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In this work a new one-dimensional model of thermoelastic inertial contact of a braking
pad and a rotating inertial shaft, in the braking or accelerating process, is presented and
analyzed. Besides dry friction, frictional heat is generated between the two given bodies
in contact. The dynamics of the considered system is governed by two non-linear
differential equations and one non-linear integral equation. The stability of static
solutions, as well as the behavior of contact characteristics in braking and acceleration
are analysed.

Keywords friction, frictional heat generation, rigid bush, rotating shaft, stick-slip
vibrations, thermoelastic contact.

Friction, frictional heat generation, and heat expansion are all complex phenomena
interacting with each other and creating one process in a frictional kinematic pair.
Any nonstationary frictional process is characterized by a change over time of all
interdependent parameters of the frictional process. In this work it is examined
whether the frictional heat generation in a system consisting of a shaft and a friction
pad may (and if so, then to what extent) influence the movement of a shaft-attached
bush during the braking and acceleration of the shaft. A brief review of the works in
the field of frictional heating in thermoelastic contact is given in the literature [1]. In
the majority of theoretical works devoted to this problem only periodic self-excited
oscillations are considered [2-6]. A method of dry friction investigation, as well as
computational approaches leading to its qualitative and quantitative estimation, are
reported in the literature {4, 5, 7]. Frictional oscillating processes accompanied by
heat transfer have not been investigated so far. It is clear that an investigation into
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NOMENCLATURE

a thermal diffusivity tr = R}/ay; characteristic time
B, B, moments of inertia of the shaft related to heat transfer

and the bush, respectively T period of oscillation
Bi Biot number Ti(R,1) temperature of the shaft
E Young’s modulus of the shaft . maximal environment
SVa) friction coefficient temperature
A(V) kinetic friction coefficient U(Xx, 1) displacement component along
§A maximum value of the static radial direction in the shaft

o friction coefficient 120 relative velocity of the shaft and

Fl¢-¢) kinematic friction coefficient the bush

depending on relative velocity | A = Ry /tr; characteristic velocity
Fi(1) dry friction v dimensionless coefficient related
ha() prescribed dimensionless to frictional TEI

moment acting on the shaft o coefficient of thermal expansion
h(1) environment temperature for of the shaft

Newton’s cooling law of Eq. (10)  ar heat transfer coefficient
k2 stiffness coefficient BBy dimensionless coefficient related
M(r) moment acting on the shaft to friction and its derivative
M, = max[M(¢)]; maximum moment y dimensionless thermomechanical

acting on the shaft parameter in the boundary
M,(1) moment of friction conditions (18)
M,(1) moment of elastic forces 8(r,1) dimensionless temperature of the
my dimensionless coefficient in the shaft

shaft equation of motion (26) 0 dimensionless steady-state
N() normal reaction contact temperature
p(@) dimensionless contact pressure 1,8 dimensionless coefficients related
s dimensionless steady-state to moment of shaft and bush

contact pressure inertia, respectively [see Eqgs. (26)
P(1) contact pressure and (5)]
. characteristic contact pressure v Poisson’s ratio of the shaft
value for nonmovable system (1) dimensionless shaft position angle
while the shaft is heated to o1(1), @2(1) angles of the shaft and the bush
temperature T, position, respectively
r dimensionless radius A thermal conductivity of the shaft
R radius ar(R, 1) stress component along radial
Ry, Ry internal and external radii of the direction in the shaft

bush, respectively @ tp/tr; coupling parameter of the
s Laplace transform parameter system
t time Wyt dimensionless steady-state shaft
17 = \/By/ky/R;; characteristic angular velocity

system time related to the bush T dimensionless time

oscillations period o(z) dimensionless shaft position angle

their occurrence and behavior of the contact characteristics (relative velocity, contact
temperature, and contact pressure) may lead to a better understanding and
explanation of various complex processes in friction brakes, grinding machines,
machine tools (where high-accuracy treatment is required), in torsional joints,
various frictional dampers, as well as in other machine systems with friction
kinematic pairs.
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The classical problem devoted to the analysis of a friction pad on a rotating
shaft, which is fixed elastically to a housing (massless springs), was investigated in
monographs [2, 8]. Constant velocity for shaft rotation has been assumed by
Andronov et al. [2], and the shaft inertia were included by Neimark [8]. In fact, this
simple model corresponds to a typical braking pad model or to Prony’s clamp model
{2]. Both fast and slow pad movements were analyzed under the assumption that the
mass of the pad tends to zero.

A thermoelastic contact between a rotating shaft and afixed pad was mvestxgated
by Pyryev and co-workers {10, 11], under the assumption that the contact is non-
inertial. A dynamical problem of the thermoelastic contact with the frictional heating
of the contacting surfaces was studied in the literature [11-16]. The axially symmetric
problem of the thermoelastic contact of a shaft that rotates with constant velocity
(later referred to as the kinematic excitation) and a pad fixed to the housing via
massless springs was analyzed by Awrejcewicz and Pyryev [17] and, with wear and
frictional heat generation taken into account, self-excited vibrations caused by
friction were examined. It was also shown that when the relative speed achieves its
critical value, the so-called frictional thermoelastic instability (TEI) occurs.

