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Two-degree-of-freedom autonomous system with friction is analyzed numerically. The friction
coefficient has been smoothened using aré tan function. The standard, but slightly modified
chaos identification tools have been applied for the analyzed discontinuous system. Some inter-
esting examples of stick-slip regular and chaotic dynamics have been illustrated and discussed.
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1. Introduction

In spite of the fact that there are many papers de-
voted to investigations of regular and chaotic dy-
namics of mechanical systems with friction it seems
that up to now not all the possible nonlinear phe-
nomena have been properly understood or even
detected and explained [Awrejcewicz 1996; Awre-
jeewicz & Delfs, 1990a, 1990b; Brogliato, 1996;
Deimling & Szilagyi, 1994; Galvanetto et al., 1995;
Kunze, 2000; Monteiro, 1994; Oden & Martms
1985).

This paper is devoted to numerical investiga-
tions, but the problem is expected to be attacked
also from an analytical point of view. The stick-slip
chaos has been predicted analytically using the Mel-
nikov technique by Awrejcewicz and Holicke [1999],
but such a prediction for two-degree-of-freedom sys-
tem is in general more complicated and probably
impossible for multibody dynamical systems. Even
if this problem will be solved it will contain only
special type of nonlinearitiés, and it will be valid
only for special systems. Therefore, we have fo-
cused here on numerical simulations, which do not
include the mentioned drawbacks.

We use a similar approach by the introduc-
tion of an arc tan instead of sgn [Van de Vrande
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et al., 1999]. This approximation is especially use-
ful during calculations of the Lyapunov exponents
where a similar approach to Oseledec [1968] can
be applied.

Qur results show that it is very difficult to ap-
ply directly the method used by Pratt and Williams
[1981], and in agreement with the work of Van de
Vrande [1999] we show some benefits of the used
smoothing function. In addition, we have demon-
strated some of the interesting discontinuous behav-
ior of nonlinear dynamics of our coupled self-excited
oscillators with friction.

2. Analyzed System and Friction

The analyzed system with two-degree-of-freedom
[Olejnik, 200Q] is shown in Fig. 1.

Two masses move along the coordinates X1, X»
due to the friction forces Fi, Fs occurring between
them and the belt that moves with constant veloc-
ity. As usual, the constant stiffness coefficients are
denoted by k;, i = 0, 1, 2, whereas damping coef-
ficients are denoted by ¢;, 7 = 1, 2. The friction
static forces Fj, ¢ = 1, 2 are defined by

F, i=1,2,

i = HoFn (1)

rery
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Fig. 1. The considered system.

where Fiy ; = m;g is the pressing force generated by
the mass m; (i = 1, 2), and pq is the value of the
static force coefficient.

The dynamic friction forces are governed by the
equations '

F; = —pFy;isgnuy,;

F..

= Esigen Vi s (2)
ko

~ where vy, ; = 2;~V} is the relative velocity, static ug

and dynamic p friction coefficients. The relation be-

tween static and dynamic coefficients is introduced

._+1

in the following way:

p',o .
=—"" 3
b T ool @
Above, § coefficient cil_aracterizes the dynamic co-
efficient decrease which accompanies an increase of
the relative velocity. The static forces occur when
the relative velocity is equal to zero. Therefore, one
gets

B < Fy s Vi =0,

Fy; 0, @

Fy = —sgnuy, ; ———st—r ;| =
i EN Uy, 3 1 +6|'Uw,i| Ung,i
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Fig. 2.

