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Abstract

Both a theoretical argument and a numerical algorithm to identify periodic and chaotic orbits are presented and
discussed. Reliability of the approach is verified using the Duffing oscillator through the standard computation of
Lyapunov exponents. Advantages of the proposed approach are given.
© 2003 Elsevier Ltd. Al rights'reserved.

1. Introduction

After the identification of chaotic deterministic oscillations in simple three-dimensional physical systems, many
problems devoted to measurement, identification and quantitification of chaotic orbits have been developed. The
* classical approach for studying non-linear dynamical systems is associated with the investigation of periodic or quasi-
periodic orbits. Hence, a natural way of analyzing dynamical systems is to take advantage of the already developed
tools based on periodic and guasi-periodic orbits. In the case of an isolated periodic orbit, evén in a strongly non-linear
regime, one may linearize locally the fiow to obtain the associated eigenvalues of the monodromy matrix and, in turn,
the characteristic multipliers (exponents). Therefore the stability in the sense of Lyapunov and the potential local bi-
furcations may be predicted with a high accuracy [1,2]. In the case of quasi-periodic orbits, one may use a similar
approach by approximating the quasi-petiodicity by periodicity with a rather long period, which in a mathematical
sense corresponds to approxunatmg the irrational numbers by rational ones [3,4). Another approach to deal with quasi-
periodicity is based on the application of the finite difference method to solve a Jpartial differential equation system in
order to calcu]ate numerically a torus [5-7]. It scems that in the case of quasi-periodic orbits stability ana]ysm the
method based on the Lyapunov exponents does not seem to be appropriate [8].

This paper is motivated by the latter observation. Although the concept of Lyapunov exponents has been extended
directly to quantify chaotic orbits and a suitable numerical technique for their calculation has been proposed by Wolf
et al. [9], we are revisifing the problem and propositig 4 theoretical argurnent for a direct numerical method for
quantifying regular and chaotic orbits. We also present a numerical algorithm to identify both periodic-and’chaotic
orbits. According to Wolfs algorithm, the calculation of the Lyapunov exponent 4, as a measure of trajectory diver-
gence, is based on a chmce of a base trajectory x*(f,x¥). For each time step #, the ODE system

x=f0x) _ . ()

where X & R is the state vector, f(t,x) is defined in R x R". The vector function f(#,x) describes the time dcnvatwe of
the state vector (1), and it is integrated by taking x*(s;) and a neighboring point x*(#) + # as ‘the initial conditions.
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Thus, in order to find 1, Eq. (1) and the corresponding variational equation # = A - #, in which A is the matrix-of partlal
derivatives Vf (' (f)}, are solved N times (N—number of time steps), with the requirement that the trajectories should
not separate to much. The averaging of the local separations over long times results in a reliable value of A. In this
paper’s. approach, as it will be argued next, it.is enough to solve the equation set (1) only twice instead of N times for
each selected trajectory. This essentially simplifies the procedure of investigation and decreases the computational time.
This is important, especially when discontinuous systems are analysed, since the evaluation of solutions for such sys-
tems could mvolve 1ntenswe computer calculatmns

2. Analysis of the wandering trajectories

The chaotic behavior of non-lineat deterministic dynamical systems assumes the wandering of trajectories about
various unstable equilibrium states. By ana]yzmg such trajectories, one may also characterize the chaotic vibration
regions in control parameter space.

A dynamical system may be expressed as a set of ordinary dszerennai equations such as (1) It is assumed, that ft,x)
is smooth enough to guarantee existence and uniquengss.of a solution of the set (1). However, the right-hand side can be
discontinuous while the solution of the set of differential equations (1) remains continuous (thls problem will be
considered elsewhere). The continuous dependence of a solution of (1) on the initial conditions x© = = x{#,) is used here
with: for initial condition x®, ¥ € R, for every number T > 0, no matter how large, and for every preassigned ar-
bitrary small ¢ >0, there is a positive number & > 0 such that if the distance p between x and %@ obeys
p(x9, %) < § for |f| < T, it takes place the inequality

p(x(1);X(1)} <.

That is, if the initial points are chosen close enough, then during the preassigned arbitrary large time interval
=T <t< T, the distance between corresponding trajectory points are less than a given positive number .