The present work is a continuation of the problem considered by Awrejcewicz
and Pyryev [17]. Here, a more complicated case is studied, namely the one in which
one of the contacting bodies is subjected to mechanical excitation and, hence, an
equation governing its dynamics must be included in the full mathematical model of
the problem. Many important questions concerning the system under investigation
may be formulated. Does frictional TEI occur in this case, and if not, then how is the
system dynamics realized? Is it possible to realize a self-excited motion? What kind of
system motion appears during the braking process? The answers to these questions
are given in this paper. It should also be emphasized that the mechanism for the
contact between two bodies dealt with in the present analysis is different from the
one discussed in the literature [17].

Observe that the system under analysis is described by two characteristic times,
namely, the characteristic time related to system oscillations, #p (small), and the
characteristic time related to heat transfer, ¢7 (large). If the ratio of these two
timescales is “small,” then the system can be treated as an uncoupled one.

Numerical verification of the presented analytical estimations of periodic
oscillations completes the paper.

THE SYSTEM UNDER ANALYSIS

An elastic and heat-transferring shaft of radius R; has been inserted into a bush (solid
bearing bushing or a braking pad) of external radius R; and internal radius R,. The
diagram of the analyzed system is shown in Figure 1. The bush is attached to the
housing (a frame or a base) through springs characterized by stiffness coefficient k. It
is assumed that the bush behaves like a rigid body. The shaft rotates with angular
velocity ¢@,(#), and the centrifugal forces are neglected. The angular velocity of the
shaft is assumed to change due to the action of the moment M = M, hp(t), where M, is
a constant, and A(¢) is a known dimensionless function of time (hy(¢) — 1, ¢ — 00).
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Figure 1. The analyzed system.

It is further assumed that the bush transfers heat ideally and that at the initial time
instant the ambient temperature change is governed by T.hr(z), where T, is a con-
stant in temperature units, while kr(¢) stands for a known dimensionless function of
time (hr(f) — 1, t — o0), and that between the shaft and the bush the Newton heat
exchange occurs. The shaft starts to expand, and a contact between the shaft and the
bush is initiated. Another assumption made is that the dry friction occurring between
the bush and the shaft is defined by the function F,(¥;), where ¥, = ¢, Ri — @R, is
the relative velocity of the shaft and the bush. Moreover, B; and B, are moments of
inertia of the shaft and the bush, respectively, and the friction force F; is re-
presented by F, =f(V,)N(t), where N(f) is the normal reaction and f{V}) is a
friction coefficient. The friction coefficient is defined as

A7) =sen(r{ AP A0, s = { Y BV 20

where f, stands for the maximum value of the static friction coefficient and fi(V})
denotes the kinetic friction coefficient. The so-called Stribeck curve [4,6], shown in
Figure 2, has its minimum for ¥, = Vi, and for ¥, < Viin we have f’ “(Vy) <0.The
friction force F, yields heat generated by friction on the contact surface R = Ry.
Observe that the frictional work is transformed to heat energy (see, for instance [18]).
Let the shaft temperature, denoted by Ti(R, £), be initially equal to zero.

The formulated problem is defined by the equations that govern the dynamics
of the bodies in the vicinity of the equilibrium configuration, with angular
displacements @, (¢) and ¢, (#), and angular velocities ¢,(¢) and ¢, (2), respectively for
the bush and the shaft, with stress og(R,?) in the shaft, contact pressure
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Figure 2. Kinetic friction coefficient versus relative velocity.

P(f) = N(t)/2xR, = —ag(R\, ), temperature Ti(R,1) of the shaft, and with the
linear displacement U(R, ¢) in the direction along axis R.

MATHEMATICAL FORMULATION OF THE PROBLEM

Equations for Rotational Movement of Rigid Bush -

Let axis Z be the cylinder axis. The equilibrium state of the moments of forces with
respect to the shaft axis yields (cf. [3, 17])

By, — M; = M, (1)
where M, =f(Ri(p, — @,))27R3P(t) denotes the moment of friction force and

M, = kyR}0, is the moment of the elastic forces.
Let the initial conditions be

020 =93  ¢(0)=0w; )
and let us introduce the dimensionless parameters

2
T=— p=£ =-—-—-—-—2an1%.},‘ a)z-tg-

tr P, B t (3)
=93 o=ty (1) =@tr1)

F(-0)=AV(d—- ) (4)
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where 7 is the dimensionless time, fp = v/ B2/ks/R; is the characteristic system time

related to the bush oscillations period 2ntp = T, and P, is the characteristic contact

pressure at shaft temperature T, [see Eq. (16)]. ‘
The dimensionless equations governing the system dynamics have the form

(1) + @72p(1) = F(¢p — @)p(zr), O0<t<o0 (5)

e0)=¢° $(0)=0° (6)

To solve the motion equations one needs to know ¢(t) and the contact pressure p(z).
The latter can be obtained from the thermoelasticity equation that includes also the
tribological processes.

