplace operator, u = Uez + Vey + Wez is the vector of relative displacement
shaft, U is the radial displacement, 7} is the shaft temperature, A;, u, are the Lamé coefficients, p,
is the shaft density, a; is the coefficient of thermal linear expansion of the shaft, and q is the
thermal diffusivity of the shaft material.

We consider a one-dimensional model of thermal friction and wear during a stick—slip motion
taking into account the following assumptions:

1. We assume that the pad is a perfectly rigid body.

2. The external excitation of the system allows for neglecting of the term p, 3*u/d# in the Lame
equation (1). Since the shaft rotates with a small angular velocity Q(¢) = ¢, (¢), the centrifugal
forces p, R can be neglected [20].

3. The vector components related to displacements as well as the shaft temperature do not depend
on ¢, Z, and the unequal zero components U(R,t), V(R,¢) and T(R,¢) depend only on the
radial coordinate and time.

4. The heat flows ¢, and g, are generated on the contact surface due to the Ling rule [13,15] and
they are governed by the equation ¢; + g, = f(¥,)¥,P(t). Both flows ¢, and ¢, go into shaft
and bush, respectively:

_aﬁéﬁ;’t), g2 = —or(Tohr(t) — Ti(Ry, 1)), . ®)

where /; is the thermal conductivity of the shaft material, and o is the heat transfer coefficient
between shaft and bush.
5. One of the most popular wear model is governed by the equation [11]

dU,( N

0 eworear, @
where m, n are exponents, dU,/dt is the pad wear rate, X, is the wear constant determined from
an experiment [9,14]. Owing to the second assumption, K, does not depend on temperature.

Q1= A
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However, in some Refs. [9,17] a temperature dependence of K is also considered. P(¢) is the time
depended contact pressure. We dssume Archard’s law of wear [2,3] in the form of (4), where
'm = n = 1. The taken rule is typical for an abrasive wear.

Owing to the introduced assumptions, a balance of the moments in relation to shaft axis [4] is
carried out and the equations governing thermal stresses for the isotropic body [16,20] in the
cylinder coordinates are derived.

The equations and initial conditions governing the rotational motion of the bush have the
following form:

do,
274

whereas the equations and initial conditions governing the rotational motion of the shaft can be
cast in the form

d‘Pz

. 2
dr =M —cR

Ms: (pZ(O) = 07 M = 07 (5)

B dr

B y-m, o 0=g 200 ©
In order to determine the amount of wear at the bush during sliding process, Archard’s law of
wear is used

dUy(1)

Cdr
and the quasi-static thermoelasticity equations (1) and (2) for the shaft have the following form
[16,20}:

= K|V, (0)|P(2), | (7

*U(R,t) 10U(R,1) 1 1+ v 0Ty (R,?)
ok TR ok mURI=aT5 g ®
?Ti(R,t) 1 0Ty(R,7) 1 OTV(R,?)
R E 3R —ZI-T, O0<R<R, 0<t<oo, (9)
with the attached mechanical conditions
U(0,1) =0, U(Ry,t) = UL(p), 0<t<o0. : (10)
The thermal boundary conditions have the following form (see assumption 4):
OTi(Ry,t '
W TR o 1y (Ruy 1) ~ Tohe()) = £ (KK, (1)
aTl(R 1) _ '
R R_'o.—O, 0<t<oo, (12)
and initial conditions read
N(R,0)=0, O0<R<Ry (13)

where M, = f(R(¢, — @,))2nR2P(¢) is the moment of friction force, M is the moment acting on
~ the shaft, the elastic forces moment is defined by M, = k2R2¢,, and U,(t) denotes wear. Radial
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stresses in shaft or (R, #) can be found knowing both radial displacement U(R, t) and temperature
Ti(R,?) in the shaft [16,20], since
_ E; [1-v0U(R,¢) v U(R,?)
or(R,1) = 1-2v [1+v &R T1+v R
The following notation is used: P(f) = N(¢)/2nR, = —or(R;,t) is the contact pressure, E, is
Young’s modulus of the shaft material, v is Poisson’s ratio of the shaft, «; is the coefficient of

thermal linear expansion of the shaft, ¢,(f) and ¢,(¢) are angles of bush and pad rotation.
Let us introduce the following dimensionless parameters:

R t P U, i

— oy Ti(R, t)]. (14)