Influence of ¢ for the approximation given in Eq. (5).



where Fy,; (i = 1,2) are defined by Eq. (1).
The following approximation to the sgn function is
applied

(5)

where € > 0. The estimation of Eq. (5) is shown
in Fig. 2. It is seen that for £ = 10% arctan almost
exactly describes the properties of the function sgn.
Taking into account Eq. (5) we get

2
sgn(vy ;) = = arctan(evy, i),

. 2 Fy;arctan{evy, ;) . '
Fi=-=-— = i=1,2,;
o (1 Svwa))
which is further used.
The following nondimensional equations govern

dynamics of our two bodies dynamical system

&rij1+ao(g1 ~g2) +eath + (1+61)y1 — Bari —va
2 arctan(eTy,)
T(14+9[Twal) ’
&aifa— co(t —P2) + azve +(1+B1)y2— Bavd — 11
28 arctan(eT,y 2}
T(1+7[0w,2l)
The relations between physical values of parame-
ters, coordinates and time, and their nondimen-
sional adequate are as follows: & = muwi/ko,
a; = cwifko, i = kifko, v = Fe16/VEkomu,
Vo = VkomiVo/Fy 1, Owsi = 9 = Vo, 8 = Fsa/Fs 1,
B = ngsz,I/kg, i=1,2 7=01,2 An intro-
duction of dimensionless quantities has led to the
reduction of the parameters from 13 to 11.

(7)

3. An Overview of the
Methods of Analysis

3.1. Teme histories

One has to realize that using numerical methods,

we only get an approximation of the real true
[

( diq
ar = Z2,
diy 1 2 arctan(ety, 1)
dr & (‘“7? (L + YNow,1])

< dis .
ar = T4,
dzy 1 273 arctan(etiy,2)

| dr & (“}“ (1 +[0w,al)

— apfy + aoZy — a1is — (1 + P1)%1 + Bodd + i3) )
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trajectories of a system being analyzed due to the
finite step of the numerical integrations and finite
accuracy of the numbers used in the floating-point
arithmetic. Nevertheless, the numerical approxi-
mations are suitable for engineering purposes when
they are properly applied which is important for our
discontinucus system.

It is clear that a duration of a transitional pro-
cess depends on initial conditions and the system
parameters. Here we discuss this problem in more
detail on the basis of a few computational examples
related to Egs. (7). In Fig. 3, a coordinate versus
time is presented for ¢ = 0. In this case, the masses
are in the equilibrium positions, whereas their ini-
tial velocities are equal to the belt velocity. In prac-
tice, the system from the beginning starts to move
on an attractor. When the initial conditions are
changed, a transitional process occurs of a duration
equal to ¢t = 4 (see Fig. 4). Our numerical analysis
shows that in some cases the transitional state can
be even 10 times larger.

In both previously discussed cases, we have
dealt with the periodic attractor. A situation
changes dramatically if a strange chaotic attractor
appears. For this case it is rather difficult to de-
fine the beginning of observation, and therefore the
first hundred “periods” of oscillations are neglected.
The corresponding example is given in Fig. 5. It
is seen from both Figs. 4 and 5 that a decreasing
part of time histories is more steep than an increas-
ing part. This is a typical behavior of our stick-slip
system with friction. The first mentioned part cor-
responds to a slip, whereas the second one (slower)
to a stick between a mass and the tape.

3.2. Phase spaces

The analyzed set of equations is transformed to the
following one

+ apFz 4 apEs — aady — (14 B1)E3 + (ods + 5‘1) )
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Fig. 3. Time history of displacement y1 with very short {ransitional process for the parameters: v = 3, § = 1, Vo = 0.2,
=1 =az=10, f1 =Pz =£ = £ =0.1, and the initial conditions: y1 = y2 =0, th =2 =0.2.
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Fig. 4. Time history of displacement v, (with a clearly visible transitional process) for the initial conditions: y1 = y2 == 1,
¥1 = ¥2 = 0.2 (other parameters are the same as in Fig. 3).
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Fig. 5. Chaotic time history of yz(t) for the parameters: v =0.03, 8 =1, Vo =5, ao = 0.01, a1 = 0, aé = 0.03, /1 =1,
B2 =0.1, §& = 112, §» = 1, and the initial conditions: y: = 0.4, 32 = —0.12, 1, = —0.56, 32 = 0.12.
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Fig. ‘6. Phase plane Z1{z1) of the periodic motion for the parameters: =
B =82 =01, & = & = 0.5, and the initial conditions: z1 =2 =0, 2, = &2
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Fig. 7. Phase plane #3(z3) during stick-slip chaos for the parameters: v = 3, 8 = 0. 5 Vo = 0 2, a0 =01, a; = az = 0,
B1 =2 = £ = € = 0.1, and the initial conditions: z; = 0, 23 = 0. 12, &1 = &2 =0, _
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Fig. 8. Influence of € on the results (parameters: y =1, =Vo =1, ap = a1 = @z = Q. 02, By = Bz =& =& =0.1, and the
initial conditions: 1 =g =0, £; = &3 = 1).