Problem Formulation for Thermoelastic Shaft

In the analyzed case, the inertial terms in the equation of motion can be omitted and
the problem may be considered a quasi-static one. For the axially symmetric stress of
the shaft, the equations used belong to the theory of thermal stresses for an isotropic
body, stated by Nowacki [19] and applying cylindrical coordinates (R,9,2):

SBURt) 18UR 1 __ 14v0Ti(R,1)
R TR ok~ RURI=ar———p 0

FTi(R,1)  18Ti(R,) 10Ty(R,1)
oR2 +R 3R —a o 0<R<R 0<t<oo (8)

with mechanical boundary conditions
U©0,)=0 UR,)=0 0<t<oo %)

thermal boundary conditions

2,90 ézh D 4 ar(Ty(Ry, ) — T.hr(1)) = AV )V, P(1) (10)
aTl (R> t) — \
RTR_,O—O 0<1<oo (11)

- and with the initial condition

Ti(R,0)=0 O0<R<R, (12)
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Radial stress oz(R,?) in the cylinder may be found with the use of radial
displacement U(R,?) and temperature T(R, t) by the application of the formula

B [1-v8URY . v UR)
""(R”)'l—zv[lw R '14v R

— o Tl(R, I)] (13)

The following notation is used: P(f) = N(t)/2=R, = =ar(Ry,?) denotes contact
pressure, and Ar(f) denotes environment temperature for the Newton cooling law
in Eq. (10).

Integration equation (7), with Eqgs. (9) and (13) taken into account, leads to
determination of the contact pressure:

Ry .
Py =1 [ ek (14

Let us introduce the following dimensionless parameters:

LR U T
R, o T (1+ V)R, T, (15)
. arR = _ Eyaia;
Bl = ll hT(T) = hT(tT’C) 7 - (l — 2\?)2.]
where

R?
= Eyoy T./(1 — 2v) rr=a—’ (16)

i

and ¢r is the characteristic time of the thermal inertia. Observe that parameter 7 is
proportional to the parameterd; = a; (1 + v)/4; (where 6; is the thermal distortivity)
known in the literature (see, for example, [1]).

The thermoelastic problem under consideration * takes the following
dimensionless form:

#6(r,7) + 136(r,7) _ 86(r,7)

a2 - o 0<t<o00 O<r<l1 (17)

39(1 (1) | p, i(8(1,7) — hr(z)) _'yF(¢(1.') (p(t)) <¢(T) <P(f))1’(f)

0<t<

(18)



430 J. AWREJCEWICZ AND Y. PYRYEV

, 90(r, 1)

5 H0=0 0<1<o0 (19)
8,0)=0 O<r<l (20)
| |
p(1) =2 / 86, 0EdE  0<t<oo @1
o .

The radial displacement is defined by
w(r, )=t |1 / " 0n, 2Ind —]I 8(n, ) dr]] 22)
==y, O sndn = |6, m

Observe that in order to solve the problem defined by Egs. (17)~(22) one should
know the time-dependent velocities of the bush and the shaft. Notice also that pro-
blems (5),(6), and (17)~(22) are mutually adjoint and require simultaneous solving.

Equations for Rotational Motion of the Shaft

Let axis Z coincide with the shaft axis. The force moments related to the shaft axis
give [3]

B¢y - M=-M, (23)

where M, = f{V,)2rnR}P(t) denotes moment of friction force, M is the moment
acting on the shaft, and ¢, (7) stands for the angle of the shaft position. In order to
solve Eq. (23) the following initial conditions are used:

2@ =07  9(0) =0} (24)

Introducing the dimensionless parameters

2 -
& =@§:ﬁi mo =FA1‘R—12 =0l " =tr0] ¢=0(r)
hu(7) = hu(trs)  F($— @) = V(b — b)) (25)

one gets the dimensionless equation governing the dynamics of the shaft:

B(1) ~ emohpy(z) = ~aF(¢-o)pt) 0<t<oo (26)
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It is seen that again contact pressure needs to be defined. It will be found following
the solving procedure for the thermoelastic equation that takes into account the
tribologic processes. Notice that problems (5), (6), (17)-(22), and (26)-(27) are
coupled and require simultaneous solving.

ANALYSIS OF THE INVESTIGATED PROCESS.

Let us assume that the relative velocity dependence is approximated by the funct-

ion [17]

Jrnin + (fs — fomin) €xp(—51|V+]) ‘ if |V} < Vin
Jain + (fs — fmin) €Xp(—51| Vninl) +1—4T|;’rl—:%%) if | Vel > Vania
(28)

where f;=0.12, fuin =005 by =140sm™, b, =10sm™!, b3 =2sm™!, and
Vain = 0.035 mc™! (see [7]). The function F(y) = f{V,y) has a local minimum for
Ymin = Vmin/ V.. In the numerical analysis, function sgn(x) is approximated by [5]

1 if> g
xNx .
sgn,, (x) = (2 —%) o if x| < & (29)
-1 ifx< —g

where g = 0.0001.