"—E T=Z, P=—P:, uz=—U*, 0=F0’ ¢ = 0y(L1), ¢ = 91(t,7), é1 = ¢f,
: P, t221cR§ arRy 2E,a1R2 t.ay P.222nR?
O::t* © z———-—-——-——** B'=—, -_.-—-———-1 ~=——* , =———~——-——** 1
dr=top, e=—p—, Bi==7=, v=3 0 @ B’ M= Tp
My KR\ P, cR2
=5A_ 5 z = , h= , h =hy(t.7), h = L1),
m = oo g U, 3ot m(T) = hy(.7),  hr(t) = he(t,1)

F(¢1 - 4’2) =f(R1t_’(q51 - ‘l;z)),

where t, = \/Bz/kz/Rz, = 20(176(1 + V)Rl, = 2E1&|Ib/(1 - 2V)
Applying the Laplace transformatlons [6, 8] to Egs. (8)—(13), the following non-dimensional
equations are obtained:

$2(7) + 21,(x) + 0(x) = eF($, — $)p(1), 0 <t <00, ¢5(0) =0, ¢,(0)=0, (15)
‘51(") = ap(mohy (1) — F((ﬁl - éz)P(T)), 0<t<o00, ¢,(0) =4y, ‘bl(o) = 4’?’ (16)

o) = Bia | "Gyt~ Ohr(&)dE - u(x) + 76 | "Gyt~ OF (6 — $a)p(O) (b1 — ba) e,
| (17)

) =k [ 16,0 - bsObO e (18)
0(r, ) = Biid /0 “Golrt— Ehr(E)dE + y&> /0 " Golr, T — OF (g - )P(E) (b — $p)dE, (19)

(6, 61,9} = 3 L2 et (20)

where d¢,/dt = §,, d2¢,, /di? = é,, n=1,2, p, are the roots of the characteristic equation
m=1,23,..) :

Biy(1) = wh(k) =, 1)
Ja(1) is a Bessel function of the first kind of order n (n = 0,1), F(¢, — ¢,) is the dimensionless
coefficient of kinetic friction, £, is the dimensionless wear constant, Bi is the Biot number, m, is the
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dimensionless applied moment, y is the dimensionless thermomechanical parameter proportional
to a3, and @ is the coupling parameter.

Observe that the considered problem is reduced to the system of non-linear differential equa-
tions (15) and (16), and the integral equation (17) describing the angular velocities of pad ¢2(1:)
and shaft ¢,(r), and the dimensionless contact pressure p(t). Dimensionless temperature 6(r, t)
and dimensionless wear u,(t) are governed by Egs. (19) and (18), respectively.

Observe also that the derived governing equations include known in the literature particular
cases of frictional contact analysis of two bodies.

For example, if both thermal shaft extension (y = 0) and wear (k, = 0) do not appear, than after
some time a contact pressure p(t) — 1. Our general investigations can be also reduced to the
particular cases considered in the following references: [1] p(t)=1 (3=0,k,=0), h=0,
¢, = const; [6] k=0, k&, =0, ¢1 = const; [18] ¢, =0 (k, — 00), F(¢, — $,) = const; [19] ¢, =0,

F(¢, — ¢,) = const, $, = const.

3. Results

A dependence of the friction coefficient on the non-dimensional relative velocity (the so-called
Stribeck’s curve [10,14]) is approximated by the following function [4]:

— _ _ [/} fory#0, |

FO) = Fisma0) - + 47, se0) = { P P20 @)
where the following parameters are fixed: F = 0.3, o = 0.3, § = 0.3. Note that for ypin = / a/3p
the function F(y), y € (0,00), reaches its minimum Fpyin = F(¥min). Observe also that the F'(y) <0
for y € (0, Ymin), and F'(y) > 0 for y € (¥min, 00). The function Sgn(x) has been approximated by [6]

_ v/l for |y| > &, _
Sgn, (v) = { 2= bl/eo)y/e0 for ] < e, where ¢ = 0.0001. (23)

Numerical analysis is carried out using Runge-Kutta method for Egs. (15) and (16), and the
quadratures method is applied to Eqs. (17)—(19).

Assume that in the initial time instant the force moment /(1) = 1 — exp(—47%) acts on the
shaft and dimensionless temperature of the pad is governed by the formula Az(t) =
2(1 — exp(—d72)). This moment forces the shaft to rotate with an acceleration. Since a heat
transfer occurs, the rotating cylinder starts to expand and then a contact with the pad occurs.