where Uy ; = Zg; — Vo, i = 1, 2, & = y1, T2 = §1,
¥3 = Y2, T4 = Yo. For further considerations we
take £; = x;, j = 1,..., 4, where now z; corre-
spond to the displacement of m;, whereas z; are
the corresponding velocities (¢ = 1, 2).

A typical projection of a trajectory associated
with our system with friction is shown in Fig. 6.
Two parts are easy distinguishable: the stick part
(where z; = V5 = 0.2, which is represented by the
horizontal line) and the slip part.

A more complicated motion is presented in
Fig. 7. A time occurrence and a duration of a stick
are unpredictable. The phases appear with differ-
ent velocities, which are represented by small and
large arcs in the phase plane. For small x5 values
(0.7-0.9) a stick does not occur when i =
Vo. It means that the corresponding static fric-
tion force has been smaller than the absolute
value of resulting horizontal forces [Awrejcewicz &
Holicke, 1999; Awrejcewicz, 1996; Awrejcewicz &
Mrozowski, 1989].

The phase planes can also be used for an error
estimation during approximation of sgn by arctan.
€ serves as the control parameter and the different
periodic orbits for different ¢ values are shown in
Fig. 8.

3.3. Poincaré sections

For our autonomous case, when %; changes its sign,
then a point corresponding to the mass ms is con-
structed on the Poincaré map.

In what follows, we are going to show that our
autonomous system can exhibit stick-slip chaotic
(Fig. 9), stick-slip periodic (Fig. 10) as well as stick-
slip quasi-periodic dynamics (Fig. 11).

Because of the introduced symmetry, only a be-
havior of one mass has been presented.

3.4. Bifurcation diagrams

The bifurcation diagrams have been constructed in
two ways. For instance, by changing a parameter in
the interval (0.1, 0.5) with the step 0.001, we get 400
Poincaré maps. Then, one of the phase axes is taken
and all results are presented versus the parameter.
Another way is that for increasing parameter val-
ues we change the initial conditions, and contrary to
the first case, we leave an attractor (in the previous
case we were entirely on an attractor).

An example of bifurcation diagram is shown in
Fig. 12.
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Beginning from the smallest considered values
of £ we observe different multiple periodic motion
and period doubling bifurcations occur. In the in-
terval & € (0.5, 0.6) period-6 window appears. For
& = 0.6 and x5 = 1.0 the saddle-node bifurcation
occurs, and then other local classical bifurcations
appear. For £ = 0.9 the period doubling bifurca-
tion occur (with a decrease of the bifurcation pa-
rameter). This corresponds to a route to chaos and
to a route from chaos to regular (periodic) behavior.

It should be emphasized that for &, ~ 1.22 a
crisis between period-6 orbit and chaos occurs, and
its enlargement is shown in Fig. 12(b). It is clearly
seen how the successive period doubling {(accompa-
nying a decrease of &) leads to a periodic motion,
which exists for £2 € (1.15, 1.22).

3.5. Lyapunov erponents

The Lyapunov exponents have been estimated from
Eq. (8) using standard calculating procedure [Wolf
et al., 1985].

