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Abstract. In this paper we consider parametric oscillations of flexible plates within the model of von Kdrmén
equations. First we propose the general iterational method to find solutions to even more general problem governed
by the von Kdrman—Vlasov—Mushtari equations. In the language of physics the found solutions define stress—strain
state of flexible shallow shell with a bounded convex space Q2 € R? and with sufficiently smooth boundary T". The
new variational formulation of the problem has been proposed and his validity and application has been discussed
using precise mathematical treatment. Then, using the earlier introduced theoretical results, an effective algorithm
has been applied to convert problem of finding solutions to hybrid type partial differential equations of von Kérmdn
form to that of the ordinary differential (ODEs) and algebraic (AEs) equations. Mechanisms of transition to chaos
of deterministic systems with infinite number of degrees of freedom are presented. Comparison of mechanisms of
transition to chaos with known ones is performed. The following cases of longitudinal loads of different sign are
investigated: parametric load acting along X direction only, and parametric load acting in both directions X and ¥
with the same amplitude and frequency.

Key words: Flexible plates, Parametric vibrations, von Kdrmén equations, Periodic and quasi-periodic motion,
Chaos.

1. Introduction

The dynamics of mechanical objects governed by von Kdrmén, Vlasov or Mushtari non-linear
partial differential equations (PDEs) belongs to less investigated in mechanics and physics
[1-3]. Observe that the aim of plates and shells theory is to describe the behaviour of a thin
three-dimensional solid layer (plate or shell). However, this general treatment is too difficult
and various two-dimensional approximations are used [4-9]. In addition, still exist rather old
models given by Kirchhoff [10] and Love [11]. More detailed treatment of this problem can
be found in [12], where also 305 references related to geometrical non-linear theories of thin
elastic shells are given. When a plate is thin, its material is elastic and both Hook and Kirchhoff
hypotheses are valid, then the mathematical model is governed by von Kdrmdn equations,
which are considered in this paper. It is clear that the plate (shell) equations are expected to
possess much more interesting dynamics in comparison to lumped physical systems governed
by ordinary differential equations (ODEs), since their dynamics depends on both spatial and
time variables.

We would like to mention different kinds of internal and external resonances, exchange
of energy between the modes of internal and external resonances, coupled-mode response
when only one is excited, standing and travelling waves, periodic, quasi-periodic and chaotic
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behaviour, various bifurcations, steady state, transitional, spatial and temporal chaos, and other
[13-17].

Observe that depending on the approximate method used to solve the PDEs we again
make a step away from a real behaviour of the starting mechanical model of the considered
plate. In general, one deals either with asymptotical (semi-asymptotical) or purely numerical
approaches as well as combined asymptotical-numerical ones.

Although there are many advantages of the asymptotical techniques, there exist also some
disadvantages [14], and our idea of choosing the numerical method is as follows. Since we
decided to consider the von Kirmén equations, then the best approximation is that one of
difference scheme. It is known that usually the governing PDEs describing behaviour of
continuous systems are transformed to a non-linear set of ODEs using the Bubnov-Galerkin
procedure in most studies. However, this approximation depends strongly on the eigenfunc-
tions used, and is inconvenient during analysis of quasi-periodic or chaotic response. The
main drawback concerns always open question, that is, how the obtained averaged equations
(multi-degree-of-freedom models) approximate the initial infinite dimensional model.

Our approach does not include the mentioned potential drawbacks since we present a new
iterational method and its convergence conditions are rigorously discussed and estimated.
Also the used spatial numerical approximations of O(h?) or O(h*) give the best (in some
sense) approximation to the considered problem.

Note that the model discussed by us represented by von Kdrméan equations has been re-
cently also reconsidered from a point of view of mathematical physics (see [18-24] and
literature therein). Observe that the uniqueness of weak solution to von Kérmdn equations
with an aerodynamic pressure and the thermal stresses had been an open problem for a long
time and only recently it has been solved [20]. In addition, although there are many important
results concerning asymptotic behaviour of solutions to the parabolic-like dynamics which has
inherently smoothing effect, but it cannot always be applied to hyperbolic-like dynamics (i.e.
to plate (shell) equations, among others). In the case of von Kdrman equations the dynamics
does not introduce any regularising effects for the initial data and the compactness requirement
of the non-linear term does not hold (see more details in [25]).

The thermo-elastic plate system of equations are analysed in [26, 27], when the sufficient
conditions of existence, unity and continuity dependence on initial data of the Cauchy problem
for differential-operational equation of mixed hyperbolic—parabolic type are given. If the
operational coefficients are suitably chosen, the investigated system can be used to obtain
the modified Germain—Lagrange hyperbolic type plate equation. Moreover, one can use three-
dimensional parabolic equation of thermal conductivity in order to define the temperature
field.

