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Abstract

A new approach based on analysis of the wandering trajectories is applied to investigate an appearance of chaotic
vibrations in many-well potential systems. The chaotic behavior regions were found in the both amplitude—frequency of
excitation and amplitude-damping coefficient plane. The phase plane of initial conditions has been investigated taking
into account different values of an external periodic excitation. It demonstrated remarkable agreement with investi-
gations based on homoclinic and heteroclinic bifurcation criteria for chaos, computations of Lyapunov exponents and
fractal basin boundaries. The presented technique is very effective, convenient to use, and can be applied to the
investigation of a wide class of problems.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many prognostic and diagnostic criteria of chaos appearing in non-linear dynamical systems.
Some of them were established experimentally and others by numerical simulation. There are also theo-
retical criteria which in one’s turn have reduced to creation of other particular criteria of the chaotic
vibrations. At the same time for some comparatively simple equations, the theoretical criteria of appear-
ance of chaos have not been found yet.

Even though the Melnikov’s method for the systems in R" has been presented (Gruendler, 1985), the only
periodically forced dynamical systems possessing a small parameter are considered. In addition, for such
systems it is necessary to know homoclinic orbit explicitly. But for the most of non-linear dynamical
systems, finding an analytical expression of homoclinic orbits is impossible. Even if the analytical
expression of homoclinic orbit is known, obtaining of chaotic threshold is still very bulky.
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Thresholds, which correspond to the homoclinic trajectory criterion, are known to be undervalued.
Therefore it is necessary to use various theoretical and numerical approaches to confirm a chaotic character
of motions in investigated domains.

Li and Moon (1990) have used Melnikov’s technique to obtain the bifurcation curves for the following
three-well potential oscillator:

5&+w’c+x(x2—x§)(xz—l)=fcoswt.\ 1)

Beam buckling, deforming of non-linear shells, magnetic dipole engine with many poles, non-linear
orbits problems in synchrotron, efc. can be related to such problems.

Unlike the two-well potential problem, where the unperturbed homoclinic orbit can be obtained ana-
lytically, for comparatively simple Duffing’s type equation (1) finding an analytical solution xo(¢) for the
homoclinic and heteroclinic orbits (when y = f = 0) is impossible. Thus Li and Moon’s algorithms of
realization of Melnikov’s approach for computing the bifurcation conditions for this system are based on
numerical simulation.

In this paper, the numerical-analytical approach of investigation of appearance of chaotic vibrations in
non-linear dynamical systems is presented. The three-well potential system (1) has been investigated. The
obtained domains of chaotic vibrations agree pretty well with the investigations presented by Li and Moon
(1990), which based on the homoclinic and heteroclinic bifurcation criteria for chaos, computation of
Lyapunov exponents, fractal basin boundaries and experiments.

As it will be shown, our approach is effective, convenient to use, requires tremendously less computa-
tional time with compare to other approaches (for example, the standard procedure of computation of
Lyapunov exponents) and can be applied to an investigation of a wide class of problems.

In addition, the presented approach can be treated as challenging one to the classical computations of
the Lyapunov exponents (see for instance Oseledec, 1968; Wolf et al., 1985; Oden and Martins, 1985;
Brogliato, 1996). The applied technique can be used for both smooth (Awrejcewicz et al., 2004) and non-
smooth (Awrejcewicz and Dzyubak, in press) dynamical systems.

2. Analysis of the wandering trajectories

A chaotic behavior of non-linear deterministic systems supposes a wandering of trajectories of motion
around the various equilibrium states. They are characterized by unpredictability and sensitive dependence
on the initial conditions. By analyzing trajectories of motion of these systems, it is possible to find the
chaotic vibration regions in control parameters space.

Let us express a dynamical system as the following set of ordinary differential equations:

X =f(ta X), (2)

where x € R" is the state vector, f(t,x) is defined in R x R" and describing the time derivative of the state
vector. f(t,X) is supposed to be smooth enough to guarantee an existence and uniqueness of a solution of
the set (2). The right-hand side can be discontinuous while the solution of the set of differential equation (2)
remains continuous. The property of continuous dependence on the initial conditions, x© =x() of a
solution of the set (2) will be used: for every initial conditions x®, X € R", for every number 7 > 0 (no
.matter how large), and for every preassigned arbitrary small & > 0 it is possible to indicate a positive
number & > 0 such that if the distance p between x(® and X© p(x©@,%®) < 6 and |¢| < T, the following
inequality is satisfied:

p(x(1), (1)) <.
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That is if the initial points are chosen close enough, than during the preassigned arbitrary large time
interval —T <¢< T, the distance between simultaneous positions of moving points will be less than given
positive number e&.