Laplace Transformation Method
Let us apply the Laplace transformation to Eqs. (17)~(22):

{0,960, 6,00} = [ " {60, 7), p(2), hr(x), g(e) pe~d

where s is the transformation parameter. Taking into account boundary conditions
(18) and (19) and initial condition (20) we obtain

B(r,s) = sGo(r,5)a(s)  B(s) = 25G,(s)a(s)

Golrys) = I—;’i—‘}/(-i’T) Gyls) = s%((ss)‘) (30)
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Ax(s) = h{V5)/V5 Ai(s) = sAy(s) + Bily(+/5)

where I,(x) = i~"J,(ix) is a modified Bessel function of the first order with argument
x, and the nonlinear part of boundary problem (18) has the form

q(z) = yF($ - $)(é — )p(x) + Bihz(z)

To determine the inverse Laplace transform one may use well-known methods to
find the sums of the residues of the functions Go(r,5)e™™ and G,(s)e™" in the
complex plane. Using Eq. (30), applying the inverse Laplace transform, and using
the theorem of convolution [20), the following functions are found: .

p() = 2Bi /0 Gyl — hr(O)dE +2 /0 “Gple— OF - (OB - ) (31)

8(r,7) = Bi /o " Golr,t - Qhr(8)dE +7 /o "Galr, e O - o)) ) (32)

where

. & {2Bi22} .
() Gon 0 = B3 S e et e

and w,,(m=1,2,3,...) are the roots of the characteristic equation

BiJo() — pi(p) =0 (34)

Notice that the investigated problem has been transformed to the set of nonlinear
differential equations (5) and (26), integral equation (31) describing angular velo-
cities ¢(t) and ¢(r), and contact pressure p(7). The temperature is defined by Egs.
(32) and (33).

To sum up, on introducing boundary condition (18) one arrives at a coupled
problem of two-degree-of-freedom oscillations and a thermoelastic problem of the
rotating shaft. For y =0 (no frictional heat generation), the contact pressure
p(t) — 1, and the system of equations (5) and (26) that governs the coupled oscil-
lations in the shaft bushing system is obtained. Note that owing to the increase of the
spring stiffness (k, — oo) the characteristic time p — 0, which yields @ — 0 and
¢ — 0. The obtained Egs. (26), (31), and (32) govern the contact problem of the
rotating thermoelastic shaft. The natural question that arises is how to define the key
control parameters y and & for the system which is either coupled or uncoupled. This
question is addressed in a future study.
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Steady-State Solution Analysis

Observe that, in Eq. (26), the variable ¢(7) does not appear and, hence, the phase
space of the bush-shaft system is three-dimensional [8]. Consider the case when after
a transitional process the cylinder starts to rotate with constant velocity ¢(t) = g
while the bush does not move, ¢ = 0. Then, the steady-state solution of the problem
under consideration (in Eq. (17) the differential terms are omitted) has the following
form: -

__ 1 _m _ 1 _ =2 _ ~z‘
p“_l—v_F(ms,) es‘_l-—v Py = O &2 F(wst)pse = @e2mg
(35)
ve= y0u F(wg)
Bi
where w, is a solution to the nonlinear equation
my

F(wsl) = 0 (36)

1 4 ymgawy/ Bi

In the preceding equations, my is an applied dimensionless moment, y is a parameter
related to thermal distortivity, and Bi is the Biot number.

In Figure 3, the graphical solution of Eq. (36) for various parameters mg and Bi
is shown. For a stainless steel shaft (¢ = 14 x 1076°C™!, 1, =21Wm~!°C™},
v=03, @ =59mm?!, E; =190 GPa) parameter y=187, and for
R, =4x 1073 m the characteristic time fr=271s, and V, =1.47-10% ms~!.
Solid curve 1 corresponds to mg = 0.14, Bi = 10; solid curve 2 corresponds to
mg = 0.1, Bi = 10; solid curve 3 corresponds to mg = 0.05, Bi = 10; and solid curve 4
corresponds to my = 0.14, Bi = 1. The dashed curve represents function F(ws).

Equation (36) may have one solution w}, (F'(w}) > 0) for mg = 0.14, Bi = 10
(first case); three solutions w}, w3, @l (F'(wl) > 0,F(w?) < 0,F'(wd) > 0) for
mgy = 0.1, Bi = 10 (second case); one solution wgl =0 for my = 0.05, Bi = 10 and for
approximation (29) wk & eomo/2f;, F'(wl,) = 2f;/e (third case); or one solution @,
(F'(w}) < 0) for my=0.14, Bi=1 (fourth case). For a small value of y/Bi
(y/Bi << 1) (frictional heat generation is neglected, y = 0) and for my € [0, fuin), Eq.
(36) can have one solution w/, = 0. It may also have three solutions o}, w3, and w3,
for my € (fuin,fs), and one solution @}, for my € (f;, o0). Equation (36) shows that
the stationary solution does not depend on parameter &. Let us now analyze
perturbations of stationary process (35), which are defined by the equation
hr(z) = 1 + b3(3).