The paper is organised in the following manner. First (Section 2) a general iterational
method of solution to von Kdrman—Vlasov—Mushtari equations is introduced and its mathe-
matical background is stated. Then (Section 3) the fundamental hypotheses, as well as von
Kérman equations with attached initial and boundary conditions and further used algorithms
are given. Section 4 includes results, whereas discussion is addressed in Section 5.

2. Iterational Method of Solution to the Kirman-Vlasov—Mushtari Equations

This part is devoted to the analysis of convergence conditions of the solution method to the
system of equations governing a stress—strain state of flexible plates. Observe that on each
iterational step only linear equations are solved.
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2.1. STATEMENT OF THE PROBLEM

The problem of finding a stress—strain state of the flexible shallow shells with the bounded
convex space 2 C R? and with enough regular boundary I' can be reduced to that of finding
the functions w and F satisfying the following system of non-linear differential equations

ajA*w — L(w, F) — V?F =gq, (1)
®A’F + 1L(w, w) + Viw =0, )

where a; are positive constants, and the following boundary conditions attached

oF
=—=0
on

==
where d/0n denotes the derivative along a normal to I".
In (1) and (2) the following differential operators are used

w 0 inT, F inT, 3)

- () () (kp) | 8%(ki)
V2() = ky—= + k——, V() = )
)=k ax2 " ax? €0 ax?2 9x2
8%u 3%y %u 3% 0%u 3%v
Lw,v)=——— — T

dxy 0x5 dx10x2 x10x; x5 Ox}

where k; and &, are the main shell curvatures.
Let H?(S2) denote the Sobolev space of functions v with the properties

2
ve 2@, e, 07y

LXQ), ij=12,
ox; axox, <L L

where L%(2) denotes the space of functions being summed with the square power in 2.
Let HOZ(Q) denote the closure of the functions from D(2) with the norm

| 9
HX(Q): H2 + 0(Q) = D)@ = vjv € HX(Q), v|p = a_v'F —0.
n

Since the space €2 is bounded and its boundary is enough regular then the mapping v —
[|Avllo e defines a norm in HOZ(SZ), which is equivalent to a norm generated by the space
H*(Q).

We assume that ¢ € H (), where H%(R) is topologically conjugated to H3(S2), and
ki, ko € L*°(2). It is known, that in this case the problem (1) and (2) possesses at least one
solution.

2.2. NEW VARIATIONAL FORMULATION OF THE PROBLEM

Let (-, -) denotes a scalar (u, v) = [, uvdS2 product in L*(<), and let B(w, F, w) be a triple-
linear form

B(w, F, u) = ay(AF, Ap) + 3(L(w, w), w) + (V> — kw, p), @)

defined in (HZ(2))>.
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Let us define the following manifold
M = {w, F € H}(Q)|Vu € Hj(Q), B(w, F, n) = 0} &)
and the following bilinear form J(w, F) : M — R

Jw, F) = lai|Awll§ o + j@l| AF 5 o — (g, w). ©)

THEOREM 2.1. The problem of minimalisation of (4) on the manifold (5) possesses at least
one solution.
Proof. Let {w,, F,} € M be a minimising series, that is,

J(w,, F,) = {w;n}fEM J(w, F). Q)

For any w, F € H?>O(R) the following inequality is satisfied
J(w, F) 2 Clllwl3 g + CIIF 3.0 — Clwlze,

where || - .o denotes a norm in H 2(2), and C; are the positive constants. The inequality (7)
yields

Cilwall}.q + Coll Fall3 o — Callwallo.o < J (wa, Fr) < J (wo, Fo) = A

and we get

2

c\’ C?
Cy Hwnilm +C211Fn|1m<A+ lwplloo K Cs 1 Fall2,0 < Cs,
2C, 4

Cy’

which means that the series is bounded in (H; 2(€2))2. Consequently, one can choose a series
{wy, Fi} in a way that wy — @ and F; — F are strong in L2().

Now we show that the limit {#, F} of the minimising series belongs to M, that is, that the
following relation is satisfied:

B, F, ) =0, VYue HXQ).

Since ki, k» € L3(R), and owing to a weak convergence of wy — w and F; — F, we
obtain

(Viwg, 1) = (Vi, W), (AF, Ap) — (AF, Ap), Yy € HH(Q).