A metric p on R” can be determined in various ways, for example, as p,(x,X) = /30, (x: -%)
Pz(X, i) = 2?:1 |xi —iil or p3(X, i) = maXigign |xi _iila where x = (xlaxZ, = ,xn) € Rn’ X= (jlina ey
%) ER".

It is assumed that with the increase of time the trajectories x(¢) remain in a closed bounded domain of
the space R", i.e.

HC,' E€R: mtax |x,(t)| < Ci.

To analyze trajectories of the set (2), we introduce the characteristic vibration amplitudes 4; of com-
ponents of the motion x;(¢) i =1,2...,n):

A= % ’!nslflérx,-(t) - tlg’llingi(t) (l = 1,2 e ,n). (3)
Here [t), T] C [to, T] and [to, T] is the time interval which the trajectory is considered in. The interval [to, ] is
the time interval which all transient processes are damped in. The characteristic vibration amplitudes 4, can
be calculated simultaneously to the integration of the trajectory.

For the sake of our investigations it seems the most convenient to use the embedding theorem and to
consider an n-dimensional parallelepiped instead of a hyper-sphere with the center at point x. From the
embedding theorem it follows that if S,(x) = {¥ € R" : p(x,X) < ¢} is the hyper-sphere with centre in the
point x and with radius ¢ and P, ,,,..(X) = {X € R" : |x; — %] < &} is the n-dimensional parallelepiped, then
for any ¢ > 0 there is parallelepiped P, ,, . . (X) such that P, , . (X) C S;(x). And conversely, for any
parallelepiped P, ,,.. ., (X) it is possible to indicate such & > 0 that S;(x) C P, , ..., (X).

Let us choose such two neighboring initial points x® and X© the parallelepiped Ps, 5, . 5, (x©@) that
]x,(o) _350)‘ < &; (i =1,2...,n). Here §; is small in comparison with 4; for i = 1,2...,n. In case of regular
motion, the ¢ in the inequality |x;(f) — %:(f)] < & is expected to be also small in comparison with 4; for
i =1,2,...,n The wandering orbits attempt to fill some bounded domain of the phase space. Afterwards
the neighboring trajectories at the instant £, diverge exponentially on the average. Hence, the absolute
values of differences |x;(¢) — %;(¢)| for some instant # can take any values in the interval [0,24;]. If the
differences |x;() — %;(¢)| are equal to zero for some instants {¢}, (¢ € [, T]), then the trajectories x(¢) and
%(¢) either are intersecting or have points of contact at these instants. Obviously, 24; are the maximal values
for these differences, and for some time instants this value is permissible. Let us introduce an auxiliary
parameter a, 0 < a < 1 and let ad; be referred to as divergence measures of observable trajectories in the
directions of generalized coordinates x; (i = 1,2,...,n). By analyzing Eq. (2) and its equilibrium states it is
easy to choose parameter «, 0 < a < 1, such that if the following statement:

3t e, T): x(e*) %) >ad; (i=1,2,...,n) 4)

is satisfied, then there is a time interval (or set of time intervals), for which the representative points of the
closed at the initial instant trajectories x(¢) and X(¢) move around various equilibrium states afterwards or
these trajectories are sensitive to changing of the initial conditions. Thus these trajectories are wandering.

Indeed as mentioned above, all trajectories are in the closed bounded domain of the space R". With the
aid of parameter « the divergence measures of the trajectories a4; have been chosen, which is inadmissible
for the case of ‘regularity’ of the motion. Note that this choice is non-unique and the parameter « can take
various values in interval (0, 1). It is clear, however, that if « is close to 0 and when |x;(f) — %(¢)| < a4; when
t € [ty, T], then the trajectories do not diverge and the trajectories are regular. There are values of the
parameter a, which a priori correspond to inadmissible divergence measures a4; (i = 1,2,...,n) of the
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trajectories in the sense of ‘regularity’. For example, o € {%,%,%,%} or other choices are possible. If the
representative points of the observable trajectories move chaotically, then for another choice « from the set
of a priori ‘appropriate’ «, the divergence of the trajectories will be recorded at another time instant #*. As
numerical experiments show, the obtained domains of chaotic behavior with various a priori ‘appropriate’
values of « are practically congruent. Therefore, in this work figures for different values of « are not pre-
sented.

A similar non-unique choice of parameters occurs when applying other criteria for the chaotic oscilla-
tions. For instance, according to procedure of calculations of the Lyapunov’s exponents. d(t) = dy2*. Here
J is Lyapunov exponent, d, is the initial distance measure between the starting points and d(¢) is the dis-
tance between trajectories in instant ¢. The base 2 is chosen for simplicity. In all other respects the parameter
a > 1 in the relation d(¢f) = dya* is arbitrary. That means a parameter can take values, for example,
a € {2,3,4,5} (or other choices are possible). In general, the specificity of numerical approaches is that all
parameters have to be concrete and most of them can be non-unique.