In order to verify the developed code the well
known Lorenz set of equations [see Eq. (9)] has been
tested. '
. T = —0x1 + oTy,

&y =TT3 — T — T1T3, (9)
:i:3 =T1T9 — bxg.

In [Wolf et al., 1985 for ¢ = 16, r = 40, b = 4 the
following Lyapunov exponents have been computed:
Ly = 137, Ly = 0.00, Ly = —-22.37. Using our
method we have Ly = 1.36, Ly = 0.00, Ly = —-22.37
for h =2-1073, dt = 4.1072, k = 7-10°. The com-
putation process is illustrated in Fig. 13.

In order to judge about a strangeness of
a chaotic attractor we introduce the following
dimension

dr =i+ (A& + Ao+ A3)/1A4], (10)

where ¢ is the index corresponding to a smallest
non-negative Lyapunov exponent. For Lorenz sys-
tem we have obtained dy = 2.06.

Now we come back to our chaotic attractor pre-
sented in Fig. 9. For h = 2-1073, dt = 5. 1072,
k = 2-10* the following Lyapunov exponents have
been obtained: L, = 0.20, Lo = 0.09, Lz = —0.10,
Ly = —0.29. Therefore, the hyperchaotic strange
stick-slip attractor has been detected for our sys-
tem with friction (d; = 2.65). The computation
process in this case is illustrated in Fig. 14.
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Fig. 9. Poincaré map (x,) for the parameters: v =003, =1, Vo = 5, a0 =001, 01 =0 a;: =003, 1 =1, B2 =0.1,
&1 = 1.12,{2 = 1, and the initial conditions: =1 = 0.4, 2 = =0.12, #; = —0.56, £9 = 0.12 (chaotic orbit).
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Fig. 10. Phase portrait and the corresponding Poincaré map (red squares) £1{x1} for the parameters: v=3,8=1, V5 =0.2,
@ =a1 =ar =01 = f2=0.1, {& = £ = 1, and the initial conditions: x; = 22 = 1 = £, = 0 (periodic orbit).
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Fig. 11. Poincaré map #2(z2) for the parameters: v =3,8=1, Vo =02, co =1 = =0, f1 = 2 = 0.1, &; = &2 = 1,
and the initial conditions: 1 = —0.1, 22 = 0.2, &; = &2 = 0 {(quasi-periodic orbit).
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Fig. 12. Bifurcation diagram for the parameter £;: (a) &2 € (0.1, 2.1), (b) £2 € (1.1, 1.3). The following parameters are fixed:
=203 8=21, Vo =02, ap = 0.0045, a1 = 0.01, oz = 0.19, 5 = 0.12, B2 = 0.2. The initial conditions: z; = —0.1,
22 =02, &1 =0, &, = 0.
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Fig. 14. A convergence of the Lyapunov exponents for the chaotic strange attractor illustrated in Fig. 9.



In Fig. 14, convergence is achieved after 1000
nondimensional time units. For the Lorenz system,
similar convergence has been achieved after 280 (in
both cases an accuracy was limited to two numbers
after a dot). In spite of the approximation by the
continuous function, the friction still possesses an
essential influence on time needed to estimate the
Lyapunov exponents,

4. Numerical Analysis and Results

4.1. Algorithm

The standard Runge-Kutta method with variable

integration step has been used. Numerical ex-’

periments during investigation of our system have
shown that very small At must be taken in order
to make computational time more economical, and
that At must be linked with the increase step of
the variables Ay. In this work, it has been assumed
that if Ay exceeds previously established d value,
then the program repeats the calculations using the
Runge-Kutta method by using smaller At to obtain
Yn+1- In the program, the At interval is increased

4,0

2,4 4

Stick-Slip Dynamics of a Two-Degree—bf—Fmedom System 853

according to the formula

§ 0.25
Atpoy = Ate1a0.95 (_,,) o

Ay

whereas Ay < §, and is decreased according to the
formula,

§ 0.2
Atpew = Aty190.95 (K&) s (12)

for Ay > 4.