A solution is sought in the form

P =0x+0'(1)  O(rn7)=0u(r)+0(r,7)  p(z) =pa+p(x)

P=¢'() d=wu+¢'()
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Figure 3. Graphical solution to Eq. (36). Solid curves: 1, mp = 0,14, 5 = 102, m =01, Bi=10; 3,
maﬂ.OS,Bi-—-lO;4,nno==O.l4. Bi=l.Dashedcu’rvecomppndstoF(mg). o

where

<<l <<t << <<t gt <<t

After linearization of the right-hand sides of Egs. (5), (26), and boundary condition

(18), the following set of perturbation equations is obtained: ’

)+ 570 = xR0 FaFoe@ -8 o<t ()

@‘(d) = 0-, QP'(O): 0 “ (38)
L F@=2 fo (& 0<t<oo (39)
%*f:a&‘a{?ﬂ=%g’t) 0<r<o0 . O0<r<1 (40)

B | pitr(1,0) = iy + P 05" (0) + (8"  5°) (Pl

+ouF(0,)]

@
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I o gcrcoo g'(r,00=0 0<r<l (42)
or r—0 )
() = —a[F@ap + Floapa(#" - 97)]  0<i<oo  (®3)

FO=0  FO=0 . (@)

Application of the Laplace transformation to the linear system (37)(44) of the form

{E‘(r,S)fﬁ‘(S), " (), ir(s), ¢ (S)} / {6°.0",0" b1, 8" Je " dn

yields a solution in the Laplace transform domain. The characteristic equation of the
linearized problem is of the form

Aj(s)=0 k45)
Af(5) = sA*(s) + e1pse(@*s” + 1)[B2A1 (5) + 2BivB, As(s)]
A*(s) = Ai(5)Q2(s) — 2BivAL () (5) (46)

Q(s) = &’2(3 — epufis) + 1 D(s) = 6’2(32 + &psfas) + 1
B =F'(wg) By = Flox)wg

The roots s, (Res; > Res; >--->Res, >---,m=1,2,3,...) of characteristic
equation (45) may lie in the left-hand part (LHP) Res < 0 (a stationary solution is
stable) or in the right-hand part (RHP) Res > 0 (a stationary solution is unstable) of
the complex plane (s is a complex variable). The parameters separating the two half-
planes are called critical.

If the frictional heat generation is not taken into account (y=0), the
characteristic equation is governed by the following cubic equation:
5Q(s) + Brer (@s® + 1) = 0. Its roots lie in the RHP of the complex plane if §, < 0.
For a given bush velocity (one may assume & — 0), the characteristic equation is
reduced to the form A*(s) = 0 (for more details see [17]), whereas for y = 0 (that is,
when the frictional heat generation is not taken into account) it reads Q;(s) =

Let us analyze the stationary stable solution in more detail. The characteristic
function has the form

Ai(s) = i 5"bm (47)

m=0



446 J. AWREJCEWICZ AND Y. PYRYEV

bo = &1B;ps(B; + vB;) do = Bi(1~V)
by = do + &1p[2(2 + B;)B, + Bivp,]/8
dy = 0.5+ Bi[0.25 — 0.125v + @paez(B; + VB, )]

b = dypy + £1pal(dD + 02D ,)B, + 2Biv(dD + 2d2,)B]

= d) = 2BivdD + P ezpa(Brdy) s + 28R A2, ) + (), — 2Bivdl?,)
m=23,...

" ey mo 2 iml(1 + m)!

m=0,1,...

It should be emphasized that, for a given shaft velocity (e; — 0), Eq. (47) yields the
condition v > 1 of a frictional TEI (see [17]). However, when the moment of inertia
of the shaft (¢; > 0) is taken into account, then the frictional TEI does not occur. In
the latter case, the system self-controls the rotational shaft velocity by keeping
always v < 1. Note that the shaft dynamics influences significantly the values of the
characteristic equation roots only if the parameter @?(e; + ¢;) cannot be considered
a “small” one.

Under the assumption of the temperature increase of the surrounding medium
by up to T, = 5°C the stainless steel shaft of radius R; =4-10~3m is further
investigated (P, = 33.2MPa and t7 = 2.715s). Furthermore, it is assumed that either
the moment M, =334 N (my =0.1) or the moment M, =468 N (mg=0.14) is
applied to the shaft. Let either ar=5.25x10*Wm=2°C™! (Bi=10) or
ar =525 x 10° Wm=2°C™! (Bi = 1). It is also assumed that the shaft moment of
inertia B = 245.8 kg - m (g; = 100). On the other hand, it is assumed that the bush
moment of inertia B, = 245.8 kg - m (the external radius R, = 4 x 10~2 m), and the
stiffness of the springs k; = 2.1 x 105 N/m? (which yields #p =0.271s and
£ = 100). The ratio of small ¢p and large ¢7 timescales reads & = 0.1.