Comment that this paper’s approach and well-known Wolf’s algorithm of determining of the Lyapunov
exponents are both realized by computer simulation. According to Wolf’s algorithm, the calculation of the
Lyapunov exponent A as the measure of the trajectory divergence begins with the choosing of a basic
trajectory x*(¢, x?). At each time step # the dynamical system (2) is integrated again with any neighboring
points x*(#) + n acting as the initial conditions. Thus, to find A the governing equation (2) and the cor-
responding variational equations # = A -5, in which A is matrix of partial derivatives Vf(x*(#)), are
solved N times (where N is the number of the time steps). Averaging over a long time results in a reliable
value of A variations of distances between the trajectories. The analogous calculations it is necessary to
execute for all nodal points of a sampled space. This procedure is very computationally intensive especially
for discontinues systems. The method can often suffice for low-dimensional systems, but in practice, it fails
with a chaotic system of high-dimensions. To realize this paper’s approach it is enough to solve the
equations governing the dynamical system only two times for each selected trajectory. The characteristic
vibration amplitudes 4; is calculated simultaneously to the integration of the trajectory. So, for each se-
lected trajectory it do not have to find matrix of partial derivatives A, the equations (2) are solved 2 times
instead 2N and it do not have to average over a long time the variations of distances between the tra-
jectories.

The parameter o might have another physical interpretation. Lets assume that for the non-linear
dynamical system under investigation, it is possible to identify the singular points (equilibria). For instance,
in case of two-well potential systems, we have two nodes and one saddle. An external periodic excitation
applied to such one-degree-of-freedom system may cause a chaotic response. Chaos is characterized by the
unpredictable switches between two potential wells. A phase point may wander between all three singular
points. Lets consider two neighboring nodes. As a result of switch, neighboring at the initial instant rep-
resentative points of the phase trajectories are in motion about various equilibrium states afterward. Hence
a choice of a, on the relation a4, & %d, is related to the distance d between the two nodes separated by a
saddle. However, many of non-linear dynamical systems do not have analytical solutions and sometimes it
is laborious to find the singular points. This situation occurs very often in non-smooth dynamical systems.
In this case it is recommended to take the a parameter from a priori ‘appropriate’ values.

Our approach has been successfully applied for both smooth and non-smooth systems. By varying
parameters and using condition (4), it is possible to find domains of chaotic motion (including transient and
alternating chaos) and domains of regular motion.

Remark. All inequalities (4) do not have to be checked for the case, when the equations of motion under
investigation can be transformed to a normal form. It means that the inequalities related to velocities x; = x;
may be canceled. In another words, solutions related to regular motion with respect to x; are also regular in
relation to x; = ;. Here i,j € {1,n}.
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3. Investigation of chaos appearance in the three-well potential system

The unperturbed system (1) has five singular points (equilibrium). There exist three sinks, one at the
origin x = 0 and two at x = +1. There are also two saddles at x = +x¢. In the case of chaotic motion the
representative points of phase orbits wander between three attractors in the neighborhoods of x = 0, +1.

According to the described technique in Section 2, to find the domains of chaotic behavior for the system
(1) the control parameter space have to be sampled. For each nodal point the characteristic vibration
amplitudes (3) have to be calculated and the conditions (4) have to be checked. For this system the
characteristic vibration amplitudes of the components of the motion x and x is introduced:

1
; Ax——i

1 .
A, ==| max x(¢) — tllél‘llslTx(t)

2|n<e<r max_x() —tllgtlng(t) ,

H<t<T

Since Eq. (1) can be transformed to the normal form, according to the remark in Section 2, it is not
necessary to check the inequality related to the velocity x. Therefore for this system only one inequality
(corresponding (4)) have to be checked:

3 € [, T) : x(¢) — X(¢*)| > ad,.

If this inequality is satisfied in some nodal point, such motion is relative to chaotic one (including transient
and alternating chaos). The manifold of all such nodal points of the investigated control parameter space
set up domains where chaotic behavior of the considered system is possible.

Under this condition, the different planes of parameters of Eq. (1) have been investigated. The dynamics
of this equation is determined by three parameters f, w, y and initial conditions x(0) and x(0). In Fig. 1,
dots represent the domains of chaotic behavior in the amplitude—frequency of excitation (w, f) plane for
fixed value of parameter y = 0.1 and initial conditions x(0) = 0.5, %(0) = 0.1. The time period for the
simulation is 1%% non-dimensional time units. It is accepted that the half of time period corresponds to the
time interval [fo, 4] in the space where all transient processes are damping. The integration step size is g
The space of parameters is uniformly sampled in rectangle (0 < w <2; 0 < f <0.3) by 60x 70 nodal points.
Initial conditions of the closed trajectories are distinguished by 0.5% with ratio to characteristic vibration
amplitudes 4, and 4; correspondingly, e.g. the starting points of these trajectories are in the 2-dimensional
parallelepiped (|x(to) — ¥(to)] < 0.0054,, |x(to) — X(to)| < 0.0054;). o parameter is equal 1/3.