To analyze trajectories of the set (1), we introduce the characteristic vibration amplitudes 4; of components of the
motion x;(f) (i=1,2...n):

=3 e s() = min 5@ (= 12...0)
Here ft1, 7] C [to, 7], and [to, 7] is the time 1nterval in which the tra_]ectory is considered. The interval [tg, 1] is the time
interval in which all transient processes are damped. The characterlsnc vibration amphtudes A; can be calculated during
the mtegratlon of the trajectory. . _

The embeddmg theorem: If §,(x) = {X € R p(x,%) < 6} i is the hyper—sphcre with center in pomt X and with radivs &
and P, ,, ()= {X€R": |x, — %| < &Vi =T,n} is the n-dimensional paralielepiped, then for any & < 0 there is par-
a]leleplped P, (X) such that £, . i (x) C S(x) . And conversely, for any parallelepiped P, ,, .. (x) it is possible to

.....

indicate £ < 0 such that S,(x) C R,l (X}

Let us choose in the parallc]eplped Py 5,,...5(x¥) an initial p01nt x, neighbouring to x® such that RO - < g,
where §; are ~small in comparison with 4;(i = 1,2...n). In the case of regular motion, it is expected that the & in the
mequahty () =% {#)] < & are also small in comparison with 4;(i = 1,2...n). The wandering orbits attempt to fill
some bounded domain of the phase space. They are characterized by unpredlctablhty and sensitive dependence on the
initial conditions. The neighboring trajectories at the mstant 1y decrge exponentially on the average afterwards. Hence,
the absolute values of differences |x;(r) — % ()| for some instant # can take values in the interval [0,24,). By analyzing

the ethbrlum states of (1) it is easy to choose an « parameter 0 <o < 1, such that from the truth of the statement
W €T )~ 5O > (=120, . - )

It follows that there i is a time interval for Wthh the representanve pomts of the ne1ghbourmg trajectorles x(7) and
%(#) move about various equilibrium states, but in principle, these trajectories are sensitive to changes in the initial
conditions. Thus, these trajectories are wandering. Indeed. as it has already been mentioned, all trajectories are in the
close bounded domain of these space R". We choose the divergence measure for the trajectories, which is inadmissible
for the case of rcgu]anty of the motion. When the characteristic V:bratmn amphtudes 'A; are found, the d1vergence
meastires ad; of the observable tra_]ectones in the directions of the genera.hzed coordinates x;, i = 1,2,...,n are de-
termined by o.

Let us briefly discuss the choice of the parameter x. Note:that this choice is non-unique and the «.parameter can take
various values on the interval (0, 2). There are values of the parameter o, which in priori correspond to the inadmissible
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divergence measures ad,(i — 1,2,...,n) of the trajectories in the sense of regularity. For example, « € {1,1,2,3} but
other choices are possible. If the representatlve potiats of the observable trajectories move chaotically, then for another
choice « from the set of'a pI'lOI‘l ‘appropriate’ « the divergence of the trajectories will be recorded at another time 7. As
numerical expenments show ‘theresiilting domains of chaotic behaviour with various a priori appropriate values of «
parameter are: practlcally congruent.. Therefore, in this work, pictptes for different values of @ are not presented.

A similar non-unique choiceiof parameters occurs when applying another criteria for the chaotic oscillations. For
instance, according to a’ standard procedure for the calculation of the Lyapunov exponents d(f} = do2*. Here 7 is
Lyapunov exponent, dy.is the initial distance: measure between the starting points, and d(¢) is the distance between
trajectories at instant ¢. The base 2.5 chosen for:a convenience. In all other'respects, the parameter « > 1 in the relation
d{t) = dyar* is arbitrary. That is, the paratmeter « can take values, for example, « € {2,3,4,5} but other choices are
possible. In general, the specificity of numerical approaches is like that, all parameters have to be concrete and most of
them should be non-unique.

The parameter « might have another physical interpretation. Assume that for the non-linear dynamical system under
investigation, it is possible to identify the singular points (equilibria). In the case, for instance, of a two-well potential
systems we have two nodes and one saddle. An external periodic excitation applied to such one-degree-of-freedom
system may cause a chaotic response. The unpredictable switches between the two potential wells can be the source of
chaos. A phase point may wander between all three singular pomts Conisider two neighboring nodes. In this case, a
choice of &, due to formula «d; ~ (1/2)d, is related to the distance d between the tiwo nodes separated by the saddle.
However, many of the non-linear dynamical systems do not have analytical solutions, and sometimes it is laborious to
find the singular points, This situation occurs often in non-smooth dynamcal systems In this case, the it is recom-
mended to take the o parameter froin & priori appropnate values.

In fact, our approach has been successfully applied in the case of smooth and non-smooth systems. By varying
parameters and using condition (2), it is possible to find domains of chaotic motion (including transient and alternating
chaos) and domains of regular motion.