Besides, because (L{(wy, wy), i) = (L{wg, w)wi), VL € H0 (R2) and L(wy, u) — L{w, @)
is weak in HQ(SZ) then taking into account that wy— @ is strong in L3(R) we get
(L (wg, wy), i) = (L(W, W), u), which yields S(w, F, w)=0,Vu € HOZ(Q) This means that

{w,F} e M. ®)

However, J(w, F) is halfway continuous in a weak topology on (HZ(€2))?, and therefore
the following estimation holds

lim J(wy, Fo) = J(, F).
k—>00
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Taking into account (7) and (8), we obtain that J (i, < infy,, rem J (w, F). Therefore,
the following relation holds J(w, F)= inf(,, ryem J (w, F), because {w, FYe Mis exactly a
solution to the problem of minimalisation. |

Let us now explain how the points being the minimum of the functional (6) are related to
the solutions of the problem (1)—(3). For this aim we need to introduce the definition of a weak
solution. A pair of functions {w, F} € M satisfying the equation

ai(Aw, Ap — Lw, F)(u) — (ViF, ) = (g, ), Y € HJ(Q), ©)

is called the weak solution to the problem (1)—(3). O

THEOREM 2.2. The points of the functional (6) minimum are the weak solutions to the
problem (1)-(3).

Proof. Let {w, F} € M be one of the minimum points of the functional (6). Let u =
w+tsw, Sw € HX(RQ), and let us choose v = F+8w, §F € HZ(Q) in a way that {u, v} € M,
that is, that B(w, F, u) = 0,Vu € HOZ(Q). Then J(w, F) = J(u, v). Therefore, we get

tay(Aw, ASw) + a(AF, ASF) — (g, Aw) + Lta | Asw]} o +

+1m||ASF|} >0, VreR, SweHig. (10)

From the relation S8(u, v, u) = 0 we take u = F and we obtain
a(AF, ASF) = —t(L(w, 8w), F) — t(Vidw, F) — 31*(L(3w, Sw), F). (11)
Substituting (11) into (10), dividing both sides by ¢ and approaching a limit for t — 0 we get
a(Aw, Adw) — (L(w, f), 8w) — (Vi F, u) > (g, p). (12)

Changing dw by —dw in (12) we get equality, that is (8).
Let us denote

(®(w, F), 1) = ay(Aw, Ap) — (L(w, F), u) — (VIF, p) — (g, p)-

It is clear that ®(w, F) € H_»(2) is a projection of the functional J(w, F) gradient into
hyperplane generated by the equation S(w, F, u) = 0,Vu € HOZ(Q). Then the equality (9)
can be written in the form

®(w, F,n) =0. (13)

Therefore, each point of the minimum of the functional (6) on M satisfies (13), that is, is a
weak solution to the problem (1)—(3). O

2.3. ITERATIONAL METHOD

In Section 2.2 we have shown that a solution to the problem (1)—(3) is equivalent to a solution
of the minimalisation problem (6) with the occurrence of constraints {w, F} € M. In order
to solve this problem different methods of minimum search can be applied. Depending on
the choice of a solution to the extremal problem the various algorithms to solve the problem
(1)—(3) can be used.
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Let us construct the iterational minimalisation process of J(w, F) on M within the
following scheme:

(a) we choose arbitrary wy € HO (Q2);
(b) after computations of w, we find F, € H&(Q) and w,y; € H0 (2) as the solutions to the
following problems
B(wn, Fy, ) =0, F, € HX(Q), Vi € H} (), (14)
a (Awnit, Ap) = a1 (Awy, Ap) — po(@(wy, Fu), 1), VY € H(Q); (15)
(c) the coefficient p, on the step (b) is chosen from the condition
](wn+l,Fn+l) - J(wnaFn)<8(¢(wns Fn)’ Wp+1 _wn)a 0<e<l. (16)

THEOREM 2.3. For the iterational process (14)—(16) (®(w,, F,), u) — 0forn — oo for
any initial point {wo, Fo} € M. In addition, the obtained series {w,, F,} includes the subseries
converging to a weak solution to the problem (1)~(3).

Proof. A possibility of construction of the series {w,, F, } results from the observation that
for any arbitrary p,, Wy41 € Ho (R2), and what follows, L(wn+1, Wyi1) € H2(), Vk Wpa1 €

H~2($2) [28, 29]. It implies that the equation B(wp+1, Fut1, w) = 0 canbe solved, and F,, | €
Hg(sz).

Let us consider the difference

Ay = J(Warts Fret) — I Wy, Fo) = 5(A@Wat1 — wy), (17)
A(wyy1 + wn) + HAF 11 — F), AFup1 + F)) = (g, Was1 — Wn)-

Taking into account that {w,, F,} € M, {wp11, Fyr1} € M from (17) one obtains
AT, = (®(wn, Fy), Sw) + 1a1l|Aswl[f o + 302 ASFII5 g

where Sw = Wy41 — Wy, and §F = F,,; — F,. In addition, it follows from (15) that dw is a
solution to the equation

a1 A28w = —p,®(wy, Fy), Sw € HZ (),
and we obtain
dw = _pnG[qD(wna Fn)], (18)

where G[e] : H2(Q) — Hg(Q) is the linear and bounded operator inversed to the operator
a1 A%(e). Therefore, we get

Ay = —pa(®@ Wy, Fy), GI® (wy, F)D) + La1|| Awl§ o + 32l ASF |5 - (19)