The part of (w, f) plane investigated in the paper (Li and Moon, 1990) is in rectangle bounded by lines
(w=06,w=12, f =0, f = 0.16). Solid line in this rectangle corresponds to the homoclinic bifurcation
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0.20 s
f 0.15 &
H
0.104

0.05
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Fig. 1. Domains of chaotic behavior for the three-well potential system in the (w, f) plane (y = 0.1, x(0) = 0.5, x(0) = 0.1).
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curve and dash line corresponds to the heteroclinic bifurcation curve. Li and Moon calculated also
100 x 100 Lyapunov exponents in this part of (w, f) plane. To find the chaos, the only largest exponent was
simulated and every single exponent was averaged over the time period of 650 non-dimensional time units
for each motion. The domains of chaotic vibrations, which have been obtained using the approach sub-
mitted in the presented paper, are remarkable conforming to domains with positive Lyapunov exponents
presented by Li and Moon (1990). Li and Moon have shown that for the three-well problems, two criteria
in the parameter space must be met for chaos in contrast to the two-well case where only one criterion is
necessary. The simulation results tell that many, but not all parameter values above these bifurcation curves
do cause chaotic responses in the system. The higher driving amplitude is, the more likely chaos is found.
Thus, both in the case of two- and three-well potential systems the thresholds, which are corresponding to
the homoclinic and heteroclinic bifurcation curves, are undervalued.

Fig. 2 presents the chaotic domains in the amplitude-damping coefficient (7, f) plane with fixed value of
parameter » = 0.73 and initial conditions x(0) = 0.5, ¥(0) = 0.1. As in the previous case the time period for
the simulation is 1% of non-dimensional time units. We have decided that the half of time period corre-
sponds to the time interval [ty, 4] in the space where all transient processes are damping. The integration
step size is 5. The space of parameters is uniformly sampled in rectangular (0 < y<0.5; 0 < £<0.5) by
50% 50 nodal points. Initial conditions of the closed trajectories are dlstmgmshed by 0.5% with ratio to
characteristic vibration amplitudes 4, and 4; correspondingly, and o parameter is equal to 1/3.

Phase planes of the initial conditions have been analyzed for fixed values of parameters y = 0.1,
o = 0.714. For small £, the steady state motion is a periodic limit cycle in one of the three attractors. Fig. 3
shows the phase planes of the initial conditions for different values of the amplitude of excitation: (a)
f =0.04 and (b) f = 0.07. Depending on the initial conditions, both chaotic and regular motions may
appear. The instability peculiar to chaotic vibrations is observed close to the separatrix branches. While the
f value is increasing, the domains of chaotic vibrations are fast augmentmg The time perlod for the
simulation is taken as 1% non-dimensional time units and the integration step size is equal to z&-. The space
of parameters is umformly sampled in rectangular (—1.25 < x(0) <1.25; —0.5 < ¥(0) <0.5) by 120x120
nodal points. Initial conditions of the closed trajectories are dlstmgulshed by 0.5% with a ratio to char-
acteristic vibration amplitudes 4,, 4;, correspondingly, and a parameter is equal to 1/3.

The investigation of the phase planes of the initial conditions in the case of chaotic dynamics allows
observing the fractal structure of basin boundaries. The fractal basin boundaries are the subsidiary means
to check a bifurcation.
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Fig. 2. Domains of chaotic behavior for the three-well potential system in the (3, f) plane (@ = 0.73, x(0) = 0.5, x(0) =0.1).
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Fig. 3. The phase plane of the initial conditions for the three-well potential system for the different values of the amplitude of exci-
tation: (a) f = 0.04; (b) f =0.07 (y = 0.1, 0 = 0.714).

4. Conclusions

The new approach based on analysis of the wandering trajectories has been applied to investigate the
appearance of chaos in three-well potential oscillator. This approach is very effective, not difficult to use
and it does not demand too much computer time for calculations. Result’s comparison with other inves-
tigations demonstrates a very good agreement with other groups. Our approach can obtain multiply
connected domains, which are peculiar to chaos and which are characteristics of many experiments based
on the chaotic vibrations. The methodology described in this paper can be successfully used to predict a
chaos appearance in non-linear dynamical systems with several degree of freedoms as well as in non-linear
discontinuous systems.
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