First, the case of wear absence, when the shaft after a transitional state achieves the constant
rotational speed ¢1(1) wg = const is studied and the bush is non-movable (¢2 =0). In what
follows a stationary solution (in Egs. (5), (6) and (9) the derivaties with respect to time are
omitted) has the form

1 2 YW F (@g)

Pa=7—p bu=7"5, @au=em, v=""pp—, (24)

where oy is a solution of the following non-linear equation:
my

1+ ymowsy/2Bi’ (25)

F(wg) =
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Graphical analysis of Eq. (25) yields four different cases depending on the following parame-
ters: my (non-dimensional torque), y (thermomechanical parameter associated w1th shaft) and Bi
(Biot number).

One may expect one solution w w3} (F'(w3) > 0) (first case), three solutions w},, wft, } (F'(wl) >
0, F'(0?) <0, F’(wst) > 0) (second case), one solution w) =0 (using approxnnatlon (23)
o), & ggymy/2Fy, F'(w)) ~ 2F/¢) (third case).

For small y (y < 1) and: (i) mo € [0 F min)> EqQ. (5) can possess one solution ), = 0; (ii) for
mo € (Frin, o), three solutions w}, w?, w3, may exist; whereas (iii) for my € (F, ) one solution

, is possible.

For larger y one solution w? satisfying the inequality F'(w?) < 0 is expected (case four).

In order to trace stability of the stationary solutions (24), their perturbations are analyzed. The
characteristic equation of a linearized problem has the following form:

$(A1(5)Q2(s) — 2BivAy(s)21(5)) + aupa(s® + 2hs + 1)(B,A1(s) + 2BivB,Ay(s)) = 0, (26)
Q1 (S) = S2 + (2h ‘pstgﬁl)s + 1, QZ(S) = 32 + (2h +pst8B2)s + 1, ﬁ2 = F’(wst)y
B = F(wx)/wx, Ails) = (s/®)Axs) + Bilo(/s/®), Da(s) = h(V/s/@)//s/®,
where 1,(x) = i "J,(ix) is the modified first order Bessel function with the argument x.
Roots s,, (Res; > Resy > --- > Res,, > .-+, m=1,2,3,...) of the characteristic equation (26)
may be situated either in the left hand side Res < 0 (a stationary solution is stable) or in the right

hand side Res > 0 (a stationary solution is unstable) of the complex variable s.
The characteristic equation (26) is transformed into the following one:

i(S/@)'"bm =0, 27)

m=0

bo = aypsco, co = Bipa(B, + vBy), by = ddy + aypycy, do = Bi(l —v),
= (2(2 + Bi)B, + Bivp,)/8 + 2hdBi(B, + vp,),

dy = 0.5 + Bi(0.25 — 0.1250 + @pye(By + vB,) + 2hd(1 — v)),
= (dD +28@d" | + @*d),)B, + 2Biv(d? + 2hid"? | + @*dD,)B,

bm = a)dm—l + amPstCm,

dp = dD = 2Bivd® + @epa(B,d", + 2Bivgd?) + @*(d, — 2Bivd?,)
+2h(dY, — 2Bivd? ), m=2,3,...

m 22m(ml)2’ m =22m+lm!(1+m)!’ m=0,17--.

A general analysis of roots of Eq. (27) yields a conclusion that the following four cases should
be considered. In the first case one stable stationary solution is found. In the second case, three
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Fig. 2. Time histories of the angular velocities of braking pad ¢, (solid curves) and shaft ¢, (dashed curves) during
acceleration (a) and braking (b) for different values of the parameter k. (curve 1: k, = 0.01; curve 2: k, = 0.1).

different solutions exist, but one of them is unstable. In the third case, one stable solution exists.
Finally, in the fourth case, one may expect an occurrence of one unstable stationary solution.
However, in the latter case the phase space trajectories are attracted by stable self-excited stick—
slip vibrations. Our further analysis is focused on this case.

The following parameters are fixed during computational process: e =1, ay =1, Bi=1,
y =20, h = 0.05, @ = 0.1, 6 = 10. These parameters correspond to the following stationary so-
lution: py = 2.1, 6 = 4.2, vy = 0.2. However, this solution is unstable, since the roots of Eq. (27)
s12 = 0.23 £10.26, 534 = 0.21 £ 10.89 have positive real parts. One may also expect a contribution
of the largest period of amount of 2n/Ims, = 24.2 in the occurred self-excited vibrations.