Let us consider now the second order terms. Let us choose in (15) u = éw and taking into
account (18) we get

ai ”Asw"%Q = _pn((p(wn, Fn)’ Sw) - P,%((D(wn, Fn)’ G[q)(wn’ Fn)]) (20)

We are going to estimate last term appearing in (19). Because {wj, F,}eM and
{Wnt1, Fap1} € M, then the following equation can be used to define 8 F':

a(ASF, Ap) + L(wy, $w) + (VZdw, u) + 3(L(Sw, Sw), u) =0,
8F € HX(S), Yu € Hy.
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In particular, we obtain [28]
lAdwllo,e < C7(I|L(wy, Sw) |11 (e) + IL(Sw, Sw)ll i) + ||V136w||L1(Q)~

Observe that w, belongs to the bounded manifold in H02(Q) for arbitrary n.
Consequently, | A8 F [lo,q < Csl|Adw|]3 , and

IASF§ o < Cop(®(wn, Fy),  GI[®(w,, F,)])> 21)

Substituting (20) and (21) into (19) and taking into account the positive definition as well
as the boundness of the operator G[e] we get

ATy = =puCroll® Wa, F)I*(— 1+ 3a1p0 + C11p2 1@ (wy, F)I?).

The obtained estimation indicates that there exist values p, # 0 satisfying the inequalities
(16). It is sufficient to take p, satisfying the following inequality

%alpn + %Cl,OSH(D(wn, Fn)"2 <l —e.

Observe that it can be realised always since || ® (w,, F,)|| is the finite quantity and0 < ¢ < 1.
Taking p, due to the described algorithm we obtain on each step

ATy < = putll @ (wy, By (22)

that is, for arbitrary n we have J, . — J, < 0. Since the functional J is bounded from below
than taking into account the last inequality we obtain n — oo, AJ, — 0. Besides, from (22)
one obtains

—-AJ,
”d>(wn, Fn)”2< _8_ (23)

n
It is important to note that the described algorithm how to choose p, also guaranties that
for arbitrary n the following inequality holds: p, > po > 0. Indeed, because AJ, < 0, then

I Wy, Fr) < J(wo, Fo) = A. (24)

On the other hand, it follows from (24) that the norms ||w, ll2.2, || Fnll2.c are bounded. It
means that also the norm ||® (w,, F,)|| is bounded.

Taking into account the later observation and (23) we obtain ||®(w,,, F,)|| — 0 for n — oo,
and consequently, (®(w,, F,), u) — 0 for n — oo, Yu € HZ(S2).

Now, an occurrence of a convergent subseries results from the boundness of the norms
lwall2,, | Full2,q (see also proof of Theorem 2.1). O

2.4. DECREASING DIMENSION OF PARTIAL DIFFERENTIAL EQUATIONS

2.4.1. The Kantorovich-Viasov (K-V) method
Two Russian scientists Kantorovich [30] and Vlasov [31] have proposed independently the
method of reduction of PDEs to ODEs, which is now-a-days called the K-V method (in fact
they considered linear elliptic equations). A proof of convergence of the proposed method is
formulated by Kantorovich [32] and Vlasov [33] for the mentioned elliptic equations. A proof
of convergence of K-V method is given in [34].
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Owing to the K-V method scheme applied to equations (1) and (2), the latter are trans-
formed to the following compact form

Lhw,F)=gq, L(w, F) =0, (25)

where [;(w, F) and l,(w, F) denote linear and non-linear parts of equations (1) and (2),
correspondingly. Following the K—V method steps, a solution of the formulated problem is
sought in the following form

N N .
wy =Y aG()bi(x),  Fy=) ¢j0n)d;(x). (26)

i=1 j=1

Let the analysed space be the rectangular Q= (0, @)x(0, b) with the boundary I" for our
considered equations (25).

Observe that the basis functions components are taken with respect to the variable x,, that
is, b; (x2) and d; (x;). Substituting (26) into (25), and applying the Bubnov-Galerkin procedure
with respect to the variable x, the following equations are obtained

(h(wn, FN) — s bm) 1y =0, (L(wy, FN), d) Ly = 0,
m=12,...,N, k=12,...,N, 27
with the attached boundary conditions

0, (0) = a(a) = da,(©0) _ dan(a) _

0, m=12,...,N,

dx;  dx
dee(0)  d
. (0) = ¢ (a) = Z"x(l)z Z‘x(la)zo, k=1.2,...,N. (28)

It is clear that the system (27), (28) is solvable and a set of approximate solutions {wy, Fy}
is weakly compact in the space H 2((0, a) x (0, b)). This observation indicates a solvability
of the stated problem using the Bubnov—Galerkin method [35]. Since the space 2 is chosen
to be the rectangular with the sides parallel to the co-ordinate axes, the solution of the stated
problem can be found using the Bubnov—Galerkin method. In words, the basis system of a
space, where a solution exists, should satisfy the conditions of the theorem reported in [36],
that is, the functions system should be fully defined in a Sobolev space H 2(0, b).