In the first case (mp=0.14, Bi=10) there is one solution w3 = 44.40,
Pl =6} =216, 9% = 0.14 (B, = 0.14 x 1072, B, = 0.12 x 10~2, v = 0.54), which is
stable [the first roots of Eq. (45), 512 = —0.18 + 10.07i, lie in the LHP]. The expected
“period” of damped oscillations is equal to 2z/Ims; = 0.62.

In the second case (mp = 0.1, Bi = 10), there are three solutions. The solution
) = 38.40, % = 6%, = 1.72, 93 = 0.1 (8, = 0.15 x 102, B =0.1x%x 1072, v=1041)
is stable [the first roots of Eq. (45), 51,2 = —0.11 £ 10.044, 53 = —0.53, lie in the LHP).
The solution @} =1.99 (8; =4.85x 1072, B, = —0.96 x 102, v =3.58 - 107%) is
unstable [the roots of Eq. (45), 512 = 0.47 £9.97;, 53 = 0.87, lie in the RHP]. The
solution with approximation (29), @}, = 0.42 x 107 (8, = 2.4 x 103, B, = 2.4 x 10%,
v=7.8-10"") corresponds to a periodic motion when the bush and shaft stick
together (wl, ~ 0) {the roots of Eq. (45) 512 = —0.52 x 10~* £ 7.07{ lie on the
imaginary axis]. Observe that in the last case the roots may be found directly from
the characteristic equation s? + w} = 0, where wp = 1/(&+/T + £2/#,).

In the third case (my = 0.05, Bi = 10), there is one solution. The solution with
approximation (29), o}, =0.21 x 1074, p}, = 6 = 1.0, ¢!, =0.05 (8, = 2.4 x 10%,
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B, =2.4 x 10°, v = 1.95 - 10~7), corresponds to a periodic motion [the roots of Eq.
(45), s12 = —0.52 x 107* % 7.07i, are purely imaginary]. Like in the second case, in
the case considered now the roots may also be found directly from the characteristic
equation s? + @} = 0.

The steady-state solutions w), correspond to stick conditions with rigid-body
torsional vibrations. The eigenvalues obtained in these cases have a small real part
due to regularization of the step function in the Stribeck approximation. These real
parts are spurious effects of the regularization and the real physical behavior does
not involve any slip. '

In the fourth case (mg = 0.14, Bi = 1), there is again only one solution. The
solution w? =141, p2=04=137, 92 =014 (8, =728x10"%, B,=-1.08
x1072, v=0.27) is unstable (the roots of Eq. (45), s12 = 0.745 £ 10.06i,
s34 = 0.13 £ 1.36;, lic in the RHP). Observe that the roots s; crucially affect the
self-excited oscillations because they have the largest real parts and yield the
oscillations with the estimated period of T =2=a/Ims; = 0.62, which has been
successfully verified numerically. If there exists one unstable solution, then the
corresponding unsteady-state solution approaches a “stick-slip” periodic solution.

The most interesting fourth case is characterized by the following limiting cases.
For mg = 0.14, Bi = 1, and when the bush vibrations @ = 0 (fifth case) are neglected,
only one solution occurs. The solution w? = 1.41, p2 =04 =1.37, ¢ =0.14
(B, =7.28 x 1072, B, = —1.08 x 10~2, v = 0.27) is unstable [the roots of Eq. (45),
s12 = 0.145 + 1.37;, lie in the RHP]. Note that the roots 512 can be well approxi-
mated via Eq. (35) by taking into account only three first terms of Eq. (36) (bp = 1.2,
by = —0.043, b, = 0.615, b3 = 0.0725). Again, they govern the self-excited oscilla-
tions with the period T = 2x/Ims, = 4.58.

For mg = 0.14, Bi = 1, and with no frictional heat generation (y = 0), there is
one solution w3 =86.71, pi =63 =1, ¢} =0.14 (8, =0.16 x 1072, B, =0.21
%1072, v = 0), which is stable [the first roots of Eq. (45), s, = —0.11 + 10.0;,
53 = —0.216, lie in the LHP). As expected, the motion has the character of damped
oscillations with the period (27/Ims;) = 0.629 and with the logarithmic decrement
(2nRes; /Ims; ) = 0.068.

When comparing the roots of the last and the first case it becomes clear that if
the frictional heat generation (|Res|) is taken into account, then the logarithmic
oscillation decrement increases; however, the period of the damped oscillations in-
creases only slightly.

