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1. Intreduction.’ The term ‘wavelet’ has appeared relatively late, i. e, in eighties
Grossman and Morlet [1] introduced this term with respect to their investigation of seismic
and acoustic signals. Nowadays, a family of analyzing tools called ‘wavelets’ is often used
to solve the following problems: image recognition; signal synthesis (for instance, human
speech signals); various representations (rainbow, kidney X-ray photograph, satellite
representation of clouds or a planet surface, photos of materials, etc.); analysis of properties
of turbulent flow; solutions to equations; packing of large amount of informations, and other.

Note that the wavelet analysis of one dimensional signal refers to its decomposition
with respect to a basic somehow similar to a soliton-like function (wavelet) obtained via its
scale and shift transformations. Each of the basic fumctions represents both a frequency as
well as 2 spatial localization. Therefore, the wavelet transformation yields twe dimensional
signal representation, where time and frequency are considered as the independent values. /n
result one gets an opportunity to analyse signal properties simultineously in time and in
Jrequency domains, :

The above mentioned properties can be generalized into multi dimensional signals (or
functions). Note that an application of wavelets is not limited to that of signal and different
fields properties obtained either numerically or experimentally. Wavelets are used for nu-
merical modeling as a hierarchic basis suitable for description of a nonlinear processes char-
acterizing interaction of spatial and time scales. In particular, the wavelet analysis serves as
a very good tool to investigate essentially non-homogeneous processes, since its basic ele-
ments are well localized and include a ‘moving” frequency-time window.

Very often it is also referred as a “mathematical microscope’, since very good results are
obtained for different scales.

Many examples show how suitable is this ‘microscope’ owing to investigation of the -
internal structure of an analysed object. We briefly mention examples of fractal Weierstrass
functions or probabilistic measures of Cantor series, or an application of wavelet analysis
into a turbulent velocity field in the wind channel for large Reynolds numbers. In fact, the
latter one proved an occusrence of Richardson's cascade. Also, a convergence of energetic
cascade process with a structure of multi-fractal invariant measures has been shown for
some well known dynamical systems modeling observed scenarios leading to chaos in
dissipative systemns.

The nonlinear and chaotic behaviours in the time-frequency domain is analysed using
wavelet-transform in reference [2], It is shown that the wavelet-transform isolates weak sub-
hatmonics ot higher-harmonics from the fundamental harmonic response, and that it easily
yields the random property of chaotic response and both phase in time and frequency
domzin responses. A five degree-of-freedom Duffing’s structural system is studied.

Alves [3] proposed an efficient stable and accurated multiresolution adaptive approach
combined with high-resolution methods to trace a solution either of a single or a system of
partial differential equations.

Multi-scale singular-spectrum analysis is applied for & wavelet optimization in the time
frequency domain in reference [4). Several examples of application to synthetic signals with
fractal or power-law behaviour are studied.

An application of wavelet transforns to the recognition and visualization of
characteristic features of speech and of music sounds is proposed in reference [5).
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Computations of decaying two-dimensional turbulence in an adaptive wavelet basis are
teported in reference [6]. The new presented algorithm includes two main terms: operator-
adapted test functions and the adaptive evolution of the convection term. It has been shown
that turbulent flows can be approximated with a reduced number of degrees of freedom.

Two-dimensional parabolized Navier — Stokes equations goveming an increase of
convection are studied using a wavelet regularization approach in reference [7]. Neglecting
the small-scale wavelet coefficients a control dimension is essentially reduced, among others,

A new algorithm based on the wavelet representation of the space of approximation, is
proposed to study the 1D periodic and regularized Burgers equation [8]. The exponential
decay of the spline wavelets in the physical and Fourier spaces allows for both handing the
differential operators and working with very flexible orthogonal and numerically well
localized functions. .

Two wavelet indices, both multiscale accumulative density and variation, are proposed
in reference [9] for the characterization of spatiotemporal patterns. Numerical experiments
based on the Cahn — Hilliard equation indicate the efficiency of the proposed approach.