The system of non-linear ODEs (27) is reduced to a system of non-linear algebraic equa-
tions (AEs), for instance, applying the finite difference method of any order and then it is
solved via Newton’s method.

2.4.2. The variational iterations (VI) method
This method is modification of the K=V method. For simplicity, the VI scheme is presented
using the linear elliptic PDEs.

Assume that solutions to the following equations are sought

Aw(xy, x2) = q(x1, x2),  (x1,x2) € Q= X; X X», (29)

where A is a positively defined operator given on a compact set D(A) in the Hilbert space
Ly(S2), q(x1, x2) is the given function of two variables xi, x; g € L2(S2), w(x1, x2) is the
being sought function of two variables x1, x; £2 is the space of the variables x;, x, variations;
X1(X,) is a coupled bounded set of the variables x;(x2), x1(x2) € E1(E2). By Hs(X1 x X3)
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we denote the energy space of the operator A. The latter is defined as a closure of the manifold
D(A) with respect to the following norm

2
lwlly, = (Aw, w)r,@).

Observe that H4 C L,(£2). Now the space Hj is identified with the space H}*(2) being a
Sobolev space of the functions w(x;, x») defined in the space 2. Owing to the VI method, an
approximated solution of the equation (29) is sought in the form

N
wy(x1, x02) = Y a;(61)bi(x2), (30)
i=1
where the functions a; (x1) and b; (x,) are defined via the equation
(AwN—q,ai)Lz(Xl) =O, i = 1,2,...,N, (31)
(AwN—q,b,-)Lz(X2)=0, i = 1,2,...,N, (32)

in the following way. First, a certain system composed of N function with respect to one
variable is constructed, for example, a(l)(xl), e a?v(xl). Then, the system of N functions
b%(xz), cees b}v(xz) is obtained from (31).

The obtained functions are substituted to the system (32), and they define a new choice of
the functions with respect to the variable x;, that is, af(xl), - alz\, (x1), and so on.

DEFINITION. The computational process using one given system functions to get the second
one is called a step of the VI method. A number of steps required for determination of any
functions set corresponds to a top index (number) of « of the functions of the mentioned set.
The functions a;(x;) and b;(x,) yielded in the kth step, corresponding, for example, to the
functions set by (x3), ..., by (x2), define the following function

N
wi(x,y) =Y af " @b (x2).
i=1
The obtained function represents an approximated solution of equation (29) of the VI
method.
The fundamental background of the VI method devoted to plates and shells theory can be
found in [37].

2.5. NUMERICAL EXPERIMENT

A simultaneous application of the iterational procedure described in Section 2.3 of this work
and the VI method (see Section 2.4) possesses at least three main advantages:

(1) The order of a being sought equations system is reduced two times (from eighth to fourth
order);
(ii) The linearisation of a being sought non-linear system is catried out;
(iii) The transition from PDEs with two variables x;, x, into ODEs with constant coefficients
holds.

These are remarkable achievements in the field of non-linear elliptic PDEs.



230 J. Awrejcewicz et al.

A numerical experiment of the presented approach is outlined applying an example of com-
putations of flexible isotropic squared plates with constant thickness using the three following
different boundary conditions:

9w 3’F
3w oF

szZF__-_a;:O’ X]=.7C2—0, xl—-xZ_l’ (34)
ad oF

‘w_—_—wzF:—:O’ x1=x2=0, xl_':)Cz——“l. (35)
an on

For computation simplicity, the VI method is applied to (26) for N=1. The obtained ODEs-
system is reduced to AEs set using the finite difference method with O (h?) approximation,
which is solved via the Gauss technique. The equations (1) and (2) are non-dimensionalised
in a typical way:

_ _ _ _ a Eh* _
x| = axp, Xy = axyp, w = wh, F = EW’F, A= b’ q=212—bzq.

The bars standing over the non-dimensional quantities are further omitted. The integra-
tion interval [0, 1] is divided into 100 parts. The obtained numerically dependence g(w) is
reported in Figure 1. The curves 1 and 2 correspond to the boundary condition (33) and (34),
respectively. The curve 3 corresponds to the boundary condition (35). The curves 2, 3(1) are
obtained for the Poisson’s coefficient v = 0.33 (v = 0.1). The marked black circles correspond
to experimental results [38], whereas the marked asterisks correspond to the results obtained
via the finite difference method [39], when the latter one has been applied directly to equations
(1) and (2), and the associated non-linear AE has been solved via the Newton’s method. The
corresponding mesh is composed of 20 x 20 parts. The computations are carried out using
the step Ag = 10. Finally, in order to accelerate a convergence of the iterational procedure,
the initial values of w and F are taken from previous computational step increasing a load
continuously.