Analysis of the Stick-Slip Process

-Let us analyze the system for ¢ — oo (hpy{t) = 1), when a “‘stick” @, = ¢ — ¢ =0for

t€ty (a=(t,0)U---(t2-1,725)U--), or a “slip” for <zt€ty
(ts € (0,71) U--- (12, T2i+1) U - - -) occurs. In the first case, T € fg, the bush and the
cylinder move together, and the governing equation has the form

o(1) + Bo(r) = med’wy  wo=1/(@V1+efer). tTE€Le  (48)
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The solution of Egs. (48) describes a periodic motion

@(z) = emo@* + Cy cos(wot) + Casin(wer) 1€ 1y (49)

with the period 2n@+/1 + ¢,/¢). The cylinder-bush system oscillates periodically,
and the bush is subjected to an action of the friction force

F(0)p(z) = mo + & %(C) cos(wot) + Crsin(wer))/ (81 +82) 7€ ty (50)

The contact pressure is estimated by the formula

o) =28 | "Gy(e - ir(OdE +2' S [ Gt~ ORG - o106 - o)
m=| Y Tom-2

T € (72i, T2i1)

(1)

Numerical Analysis

The num%rical analysis of the problem was carried out using the Runge-Kutta
method for Egs. (5), (6), (27), and (28), and the quadrature method for Egs. 31) and
(32), applying the asymptotic estimations

Go(1,7) 2 2v/r/n  Gyr)mt -0 (52)

Equation (28) was used to approximate the dependence of the friction kinematic
coefficient on the relative velocity. Numerical calculations were executed for various
values of parameters mgy and Bi, for which an analytical analysis was performed as
well.

Analysis of Acceleration Process (g > 0)

Assume that at the initial time instant the force moment hu(t) =1~ exp(~d1?) acts
on the shaft (6=100). This force moment causes the shaft to rotate with
acceleration. The dimensionless environment temperature is governed by the
equation Ar(t) =1 - exp(—dt?). Due to the heat transfer, the rotating cylinder
begins to expand and eventually comes into contact with the bush. Figures 4-7 show
the outcomes of the calculations carried out for ten values of my and Bi, and for the
initial conditions ¢° =0, @° =0, ¢° =0, and ¢° = 0. Curve 1 illustrates the first
case (mg = 0.14, Bi =10, & = 0.1, y = 1.87), curve 2 represents the second case
(my=0.1, Bi=10, @=0.1, y=187), curve 4 corresponds to fourth case
(mg =0.14, Bi=1,® = 0.1,y = 1.87), and curve 5 presents the fifth case (mg = 0.14,
Bi=1,@&=0,y=187).
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Figure 4. Bush dimensionless velocity ¢ (solid curves) and shaft dimensionless velocity ¢ (dashed curves)
versus dimensionless time t during acceleration for different values of mq. Curve 1, mg = 0.14; curve 2,

my =0.1.

"In Figure 4, the dependence of the dimensionless angular velocity $ of the
cylinder (dashed curve) and the bush ¢ (solid curve) versus the dimensionless time t
for the first and second of the considered cases is reported. It can be seen that in all
cases the system behavior is in agreement with the analytical predictions. In the first
case, after certain transitional processes the shaft starts to rotate with constant

(P,¢ N ‘ (.P"i)
DY 1
8
i\ 4-
10 4
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1 4 0 1
015
4 A & 7
'8 T T T M T M 1 v '8 1 M T
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Figure 5. Bush dimensionless velocity ¢ (solid curves) and shaft dimensionless velocity ¢ (dashed curves)
versus dimensionless time t during acceleration for different values of @. Curve 4, @ = 0.1; curve 5, @ = 0.
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0 4 8 12 16 T
Figure 6. Dimensionless contact pressure p versus dimensionless time t during acceleration for different

values of my, Bi, and &. Curve 1, my =0.14, Bi = 10, @ = 0.1; curve 2, my = 0.1, Bi = 10, @ = 0.1; curve
4,my=0.14, Bi = Ld=0.1;curve 5, mp =0.14, Bi=1, & =0.

velocity wg = 44.4 The bush displays damped oscillations with the period T = 0.62.
In the second and third cases (for a small force moment), the cylinder and the bush
come into contact and start oscillating periodically as one body with the period
T =0.89. The stick-type oscillations are periodic.

&(z)

0 +———— T
0 4 8 12 16 =

Figure 7. Dimensionless contact temperature 6(z) = 6(1,7) versus dimensionless time © during accelera-
tion for different values of 1, Bi,and @. Curve 1, mp = 0.14, Bi = 10, @ = 0.1; curve 2,my = 0.1, Bi = 10,
@ =0.1; curve 4, my =0.14, Bi =1, & =0.1; curve 5, my=0.14, Bi=1,® = 0.
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In Figure 5, the dependence of the dimensionless angular velocity ¢ of the
cylinder (dashed curve) and the bush ¢ (solid curve) versus the dimensionless time t
for considered cases 4 and 5 is presented. In case 4, the system shows stick-slip
oscillation (T = 0.642). In case 5 the oscillation exhibited by system is of the thermal
stick-slip type (7 = 4.49). Recall that the root of the characteristic equation
responsible for instability yields the approximated period T = 2x/Ims, = 4.58.

In Figures 6 and 7, time histories of both the contact pressure and the
temperature for the considered cases are shown using solid curves 1-5. In cases 4 and
5, the contact characteristics undergo changes in time.