Two spatioternporal chaotic systems of complex Ginzburg - Landau oscillators with
diffusive and non-local interactions are studied using wavelets in reference {10].

The wavelet projections of one-dimensional Kuramato — Sivashinsky equation are
studied in reference [11], and various localized relatively low-dimensional examples of
spatioternporal chaos are 1eported. )

The wavelets procedures are successfully applied to the field of mechanics. For
instance, fractal and wavelet theory is applied to study a chaotic behaviour [12]). A wavelet
based selection procedure to detect faults in multi-degrees-of-freedom systems and to
approximate the impulse response of those systems is addressed in references [13, 14]. Coca
and Billings [15] used wavelet decomposition to identify of both linear and non-linear
systems. A wavelet logarithmic decrement formula is introduced to detect damping in multi-
degree-of-freedom systems from time-domain responses [16]). A wavelet-based procedure
proposed in reference [17] allows both the parameter estimation of a priori knmown
dynamical models as well as the identification of classes of suitable non-linear modeis using
input-output data. In reference [18] the wavelet transform is applied to traffic measurements
and its multiplicative character is demonstrated. Luo et al. studied vibration modelling using
fast Gaussian wavelet algorithm [19]. Wavelet analysis is used to study a stability of one-
degree-of-freedom system subjected to non-conservative forces [20]. The wavelet
expansions of the stresses across the shell thickness is proposed to trace deformations of thin
elastoplastic structures in reference [21]. A continuous wavelet transform is applied to
estimate Lyapunov exponents in reference [22],

The Galerkin — wavelet procedure to trace solutions of ordinary differential equations -with
T-periodic coefficients as a wavelet series expansion of T-periodic wavelet [23] using a
Poisson periodization technique [24] is proposed in reference [25]. The method inherits
fundamental wavelets properties (localization, universal approximation of very general signals
and opetators) and a real mulitiresolution approach to analyse parametrically excited systems.
Recall that the theory of multiresolution approach developed by Mallat (26, 27] represents a
suitable frame work providing Hillbertian bases of spaces j2 (R) and 72(R/7Z) [28].

To sum up, wavelets can be satisfactorily applicd to analysis of many qualitatively
different problems. In this work the wavelet theory is used to analyse complex parametric
vibrations of flexible plates. '

Various models governing nonlinear dynamics of plates and shells possess their own
history and they still require a rigorous mathematical treatment. For example, we briefly

“mention the von Kirmin equation considered in the cited reference [29]. Finite dimension-
ality and compactness of attractors for von Kirmén equation are considered by Lasiecka
[30]. More generalized questions are also addressed in references [31, 32]. The von Kérmin
model is analysed in this paper applying the wavelet-based approach.

In spite of some new results devoted to bifurcation and chacs exhibited by the invest-
gated thin infinite length plate dynamics, another one important problem is discussed. Note
that usually the partial differentia} equations governing behaviour of continuous systems are
transformed to a nonlinear set of ordinary differential equations using the Bubnov -~
Galerkin procedure without a This question is illustrated and discussed in the paper, and in
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addition the finite difference method is applied which gives ‘almost’ exact results [33, 34],
and hence it serves as a tool for a validity estimation of higher order Bubnov — Galerkin
procedures.rigorous motivation and the error estimation. This question is illustrated and
discussed in the paper, and in addition theé finite difference method is applied which gives
‘almost’ exact results [33, 34], and hence it serves as 4 tool for a validity estimation of
higher order Bubnov — Galerkin procedures.

The paper is organized in the following way. In Sect. 1 an analogy between the Fourier
and wavelet series is described. The wavelet transformation and its properties are presented
and discussed (our presentation is on a basis of the material covered in the monographs [35
- 44] and the references {46 — 52]). In the Sect. 2 the results of wavelet analysis to
yestigate chaotic vibrations of flexible plates sinusoidally and longitudinally loaded are
presented. Brief concluding remarks finish the paper contents.