A convergence of the iterational procedure described in the Section 2.3 for w and for
g =60 is illustrated owing to a solution of the equations (1) and (2) for ¢ =20 and v =0.28.

o)
NIRVa Y

AV T

40 // !

0 1 2 3 w

Figure 1. Dependence q(w) obtained for different boundary conditions and Poisson’s coefficient (w denotes the
maximal deflection in the case of dynamics, see text for more details).
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w PR g—p—
| X
!
5 4 Y,
Ty
0 4 8 12 16 20 24 n

iter

Figure 2. Dependence w (nj,); solid (dashed) curve corresponds to exact (iterational) solution (dynamical case).

In the first approximation of the VI method the integration interval [0, 1] is partitioned into
20 parts owing to the finite difference method, and the boundary conditions (33) are applied.
The dependence w(n), where n is the iterations number, is shown in Figure 2. The assumed
computational accuracy achieved ¢ =1 x 107> for a deflection. In order to get the required
accuracy, 26 iterations are needed. Observe that numerically obtained trajectory approaches
the exact solution from both sides. Owing to the latter observation, a convergence of the
iterational process is improved, since a deflection after an odd (w,) and even (w,) iterations
are defined via the following averaged formula

_wo+we
2

An application of the above formula yielded a decrease of the iterations number up to eight
(see the dashed curve in Figure 2). One may apply also other iterational formulas.

In the next step, the peculiarities of solutions of the shells theory problems using the VI
method will be briefly discussed. As an illustrative example, the linear Germain-Lagrange
equation A=D A2 w in (29) is studied (D denotes the cylindrical stiffness). In what follows
the boundary conditions (33), (35); v =0.28; g=1, N=2.0 (partition of [0, 1] interval) are
applied. The obtained ODEs are solved via the finite difference method.

A convergence of the VI method with respect to an initial approximation and the applied
boundary conditions for a centre deflection is analysed. The obtained results are reported in
Table 1. The included data analysis exhibits a high convergence speed independently on the
applied boundary conditions. However, the convergence depends on a choice of initial approx-
imation. Observe that a convergence is achieved also in the cases, when initial approximation
does not satisfy the boundary conditions. It is worth noticing that for the Poisson’s coefficient
v =0.3 the solutions obtained via application of the VI method (for free (33) and clamped (35)
boundary conditions along a contour) exactly overlap with the known exact solutions already
in the first approximation.

Remark 1. The illustrated methods can be effectively applied: (i) for the problems devoted
to optimal design; (ii) investigation of elastic—plastic deformations; (iii) plates and shells with
variable thickness analysis; (iv) wear processes, and other.

Remark 2. The discussed iterational method in the Section 2.3 can be further developed,
and the 8th order of the investigated systems (1), (2) can be decreased four times. A corres-
ponding iterational procedure can be applied solving the Poisson’s equations A;u(xy, xp) =
fi(x1, x2) (=1, 2, 3, 4) with the attached arbitrary boundary conditions.
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Table 1. Convergence of the VI method with respect to initial and boundary conditions

Boundary conditions

Initial approximation

Approximation order

1 2 3 4
(33) ) =sinmx| 0.04552 0.04493 0.044925  0.044925
' a = sin? mx; 0.02185 0.043965 0.044925  0.044925
=10 ~-1x1076  6x107° 0.011468  0.042793
(35) ) = sinmxy 0.003377  0.011984 0.014077  0.014078
a = sin? wx, 0014177 0.014077 0.014078  0.014078
a) =10 0.028944  0.01446 0.014018  0.014078
X =0;1(33) ad = sinmx; 0.021827  0.021274 0.021268  0.021268
xp =0;1(35) a) = sin? wx) 0.014561  0.020821 0.021254  0.021267
ad =10 6 x 106 ~19x 1075 44x107*  0.018546

3. Formulation of the Problem

3.1. ALGORITHM

The problem of parametric oscillations of flexible plates formulated from position of differ-
ential equations’ theory is presented in limited number of publications [40-43]. Known von
Kérmén equations are as follows:

*w dw 1

32 % T T Ra-W

v o APw + L(#}, F)—Apw+gq, A’F=—1L(w,w).

(36)

Introducing the following notation we get the equations in non-dimensional form
a

X = ax, y = by, w=2Hw, )»=E, t = tof, e = (QH)E
EQH)?— EQH)— EQH)*
_EeHyy -, _ECHY, - _EQHY,
b? a? a’b?