4.2. Results

The computational results [Olejnik, 2000} are pre-
sented in Figs. 15-25.

Chaotic motions presented in Figs. 15 and 16
are similar to that exhibited by a sinusoidal excited
pendulum. In Figs. 17 and 20, the phase planes to-
gether with the Poincaré maps (black squares) are
presented. It is interesting to note (Fig. 17) that a
special dynamics can be realized when one of the
masses exhibits stick-slip periodic process, whereas

Fig. 15. Phase portrait and the corresponding Poincaré map (red points) #1{z1) for the parameters: ¥ = 0.3, 8 = 1.7,
Vo=25,a0=0, aq =0.002, az =0.09, f#1 = 0.1, B2 = 1.11, & =1, £ = 2.4 and the initial conditions: ; = —0.1, z2 = 0.2,
&1 = &2 = 0 (chaotic orbit, Lyapunov exponents: 0.23, —0.01, —0.15, —0.28).
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Fig. 16. Phase portrait and the corresponding Poincaré map (red points) #2(x2). Parameters are the same as in Fig. 15
(chaotic orbit).
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Fig. 17. Phase portrait and the corresponding Poincaré map (red square) #4(x2) for the parameters: v = 3, 5 = 0.04,
Vo =02, a0 =0.1, a1 =0.03, ay =0, 81 =031, B2 =0.1, & = 0.12, £2 = 2 and the initial conditions: z1 = z2 =0, £, = 0.7,
&3 = 0 (periodic orbit, Lyapunov exponents: —0.01, —0.04, —0.19, —0.19).
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Fig. 18. Phase portrait and the corresponding Poincaré map (red square} 41(z,) for the parameters: ~ = 2.09, § = 0.984,
Vo = 0.043, ap = 0.01, o1 = 0, oz = 0.015, 81 = 0.31, B2 = 0.108, &; = 0.07, £z = 2.23, and the initial conditions: z; = %2 =0,
#, = B, &2 = —5 {chaotic orbit, Lyapunov exponents: 0.48, —0.08, —1.42, —6.31).
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Fig. 19. Phase portrait £2(z2). Parameters are the same as in Fig. 18 (chaotic orbit).
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Fig. 20. Phase portrait and the corresponding Poincaré map (red square) Zz(z2) for the parameters: v = 8 =1, V5 = 0.05,
ap =ay =oaz =0.03, /1 = B = 0.1, £ =0.12, £2 = 1 and the initial conditions: z; = 0.4, 2 = -0.12, &1 = ~0.56, 2 = 0.12
(periodic orbit, Lyapunov exponents: —0.16, —0.17, —0.31, —0.33).
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. Fig. 21. Phase portrait £3(z2). Parameters are the same as in Fig. 18 (chaotic orbit).
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Fig. 22. Phase portrait and the corresponding Poincaré map (red points) 2{x;). Parameters and initial conditions are the
same as in Fig. 21 (chaotic orbit, Lyapunov exponents: 0.36, 0.21, —0.42, —0.43).