2. Theory. In this section, definitions and propertics related to wavelet analysis are
overviewed for one dimensional functions. However, one may extend the consideration to
multi-dimensional cases.

2.1 1. From Fourier to wavelet transformation. Both integral Fourier transformation and
Fourier series are used to carry out the harmonic analysis. The yielded Fourier coefficients
have a relatively simple physica‘l interpretation. All of the properties can be derived using
only two real functions sinf, cost or the complex one expf{it) = cos(r) + isinf), i* = ~1.

The wavelet analysis is applied relatively recently and its mathematical background is
still undér construction. Therefore, following [36] the necessary definitions of wavelet

analysis are infroduced with a simultenous reference to the classical Fourier analysis.
Fourier series. First we introduce some notations which will be used further. Let

I? (0,27:) be the space of squared integrable functions with finite energy
2z
”f(t )Izdt <w te(027).
0

In fact, this is a definition of piecewise continuous function f(¢). It can be periodicaily
extended and defined in the whole real axis R(- v, 0}, such that f{t)= s {t - 27) Bolds
for every f from R . An arbitrary £ (t), taken from the space of 2% -periodical and squared

integrable functions, can be represented by the Fourier series f (r) = Z C, exp(int) , with the
cocfficients
2x
¢, = (2=)" I F{)exp(- int)dt .

: o
The series is uniquely converged to f (t), Le’
2 N 2
i HE int)] dt = 0.
im0~ S, el -

Note that w, (f) = exp(int}, »n=..,-101,.. creates the orthonormal basis of the
spacc [*{0,2x) constructed with a help of a scale shift of the one function w{t) = exp(ir) in
such 2 way that w,{t) = wine).

Any of 2r -periodic squared integrable functions can be obtained by a superposition of
scale  transformations of the  basic or mother wavelet function
w{t) = explit) = cos(r} + # sin (). In words, it is a composition of sinusoidal waves with
different frequencies and with coefficients depending on the harmonics number (frequency).

Recall that for the Fourier coefficients the following Parsivale’s formula holds

n)" :ﬁf(:)rm - _}‘;M .



2.1.2. Wavelet series. Consider the space [*(R) of the functions f() with the finite
2
energy defined on the whole real axis R(- w,) E, = ﬂf(t)rdt <o,
o

The functional spaces £2(0,27) and L*(R) are essentially different, In particular, a lo-
cal average value of each function from £(R) should approach zero on +oo , Since a sinu-
soidal wave does not belong to I2(R), a family of sinuseidal waves w, cannot be a basic
of the functional space L?(R).

Let us try to find relatively simple functions which can be used to the basic construction
of the space L2(R).

Observe that ‘waves’ creating the space L*(R) should tend to zero on (+ =) in a rather
fast way. Let us take well localized soliton-like ‘small waves® as the basis functions, We are
going to construct the functional space I?(R) using only-one wavelet (1), in a way simi-
lar to that of the space L?(0,2) with one basic function w().

The question arises, how one may cover the whole axis R(~t, @) using a fastly tending
to zero localized function. It can be done applying a set of shifts along the axis. For simplic-
ity, we assume the integer shifts, j.e. y(z ~ £). ]

A similar like definition of a sinuseidal frequency can be introduced using powers of
two: yw(2/t ~ k), where j,k arcintegers (j,k € I).

In what follows using scale transformations (}/2/) and shifts (k/2/) all of the frequencies
can be defined, and hence the whole axis can be covered having only one basis wavelet w(t).

