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FRICTIONAL AUTO-VIBRATIONS IN A CONTACT THERMOELASTIC
PROBLEM ' '

The solution of a contact thermoelastic problem of a solid in the form of an elastic
layer moving between two rigid walls subject to friction and heating is presented.
It és assumed that the friction coefficient depends on the relative velocity between
the contacting bodies. A stability of the stationary solution iz studied. A computa-
tion of contact parameters during heating of the bodies {s performed. A possibility
of existence of frictional auto-vibrations is shown.

Frictional auto-vibration is well-known phenomenon of intermittent mo-
tion caused by e velocity dependent friction force combined with elasticity of
a mechanical system [4]. There are many examples in a literature focused on
analysis of autonomous systems exhibiting regular non-linear self-excited vi-
brations [1—4}. Our new proposed model does not have any elastic part, but it
can exhibit self-excited stick-slip vibrations (Fig. 1).

1. Statement of the problem. Let us consider one-dimensional model of
the thermo-elastic contact of a body -

with a surrounding medium. Assume, Tyhr(t) 2 l 1 Tohy(t)
that this body is represented by a rec-
tangular plate b x b, x2L (Fig. 1). The s Z
plate has the mass M, subject to the
force F =F, hy(t) and moves vertically Y
. . F fr X F e
along walls in direction 2z of the rec- F
tangular co-ordinates 0a;42. In the

initial instant the body is situated in

the distance Z, and possesses the ve- " 2L -
locity Z,. The distance between walls A _
is always equal to initial plate thick- Fig. 1. The anelyzed system.

ness 2L.
It is assumed that the heat conduction between the layer and the walls
obeys Newton's law. In the initial instent the temperature is governed by the

formula Tyhp(t) (hp(t) > 1, t > ). It causes heat extension in direction of
0x,, and the body starts to centact with walls. In the result of this process, &
frictional contact on the parallelepiped sides X =t occurs (see Fig. 1). The
simple frictional model is further applied, ie. friction force Fj, is approxi-
meted a product of & normial reaction force N(t) and a friction coefficient. It

means, that Fy = f(Z)N(t) is the friction force defining a resistance of two
sliding bodies. Here, contrary to the assumption made in reference [6], the ki-
nematic friction coefficient f(Z) depends on the relative velocity of the slid-
ing bodies [2].

The friction force oxz(X,t) per unit contact surface X=-L, X =L gen-

erates a heat. According to the Ling [5] assumptions, the friction forces work
is transmitted into a heat energy. Note that the non-contacting plate surfaces
are heating isolated and have the dimensions of L/bl «1, I/bz «1, which

stands in agreement with the assﬁmption'of our one-dimensional modelling.

S —————rery S————
ISSN 1810-3022. lpmxn, npob mex, i mat. — 2003, — Bum, 1. - C, 137-140.



138 Yu. Pyryev, J. Awrejcewicz

In what follows the problem is reduced to determination of the mass
plate centre displacement Z(t), plate velocity Z{t), contact pressure P(t}=
= N(t)/ bby = —6xx(~L,t) = -Oxx(L,t); plate temperature T,(X,t), and displa-
cement U(X t) in the X axis direction.

In the considered- case, the studied problem is governed by dymamics of
the plate mass centre

mZ(t) = F, hy(t) - 2(Z) P(t) , 6]
and equations of the heat stress theory for an isotropic body

d 1+ v1

ax[ax O t)]

;{z T(X,t) = ---—-T(X t), Xe(-LL), 2)
with the attached mechamcal

U(<L,t)=0, U(L,t)=0, (3)
heat

N (FL,t

w1, TED oy (L) - Tl (0) = FDZOPEO), ®
and initial .

T(X,0)=0, Xe(-L,L), 2Z(0)=2,, Z({0)=0 (5)
conditions. Normal stresses occurred in plate are defined through

El ] I-Vl oL ol
i) = (R 6
ot = 1o o ax T 4 ©

In the above, the following notation is applied: E; - elasticity modulus,
Vi, Ay, @, 0y, ap are Poisson’s ratio, thermal conductivity, thermal diffusiv-
ity, thermal expansion an heat transfer coefficients, respectively; m =M, /bll:oz .

Let us introduce the following coefficients
t, = L”/a, (s}, v.=a/Lim/s], P =TEe/[(-2v,)[N/m3,

and the following non-dimensional parameters =X /L, t1=t/t,, 2=2/L,

P _4 2P,t2 Eyoa," L. _ Lag R,
=—_— g = y Y=o s Bi=—, my=—.
R T AL A T T v VU e Ve 7Y

2. Solution of the problem. Applying the Laplace transformation, the fol-
lowing system of equations is obtained:

PE) = Bi [Rn(§)Gyls - E)IE + 1 [FOHOPE) G5 - S, ¥e
0 1]

£(t) = & [my hp(7) ~ F(&)p(1)], (8

which yields the non-dimensional pressure p(t} and velocity #(t). The tem-
perature is defined through the following formula

6@,%) = Bi [hp(©)Golw, 5~ D)5 +7 [FOHDPOCo(@1-DdE, )
0 0
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where: F(2) = f(v4£),

1. < {2Bi, 2;1?“} -kt :
{Ge(0), Gl 9} = 5 SR BBr) 5 C 40

and p, are the roots of the following characteristic equation: tgu, = Bi/p.m,
m=L2...