In the above ¢(x, y, t) is the transversal load function; P, (y,?), Py(x, ) are longitudinal
load functions in x and y directions, respectively; 2H denotes plate thickness; a and b are plate
dimensions; ¢ is damping coefficient; E is Young modulus; v is Poisson’s ratio; w(x, y, 1)
and F(x, y, t) are deflection and load functions, respectively. Origin of a co-ordinate system
is located in the lower left corner of a plate, axes x and y are directed along sides of a plate,
¢ axis is oriented down to the Earth centre, and (x,y) € G = {0 <x< L, 0<y < 1},
0 < t < tenq. The applied operators have the following form:

L(w. F) 8%w 3’F 2w *F  8*wd’F
ws = - £
9x2 0y? dxdy dxdy  9y* 9x?
%) | 0%() 9%(-) 3%(-)
A(C) = — + —=, A,() = P,—— + P,—-.
©) ax2 T dy? r0) a2 T ay?
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Let us consider square plates (A = 1) with the following initial conditions:

w == @1(x, y), W |i=0= @2(x, y). 37

We assume simple support of an edge on non-compressing and non-stretching ribs in
tangent plane. Then boundary conditions have the following forms:

w=w, =F=F, =0, (x=0;1), x < y. (38)

We apply difference method O(h?) to convert system of PDEs (36)—(38) to a system of
ODE:s in time. Note that an application of O (h*) approximation does not change the results
significantly. Partial derivatives on x and y in the equation (36) are approximated by difference
equations with accuracy O(h?). Applying Taylor series in a vicinity of a point (x;, y;) with
step h, where £ is a mesh size, and taking into account

En = {0<Xi§}’i<1,xi =ih,J’i =ih9i9j = OaN7h = _},
we obtain known difference equations for partial derivatives of the second and fourth or-

der, which are necessary for converting of PDEs into a system of ODEs in time and AEs
for F;;:

82w,~j Bw,-j
a2

Difference operators A,(w;;), Bo(w;j, Fij), D2(F;;) and E>(w;;) in (39) have the following
form:

= {A(wy) + Bwi;, B} + . D(fij) = Ewy). (39)

1
120 — %)
A(w;j, Fij) = szw,'j(Ay2Fij — P+ Ayzwij(szFij - P)— 2Ax2y2wiij2y2Fij’
D(F;j) = 12(1 — v)A(F;), E(w;j) = ApwijApFy + [Aywii]?,

A(wij) = ()\._zsztwij + 2Ax2Ay2wij + )\‘sz4'w,‘j),

where A (k=0, 2, 4) are known difference operators of respective derivatives. Let us
convert system of non-linear difference—differential equations for w;; into a vector form:

%ﬂ = Q(W, F,t), AF =P, 40)
where W is a searched vector with components w;;, A is matrix, F is searched vector with
components F;;, P is right hand side vector of the second equation from (39), depending
on w;;. Algorithm of a solution is presented in [44], where also reliability of results is
discussed.

We investigate further stability of an isotropic (v =0, 3) square plate (A =1) subjected
to longitudinal load of different sign: P, = P)? sinwt, w=8 with the initial
conditions:

w |;—o= Asinwxsiny (A =1 x 107%), W ;=0 = 0.

Observe that during a construction of the computational algorithm the theoretical consid-
erations from the Section 2 are applied.
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Table 2. A comparison of the numerical results of crit-
ical load value Py, computations using three different
approaches (see text)

References Critical load Py,

BC (34) BC (35)
[13] 3.60 9.12
[14] 348 8.40
[15] 3.61 9.12

3.2. APPLICATION OF THE SET-UP METHOD TO SOLVE STATICAL PROBLEMS
OF FLEXIBLE PLATES AND SHELLS

The system of equations (36), besides of investigation of dynamical behaviour of plates and
shells, yields also the statical solutions. This approach will be further called the set-up method
[44). In fact, owing to this method a solution of the non-linear statical problem (1) and (2)
with eighth PDEs order is reduced to a solution of a linear dynamical problem. In words, the
set-up method linearises the initial analysed system (1) and (2) and the studied continuous
system is reduced to a discrete one.

From the mathematical point of view, the set-up method can be treated as an iterational
method of solution of a system of linear AEs, where each step in time is a new approximation
to a being sought exact solution. Since the set-up method belongs to the iterational methods,
it is characterised by a high accuracy order. In addition, it does not include one of the main
drawbacks of almost all iterational procedures. Namely, it is not sensitive to an initial condition
choice. The latter observation is yielded by a physical interpretation of the equations (36)
governing vibrations of plates and shells in a viscous medium. Furthermore, the set-up method
can be easily realised numerically. However, the main drawback of this method is that only
stable solutions can be found, and a problem of an optimal choice of the medium damping €
is not solved.

For a purpose of efficiency and realiability estimations of the obtained dynamical responses
in the case of dissipative parametrical vibrations of plates, a series of classical examples is
solved. A stability of plates with two types of boundary conditions (34) and (35) and subjected
to an action of constant loads P,, are studied.