The dependencies of non-dimensional angular speed of the shaft ¢, (dashed curves) and the pad
¢2 (solid curves) versus the non-dimensional time during acceleration (my = 0.5, ¢] =0, ¢1 =0)
and braking (mg =0, ¢] =0, 4’1 = 4) are reported in Fig. 2a and b, respectively, for a few values
of the parameter &, characterizing pad’s wear (curves 1 and 2 corresponding to k, = 0.01 and
k, = 0.1). The dependencies of non-dimensional contact pressure p(t) versus the non-dimensional
time during acceleration (m, = 0.5) and braking (mo = 0) are reported in Fig. 3a and b, respec-
tively, for a few values of the parameter k, characterizing pad’s wear (curves 1 and 2 corre-
sponding to k, = 0.01 end &, = 0.1). The dependencies of non-dimensional wear u.(t) versus the
non-dimensional time during acceleration (my = 0.5) and braking (my = 0) are reported in Fig. 4a
and b, respectively (for a few values of the parameter £, characterizing pad’s wear (curves 1 and 2

corresponding to k, = 0.01 end k, = 0.1).

3.1. Dynamics of shaft and bush during acceleration process

Consider first dynamics for small value of the wear coefficient &k, = 0.01 (curve 1). In response
to a driven moment action, the shaft starts to rotate (solid curves). Owing to thermal shaft radial
expansion, the contact pressure p increases. To conclude, both dimensionless contact pressure p(t)
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Fig. 3. Behavior of dimensionless contact pressure p versus dimensionless time t during acceleration (a) and braking (b)
for different values of k, (curve 1: k, = 0.01; curve 2: k, = 0.1).
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Fig. 4. Behavior of dimensionless wear u, versus dimensionless time t during acceleratlon (a) and braking (b) for
different values of k, (curve 1: k, = 0.01; curve 2: &, = 0.1).

(Fig. 3a) and dimensionless friction force F((ﬁl - <152)p(r) (right hand side of Eq. (15)) increase -
yielding an increase of bush velocity and contact temperature () and wear bush u,(t). For
example, in time instant © = 4.27 (t = 4.76) the shaft (bush) velocity starts to decrease (Fig. 2a).
The maximal values of contact pressure are achieved for non-dimensional time units T = 8.95 (see
curve 1 in Fig. 3a). For time instant 7; = 9.54 the relative sliding velocity of both bodies is equal to
zero, and a stick phase begins, which ends for 7, = 17.5. In the stick state for t € (11, 72) the shaft
temperature decreases owing to heat exchange, and therefore both contact pressure (see curve 1 in
Fig. 3a) and friction decrease, but wear does not undergo any changes. Beginning from 7, = 17.5,
a sliding phase appears within interval of t € (t,, 73), where 73 = 29.7. In this phase both increase
and decrease of shaft velocity is observed, the bush vibrates, and also a contact temperature and
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pressure exhibit oscillating character (see curves 1 in Fig. 3a). Friction accompanied by vibrations
also increases yielding an increase of bush wear (Fig. 4a). For 73 = 29.7 the next stick phase occurs
for 1€ (13,74), where 7, =37.3. It is worth noticing that during stick phases 7€ 74 =
(t1,72) U (t2-1,72) U - - - the system velocity oscillates periodically with the period 2m(1+
elay)//1+ ¢e/ay — h* = 8.89.

Consider now the system dynamics for larger value of the wear coefficient &, = 0.1 (curve 2). In
the beginning of the sliding phase for t € (0,1;), where 7; = 11.7, all earlier mentioned charac-
teristics of two contact bodies are similar to the previous case associated with small wear (see
curves 2 in Figs. 2a-4a). Only one sliding phase t € (71, 72), where 7, = 13.3, is exhibited. After
1, = 13.3 the bush starts to vibrate and the shaft rotation velocity, as well as contact temperature
and wear, are increased. The contact pressure approaches zero for 7. = 50.6 in an oscillatory
manner (Fig. 3a). Beginning from this time instant the contact between two bodies is lost. The
shaft starts to rotate with an acceleration, whereas the bush vibrates with the period 2rn/v'1 — k2.
Zones of sticks are reported in Fig. 2a and are marked by horizontal intervals 1 and 2.