2,40 -

Fig. 23. Phase portrait and the corresponding Poincaré map (red points) £1(x;). Parameters and initial conditions are the
same as in Fig. 21 (chaotic orbit).
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Fig. 24. Phase portrait and the corresponding Poincaré map (red cirele) &;{x;) for the parameters: v = 0.03, g = 0.77,
VW=02 a =00 =001, az =0, 1 =012, By = 0.2, & = 0.1, &2 = 0.7 and the initial conditions: z; = 0, x> = 0.2,
&3 = %3 = 0 (quasi-periodic orbit, Lyapunov exponents: —0.00, —0.03, —.20, —0.20). '
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Fig. 25. Phase portrait and the corresponding Poincaré map (red lines) i3(zs). Parameters are the same as in Fig. 24
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Fig. 26. Oscillations of the mass mz.
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Fig. 27. Bifurcation diagram for the parameter v € (0.2, 0.4). The following parameters are fixed: B =1, Vo =3, ag = 0.003,
ap = 005, as =0, B; = 0.2, Bz = 2.34, £ = 0.45, £z = 0.76 and the initial conditions: =1 =1, 2 = -2.32, ; = -0.78,
T2 = 3. '
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Fig. 28. Bifurcation diagram for the parameter -y € (0.1, 0.3). The following parameters are fixed: § = 21, Vo = 0.2,
ap = 0.0045, ax = 0.01, az = 0.19, f1 = 0.12, B2 = 0.2, £; = 0.1, £ = 0.7 and the initial conditions: z; = —0.1, 23 = 0.2,

#1 =12 =0,

the second only the slip one. In Fig. 20, an exam-
ple of very complicated stick-slip periodic behavior
is reported. Figures 18 and 19 illustrate a stick-slip
chaos, which has been achieved via period doubling
bifurcations.

This example contains even more information,
when one starts to trace moments of sticks for the
mass my (see enlargement given in Fig. 26). It is
seen how complicated dynamics can occur during
stick-slip processes. In Fig. 22, the time histories of
masses and chaotic motions are reported. For this
case, we have hyperchaotic dynamics because two of
the Lyapunov exponents are positive and the Lya-
punov dimension dy, = 2.35 testifies the chaotic at-
tractor as the strange one. In addition, both masses
move in a different manner: the mass m; jumps be-
tween two potential wells very quickly, whereas the
second mass my exhibits similar jumps, which oc-
cur slowly. The quasi-periodic motion is presented
in Figs. 24 and 25. The mass m; moves on a tours,
but the Poincaré map associated with the second
mass possesses two symmetric arc form attractors.

Finally, we give two examples of bifurcation di-
agrams. Among others, it is shown that the ana-
lyzed system with friction exhibits simple bubbles

(Fig. 27) for ¥ = 0.14. Another bifurcation dia-
gram, which is rather typical for a simple dynami-
cal system, is presented in Fig. 28. Both show many
jumps between periodic and chaotic attractors, and
vice versa.

5. Concluding Remarks

The classical two-degree-of freedom self-excited sys-
tem with friction has been analyzed using numer-
ical methods. The original program using Visual
C++ 6.0 has been prepared. The main purpose of
this work has been focused on analysis of stick-slip
regular (periodic and quasi-periodic) and chaotic
dynamics. Another goal was to apply smoothing
procedure to model discontinuous friction using arc
tan function. It possesses two main advantages.
(1) Slightly modified Runge-Kutta method with
variable integration step can be used (during stick
phase a larger integration step is recommended).
(2) The smoothness introduced by arc tan allowed
to use classical tools of nonlinear dynamics, and
to keep all behavior related to discontinuous ef-
fects. The sgn function is not defined when the



relative velocity is equal to zero, whereas the arc
tan is a unique function yielding both stick and slip
phenomena.

During the analysis, all standard techniques
have been applied, i.e. time histories, phase planes,
Poincaré maps, the Lyapunov exponents and the
Lyapunov dimensions.

Very rich nonlinear nonsmooth dynamics has
been detected. The period doubling route to stick-
slip chaos, and from stick-slip chaos to regular mo-
tion (Fig. 27), very complicated stick-slip periodic
orbits (Fig. 20), stick-slip hyper-chaos (Figs. 9, 21—
23), various quasi-periodic attractors (Figs. 11, 24
and 25), as well as different seemingly periodic mo-
tions exhibited by the masses, i.e. stick-slip and
smooth periodic orbits (Figs. 3, 6, 10 and 17) have
been discussed and illustrated. .

In addition, the numerical simulations indicate
how complicated nonlinear dynamics occurs during
the stick-slip processes (Fig. 26).
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