The solutions reported in [45, 46] are obtained via the spectral (P, =0), finite difference
with approximation O (h*) of equation (36), and via the set-up methods, correspondingly. A
discretisation procedure of the problem is realised with respect to spatial co-ordinates (x1, x2)
applying the finite difference method with approximation O (h?). The space 2=(0,1) x (0,1)
is divided into 16 x 16 parts. The comparison of the reported in Table 2 data indicates a high
accuracy of the set-up method.

4. Results

Let us consider scenario of transition to chaos under variation of the parameter {Pf } and we
take into account the following boundary conditions:

wlg=w) lag=F lg=F, 37=0,



Complex Parametric Vibrations 235

i i

P'rf_'_——-_—_"'
A

b 24"—_:./ /
7: é P
8 ——tm—y) . X /
20 (eEEene——

S Tw = TolE]
&

—

0 2 4 6 8 10 Wi

Figure 3. Dependence PO (wmax) and zones of different types of vibrations (see Table 3; dynamical case Py = Px;
Py =0).
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Figure 4. Dependence Py(wmax) and zones of different types of vibrations (see Table 3; dynamical case
P, 0= P, x = P. y).

where F -is the boundary of G={x,y|0<x<1;0<y<1}, n is normal to the
space G.

~ The Figures 3 and 4 present graph of P°(wp,,.(0, 5; 0, 5)). Vertical axes contain two scales:
values of P° and zones of types of vibrations. These types are characterised in Table 3. For
each point (ij) of the space G, the following characteristics were obtained: w,-,- ), wi; (®),
phase portraits w;;(w;;), Poincaré sections wg (w,-(J’.JFT)) (where T is period of external ex-
citating load) and power spectra log (w). Numerical calculations showed that above listed
characteristics are similar to all points (ij) of the space G,, therefore the Figures 5 and 6
present only results for a plate centre. '
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Table 3. Different vibration types and the associated notations

Region Type of vibrations
L, Steady point
2 Periodic vibrations
3 Andronov-Hopf bifurcations
4 Quasi-periodic vibrations
5 Crisis
6 Post-crisis
7 Periodic vibrations with new frequency
8 Quasi-periodic vibrations with new frequency
9 Intermittency
10 Chaos

Let us analyse results of numerical calculations for a load along x axis only. On the right
hand side of the Figure 5 there are numbers of corresponding zones in the Figure 3. Scenario of
plate vibration transition is the following. For 0 < P? < 4,75 plate is in a stable equilibrium
state (we have one point in the Poincaré map). For P® =4 on a phase portrait we have a point
attractor. For P® > 4,75 elastic stability loss occurs and a plate vibrates periodically in an
equilibrium state with the fundamental frequency «; (other frequencies are: 3w;, Sw;). In the
phase portrait we have periodic attractor with two small loops, which are also visible in the
Poincaré pseudosection. These loops show that soft Andronov—Hopf bifurcation is going to
appear, what happens in zone 3 (see Figure 5).

Further increase of P° forces the plate to shift to zone 4 of quasi-periodic vibrations,
what is easily visible for P? = 12, where quasi-periodic attractor appears in the phase portrait
and Poincaré section. Further increase of P? yields crisis and post-crisis state, described in
[43]. The corresponding zone exhibits a certain regularity in results of change of frequency
characteristics, as well as of shape of W;;(x) (see PY=14,7).

The new frequency w, occurs. On high frequencies part of the power spectrum graph, the
Andronov-Hopf bifurcation appears. Analysis of power spectrum leads to conclusion that
all vibrations are quasi-periodic. Period doubling vibration happens for higher frequencies,
and with increase of P? it moves to lower frequencies, which are then broad band (zone 8,
P%=18).

The increase of P causes an occurrence of intermittency. For P° =28 (see Figure 5),
in spite of clearly visible chaotic trajectories of the phase portraits, the broad band power
spectrum and the strange distribution of the points of Poincaré pseudosections, there is a
zone of regular vibrations. The observed and reported intermittency slightly differs from
the already known intermittency types. In the case of the intermittency I vibrations of the
system are periodic which are sometimes interrupted by sudden turbulent jumps (it is ex-
hibited by the Lorenz system, Belousov—Zhabotinsky reaction or Rayleigh-Benard
convection).

Recall that the intermittency III can be obtained from intermittency I when additional rota-
tion of the orbit of the angle of 180° occurs. The corresponding Floquet multiplicator changes
its sign, and intermittency I is substituted by intermittency IIL It has been shown during the
numerical observation of the Rayleigh-Bernard convection that for Ra/Ra.~416.7 (Ra is
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Figure 5. (continued).

Rayleigh number and subscript ¢ denotes its critical value) the fundamental frequency has
been significantly increased, as well as the amplitude of subharmonic vibration. A turbulent
jump appears when amplitude of subharmonic vibration achieves an order of the amplitude
of the fundamental frequency vibrations. After a sudden jump again regular vibration appear.
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