3.2. Dynamics of shaft and bush during braking process

Consider first dynamics for small value of the wear coefficient k, = 0.01 (curve 1 in Figs. 2b—
4b). In result of temperature increase of a surrounding medium, a temperature of the shaft ro-
tating with non-dimensional velocity ¢] = 4 also increases. The shaft and bush start to touch each
other, a contact pressure increases and achieves its maximal value p = 6.72 for time instant
7 = 0.26, and both friction force and bush velocity increase. For 7, = 0.75 the velocity of two
bodies (sliding velocity) will be equal to zero, and a stick phase begins (it ends for 1, = 5.9).
Similarly to the previous case, due to heat exchange the shaft temperature starts to decrease in the
stick phase t € (1, 72), which causes a decrease of both contact pressure (curve 1 in Fig. 3b) and
friction force. The latter one changes its sign rapidly for t = 4.57. Wear process is constant during
stick phase (Fig. 4b), i.e. for T € (11, 72). Zones of sticks are reported in Fig. 2b and marked by
horizontal intervals 1. Beginning from 7; = 26.0 the stick phase is exhibited, which is observed
until the damped oscillations (with the period 2n(1 + &/ay)Vv/1 + eay — h? = 8.89) vanish.

Finally, let us consider the braking process for largest value of the wear coefficient k; = 0.1
(curve 2). The corresponding stick phases are shown in Fig. 2b and denoted by horizontal in-
tervals 2. For 1, = 33.3 the contact pressure is equal to zero (Fig. 3b). The shaft stops, whereas
damped bush vibrations are observed with the period 2n/v'1 - A%

Note that when the shaft displacement achieves its extremal values (¢ = 0, see dashed curves),
the friction force changes its sign. In the stick phases 7 € g = (71, 72) U - - - (%21, Ty) U - -+ wear
process is not observed.

4. Conclusions

One-dimensional mathematical model of a thermoelastic contact of moving bodies taking into
account with an account their inertia, frictional heat generation and wear is developed. Assuming
a friction dependence on the relative velocity of the contacting bodies, both acceleration and
braking processes are studied. The constituted mathematical model consists of one integral
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equation and two non-linear differential equations. The introduced model includes both small
time ¢, (associated with the system stiffness) and large time R?/a, associated with heat transfer
process. Both of them are characterized by their ratio @ = t,a;/R}. Note that this model can be
applied for a small value of the parameter @.

First, the stationary solutions (equilibria) are found, and further their stability is investigated
following a standard approach. A stability investigation is reduced to a study of a transcendental
characteristic equation. The characteristic function is presented in a power series form suitable for
roots estimation. Among other results, it is shown that for some parameters one of the stationary
solution is unstable. It is associated with an occurrence of stick—slip self-excited vibrations ex-
hibited by the system. In the beginning a minor wear does not influence stick—slip dynamics es-
sentially. However, increase of wear causes a contact loss between two bodies.

In the braking regime with large wear, a contact between two bodies is lost. In the case of small
wear both of two bodies keep a contact after some time of independent motion, and a damped
vibrational process is exhibited.

Let us emphasize that wear governed by the formula (18) depends on all contact parameters
(relative velocity, contact pressure, and contact temperature). In addition, a total wear amount in
both acceleration and braking regimes depends on initial conditions. It is demonstrated, among
other results, how for some chosen parameters a total wear is increased in the acceleration regime
owing to increase of time contact intervals between the bodies t € 14 = (0,7;) U (12,73) U - - -

It is worth noticing that for y = 0, i.e. when a radial thermal expansion is neglected, the system
does not exhibit self-oscillation behavior (one and only one unstable stationary solution does not
exist in this case). Although in the second case there exist one unstable stationary solution, but
there are two more stable ones Hence, in the latter case one may observe self-excited vibration,
but only if the shaft velocity w? (F'(w?) < 0) is a priori given and constant one (in fact, this case is
reduced to the classical case considered in the monograph [1]).

Owing to the previous considerations, the following general observation can be formulated. If
the radial thermal expansion is neglected, then self-excitation of two contacting bodles does not
occur. However, it can be realized in the contacting pair for a given velocity w? of one of the
bodies, only if F'(w?) < 0. Owing to radial thermal expansion of the contacting bodles the self-
excited vibrations may appear. The exhibited stick-slip vibrations are associated with a heat (slip)
and cooling (stick) processes.
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