Analysis of the Braking Process (img = 0) .
It is assumed that at the initial state the shaft rotates with angular velocity ¢°
(Ap(7) = 0). The dimensionless temperature of the bush changes in agreement with
the formula Ar(t) = 1 — exp(—&t?). Owing to the heat transfer, the rotating cylinder
expands and comes into contact with the bqsh; that is, braking occurs. The initial
conditions are ¢° =0, w° =0, ¢° =0, and ¢° = 100. The computational examples
are shown in Figures 8-10 for some values of the parameter y. Curve 1 corresponds
to the case Bi = 10, @ = 0.1, y = 1.87, whereas curve 2 represents the case Bi = 10,
® =0, y = 1.87 (the bush does not oscillate). In Figure 8, the dimensionless time
histories of the dimensionless angular velocity of the shaft ¢ (dashed curves) and the
bush ¢ (solid curves) during the braking process are shown. It is seen (curve 1) that
the shaft angular velocity decreases, and the bush undergoes oscillations until the
two angular velocities reach the same value. Because there is not any moment ap-
plied and the damping has not been introduced, the bush and the shaft start to
oscillate as one body with the period T = 2n/wg. When the bush dynamics is not
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Figure 8. Time history of the braking pad angular speed ¢ (solid curves) and the shaft speed ¢ (dashed
curves) during braking (mp = 0) for various values of @. Curve 1, @ = 0.1; curve 2, @ = 0.
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Figure 9. Time history of contact pressure during shaft braking (mo = 0) for various values of @. Curve 1,
@ =0.1; curve 2, @ = 0.

taken into account (@ == 0, see curve 2), the shaft velocity also decreases and finally
the shaft stops. The comparison of the results represented by curves 1 and 2 leads to
the conclusion that the shaft braking time for @ = 0 is smaller than the time interval
needed for the shaft and bush to achieve a fixed contact (stick) with each other
(@ =0.1). In Figures-9 and 10, time histories of the contact pressure and the
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0+~ v : x y '
0 1 2 T
Figure 10. Time history of contact temperature during shaft braking (my = 0) for various values of @.
Curve 1, @ =0.1; curve 2, & = 0.
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temperature are presented. Both characteristics increase in the beginning when y > 0
(see curves 1 and 2). It can be concluded that during the braking process the
maximum values of the pressure and the contact temperature become smaller when
the dynamics of the bush is taken into account.

CONCLUSIONS

One of the classical models of an elastically supported braking pad being in fric-
tional contact with a rotating shaft during frictional heat generation and heat
expansion is analyzed with the use of the Stribeck friction model. The stability
analysis of the stationary solutions is followed by the numerically verified analy-
tical estimation of the periodic stick-slip occurrence. It is detected and illustrated
that the stick-slip motion appears in the existence of the driving moment, heat
transfer, and thermal expansion of the shaft materials. In addition, numerical
calculations illustrating the influence of the parameters on the dynamics and on the
contact characteristics of the investigated model in the acceleration and braking
processes were performed.

It should be emphasized that, contrary to the results reported in the literature
[17] where, already at a small wear, the frictional TEI occurs (contact
parameters increase exponentially after the relative speed exceeds the critical value,
which is found from the condition v = 1) and either an overheating [9,13,16] or a
heating break [11,12] may appear, the considered system can never be overheated.
An increase of the moment of friction force, frictional heat generation, and system
heating is caused by an increase of the contact pressure while one of the contacting
bodies moves with a constant speed and the heat expansion is bounded. To keep the
motion speed constant, the moment of friction force increases and, consequently,
energy is supplied to the system. Although the system heat expansion is bounded, the
contact pressure may increase, which yields an increase of both the moment of
friction force and the frictional heat generation. However, the system will not be
overheated as the moving body starts to brake. The heat balance leads to a cooling
process and, hence, the contact pressure and the moment of friction force start to
decrease. This, however, again brings an increase in the relative speed and in the
frictional heat generation. The described process will repeat again and again, which
physically means that the system controls itself to avoid overheating. This type of
control is called passive. In addition, it is suggested that the phenomena referred to
as stick-slip in the classical terminology be called “thermal stick-slip” instead. This
new terminology seems to be more adequate because a slip relates to a heating
process caused by an independent movement of two bodies, whereas a stick corre-
sponds to a process of cooling that takes place when the relative velocity of two
contacting bodies equals zero. It is worth noticing that in the latter case, although
the bush does not move, the shaft exhibits the thermal stick-slip dynamics.

When the frictional heat generation is not taken into account (y = 0), the stick-
slip oscillations cannot appear. In this case there are two stable stationary solutions,
and one unstable, and, hence, any trajectory is always attracted by one of the stable
critical points (equilibrium). For y > 0, thermal stick-slip oscillation can appear, and
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then either a short bush oscillation period (7 = 0.642 for case 4) or a long period, the
one of shaft oscillations (7 = 4.49 for case 5), is achieved. Owing to the dynamics of
the considered system, the maximum pressure and the maximum temperature
decrease during the braking process.

To conclude, in the system where the heat expansion. of the contacting bodies is
bounded, for the sake of stability it is better to apply the mechanical external
excitation (considered here) than the kinematic excitation [17].
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