Remark. All inequatities (2) do not have to be checked for the case when the equations of the motion under investi-
gation can be transformed to a normal form. It means that the inequalities related to velocities x; = # may be canceled.
In another words, solutions related to regular motion with respect to x; are also regular in relation to x; = %;. Here

ivj e {Ln}.
3. Investigation of the appearance of chaos in smooth dynamical systems using the Duffing equation example
Let us consider the non-autonomous Duffing equation: -

Frpoal-@) = feoser, .0 )

For this system, the condition (2) has the form:

3060 The space of parameters (0 <w < 1 15 0< f<0.55) is umformly
‘riodal points. Initial conditions of neighboring trajectories differ from each
vith espe‘bt to a ch"a‘t'racteristic vibration amplitude 4, that is |x(0) — 2(0)} = 0.0054, and

. Vior agree we]l with the smooth threshold which corresponds to the homoclinic tra-
Jectory cnterlon [10]. The' domainis also agrec remarkably well with ‘the results of the investigations based on the cal-
culation of the Lyapunov exponents, which was carried out using the Wolf’s algorithm [5-11].

Fig. 1 (b) on the other hand, presents the chaotic domains for the Eq. (3) in the amplitude—damping coefficient
{7,£) plane with fixed value of the parameter & = 1.7 and initial conditions x(0) =.0.1, ¥(0) = 0.01, The length of the
simulation is 100z /e in non-dimensional time units. We consider half this time to correspond to the time interval {ty, 7]
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Fig. 1. Domains of chaotic behavior for the Duffing equation {0 = 1.7, x(0) = 0.1, i(0) = 0.01)%: (a) in the (e, f) plane (y = 0.15,
x(0) = 0.1, £(0) = 0.01); (b) in the {y, /) plane. The smooth threshold corresponds to the homoclinic trajectory criterion,

in which all the transient processes are damped. The integration step is equal to 7/20w, the space of parameters is
uniformly sampled in the rectangle (0 < y<1.35; 0 < f<2.15) using 40 x 40 nodal points. Initial conditions of
neighboring trajectories differ by an 0.5% with respect to the characteristic vibration amplitude 4, that is [x(0) —
x{0)| 2 0.0054, and o = 1/3. : :

The resulting chaotic domains agree with the smooth threshold corresponding to the homoclinic trajectory criterion
[10]: '

4 ch(nw)
37 V2ro

(In the case of Eq. (3), a change of variables was introduced). The real boundary of chaotic oscillations in the plane
(7,f) is not linear and qualitatively corresponds to that found by our numerical method. For both cases {a) and (b), the
chaotic domains are multiply connected. - ’

Phase planes of the initial conditions have been analyzed for Eq. (3) for fixed values of the parameters p = 0.15,
o = 0.8. Fig. 2 shows the space of initial conditions for different values of the amplitude of excitation: (a) £ =0.06
and (b) /= 0.1, Depending on the initial conditions, both chaotic and regular motion might appear. The instability,
peculiar to chaotic vibrations, is observed close to the separatrix branches. The domains of chaotic vibrations increase
rapidly with f values. In this simulation, its length is 1007/ in non-dimensional time units. The integration step size is

f=>
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Fig. 2. The initial conditions phase plane for the Duffing equation for different values of the amplitude of excitation (y = 0.15,
o =08): (a) f = 0.06; (b) f = 0.1.



J. Awrejcewicz et al. | Chaos, Solitons and Fractals 19 (2004} 503-507 507

n/20cw. The space of parameters is uniformly sampled in the rectangular region [0 < x{0) < 1.8; 0 < x{0) < 0.8] using a
40 x 40 grid. Initial conditions of neighboring trajectories are distinguished by 0.5% with respect to the characteristic
vibration amplitude A4, that is, [x(0) — %(0)| = 0.0054, and « = 1/3,

4. Conclusions

We presented a method for computation of chaotic regions in parameter space that does not use explicitly the
standard Lyapunov exponent approach. The validity of our approach and accuracy of the method has been verified
using Duffing equation and comparing our results with the classical one using the Wolf et al. algorithm for Lyapunov
exponents. Our results agree very well with those obtained by the methed of Wolf's et al., but our approach requires
tremendously less computational time, since the ODEs are solved only two times, instead of 2N times, where N denotes
number of time steps. In addition, an arbitrary choice of the parameter does not require for the neighboring trajectories
to diverge in an exponential way. In another words, our approach simplifies the procedure of investigating dynamical
systems in comparison with that of Wolf et al.
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