3. Characteristic properties of the solution. A stationary S'olution to the
problem reads:

1 1 Vel
= —_—, 0, = , v = Fi itl 7
_ Pe=1 v =1 v " V) Bi’ (1)
where v, is the solution of the non-linear equation
m
F(vg)= ——o0 (12
' 1+ ymyv,, /Bi )

For a determination of the solutjon's
behavior the lineatization of the problem
has been performed in a vicinity of the
steady-state point (11). The right-hend
sides of Eq. (7), (B), have been linearized.
Graphical solution of equation (12) is pre-
sented in Fig. 2 for various parameters
m, and Bi Recall that for steel y =1.87.

In this case the steel made parallele-
piped type plate (-uz =14-10"%C™,
A =21W/(m-°C?), 4,=69-10°m?/s, © % w0 0 20 Ve
v =03, E =19-10%Pa) with T, =5°C, ' (s corves: ,"’_'"f,‘:: e e
L=00lm, 2°=%2 =0 and with non- 2-my=0.1, Bi=20;3-my=0.1,
constant friction coefficient is studied. One Bi=5; 4 ~ my=0.14, Bi=5;
gets  v.=059:107m/s, & =16.958,  gagned curve comespondsto F(v,)).

P, = 3.3-10" Pa, The function F(z) = f(v+2) '
is defined through the formule taken from the reference [2]. The case of con-
stant friction presented in Fig. 2 by the dashed horizontal line

F(v“) =f=const has been earlier considered in [6], ‘where
=Bi(mu/_f-—1)/(moy) In the fourth case (my =0.14, Bi=5) we have one

solution of the form: v, = 27. B, Py =6, =2.45. It is unstable if the parame-
ter g, is larger than its critical value (g 2 &)

g=1-v)(-B- VB -14c)f(24),
where: A=ce—ce;, B=od +tedi-cd;,, C=dydy, B, =F(ve)fve,

B = F'(Va), Gm =d) = Bivd(), , cp =Byd) +BivBdD), dff = (2m + Bi)/@m)!,
d$§>=1/(2m+1)!, m=0, 1 2 3

4, Numerical solution and analysis. In order to confirm the given conclu-
sions, numerical analysis is carried out for the fourth case for Bi=5 (now
¢; = & = 586.5), and the computational results are shown in Fig. 3 for a few
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values of the parameter ¢, = 400; 586.5; 800. Time evolution of both non- _
dimensional contact pressure p(t) and temperature 6(-1,7) = 8(1,1) is reported
in Fig. 3.

P(x)

a) . b)
Fig. 3. Time history of non-dimensional contact pressurs (a) and temperature (b) for vari-
ous values of g, (curve 1: g; =800 ; curve 2: g, = 586.5 ; curve 3: g; = 400 ).

It this work the results devoted to a novel problem of the mechanical
system exhibiting frictional thermoelastic contact of & moving bedy subject to
both non-constant friction coefficients are presented and discussed. It is worth
noticing that in the case of non-constant friction coefficient and heating, the
self-excited vibratiori can appear in ocur system without an elastic part (stiff-
ness). The last phenomenon is caused by bedy heating while accelerating, fric-
tion increase, and than braking and cooling of the system.

1. Andronov A., Vitt A., Chaikin C. Theory of Oscillations. = Moscow, 1981.

2. Awrejeewicz J., Pyryev Yu. Thermoelastic contact of a rotating shaft with a rigid

bush in conditions of bush wear and stick-slip movements // Int. J. Engng. Sci. -

2002. — 40, - P. 1113~1130.

Awrejcewicz J, Deterministic vibrations of lumped system. — Warszawa: WNT, 1896.

Krahelskyy 1., Hittis N. Frictional Self-Oscillations. — Moscow: Nauka, 1998.

Ling F. F. A quasi-iterative method for computing interface temperature distri-

bution // ZAMP. — 1959. — 10. — P. 461—474.

6. Olesiak Z., Pyryev Yu. Determination of temperature and wear during braking //
Acta Mech. — 2000. - 143, Nao 1-2. — P. 67-78.

b2

®PUKLIAHI ABTOKONTMBAHHA 3A TEPMOTIPY)KHOIO KOHTAKTY TIN

Poaarsnymo oSnosumipry mModert MepMonpYyIcHoo KOWMAXMY fRepyflinoo miig y
dopmi wapy a naexosuwnin cepedoduryem e ymodar Hpuryilinoeo nazpisy. ITpuiinams,
wo xoegiyicum mepma sasexmums il sidnocuoi weudrkocmi xoumaxmyrouux mia. Bu-
aueno cmabirshicms cmayioxaphur pose'saxis, JIpoanarisceano snaue eridnur napa-
Mempis sodeai na xapaxmepucmuxu xowmaxmy (weudxicms, xowmaxmmuutl mucsk,
memnepamypy). ITona3ana MOIAUSICTL ICHYBANNA FPUKYIIKUT CaMONOAUSAN D,

SPUKUMOHHLIE ABTOKONEBAHMA NPW TEPMOYNPYTOM KOHTAKTE TEN

Paccmompeno odnomepnyo mofers MEPMOYNPYROL0 KOHMAKMA UHEPYUOHROZO Teae @
fopme caox ¢ okpyacamngeid cpedoii 8 ycaosurx Fpuryudnrozo nazpeda, ITpunamo, wmo
wosPfuyuenm mMpenus AnGUCUTR OM OMKOCUMEALHOUE CROPOCTNU KOHMAKMUPYIOWUT
mea. Hayuena cmabuabhocms CTMAYUOHAPRWT pewsenuil. [Iposeden anaauad aiusnus
SLOGHBIT TAPAMEMPO8 MOTJEAU HE TAPAXMEPUCTIUKY KOHMAKMA {CKOPOCTL, KORIMAKT-
Hoe Jaasenue, memnepamypy). loxasana evamoscnocms cyuwecmaoaanun PpuryuonnsLr
asmoxosebanui.
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