Recall the norm definition

lel, =< 2.2 >, < p.p >= [p()70)et,

where the bar denotes a complex conjugate value. Consequently, the following relation
helds: E![!(Z-" - I«:)"2 = 2Py (r)], . Therefore, if any wavelet w(t) & L*{R) possesses a
unit norm, it follows that all wavelets of the family {y ) of the dyadic form

vul) =27y k), (ikel), @1
are also normalized to one, i & H‘”ﬁlz =fuf, =1.
A wavelet y{t) € I*(R) is said to be orthogonal, if the family {p J-,,} defined in (2.1) is
the orthonormatized basis of the fimctional space Z2(R)
< 'ijswh = sl.tabu "
andany f € I*(R) can be represented by the series
Ll
)= ?‘_,Cjk%k ®, ‘ (22
Sk=—m
which is uniformely convergent in £2(R):

N M
- Hm - cuv
My Ny My Ny _gﬂ _%I HF sk

=0,
2

One of the simplest wavelet example is the HAAR-wavelet defined in the following way



1, 0<e<ly2, :
wi()=1-1 y2s5r<y, 2.3)
0, t<0rzl

It is not difficult to check that any two functions v, vl obtained from y* (¢} using
the formula (2.1) and the scale transformations (1/27), (1/2’) and shifts (k/27), (mf2')
are orthogonal and possess the unit norm. .

Now, we are going to construct a basis of the functional space L?(R) using scale trans-
formations and shifts of the wavelet applying arbitrary values of the basis parameters: the
scale coefficient 4 and the shift parameter 5

Va®)=ld"y(t-8)/a) aber ye L}(R). (2.4)
Also, the following integral wavelet-transformation is defined

W, rla.2) = o _?f(r) (e - b)Y a)ar = jf(r) T (f)dt. (25)

Extending the discussed analogy to the Fourier transformation one may define the coef-
ficients ¢ =< f,y > of the series (2.2) of the function f into the wavelet series via the

wavelet-transformation ¢, = [Ww f ](1/ 2, k2 )

Note that further, instead of [, f1(a, b) used to define the coetficients (amplitudes) of
the wavelet-transformation, we use (g, ) ot W,.f or W[r].

To conclude, any function from L’(R) can be obtained by a superposition of scale
transformation and shifis of the mother wavelet, In words, it is a composition of ‘small
waves' with coefficients depending on the wave number (frequency, scale) and depending
on the shift parameter (time),

. An application of the discrete wavelet transformation (discrete frequency-time space in the

form of integer shifts and extensions with respect to powers of two) yields the proofs of
many results from the wavelet theory [23, 36 - 38] including those of basis orthogonality,
series convergence, and so on. The mentioned proofs are often necessary. For instance,
during compression of informations or in the modeling problems, i. e. everywhere when after the
series of transformations one requires an exact formula of the inversed transformation,

In general, a continuous wavelet transformation is much more suitable to analyse vari-
ous signals. .

2.1.3. Inversed wavelet transformation, A sinusoidal wave represents an orthonormalized
basis of the functional space £?(0,27) and there is not a problem to find an inversed trans-
formation. The orthonormalized basis of the space (R} depends on the choice of basis
wavelet and a way of basis construction (i. e., on the values of basic parameters-shift and
scale coefficients),

Note that a wavelet may be considered as the basis function 2 (R) only in the case if
the yiclded by this wavelet basis is orthonermalized and an inverse transform exists, However,
the rigourous proofs of orthogonality are rather tedious (see, for instance, references [23, 36
— 38]). Besides, for practical purposes the so called ‘almost’ basis wavelets are often used.

Here we refer to the inversed transformations only in two cases: for the basis (1), al-

lowing for extensions and shifts (l/ 27, 1/2" ), Jrk € I, and for the basis (4), obtained for
the arbitrary values (a,5), a,b € R.

For a given basis parameters (g, b) a,b € R, an inversed wavelet transformation is de-
fined using the same basis transformation (4), i. e.

10 =, [, r](@.b)v ) dads 2,
where C,, is the normalized cocfficient (analogous to the coefficient (271)/? , which normalizes
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@ 2
the Fourier transformation) C,, = [W{(®)| |wf”'de» < ® , where hat denotés the Fourier image.

Observe that the Fourier transform {0} = 0, and also that Iw(t)dt =0.

It happens often that only positive frequency values (i. <. for @ > 0) are considered, A
wavelet satisfies the followingcondition -

- 2 « 2 ;
Cy =2 Iw“(a))] o 'do = 2” v(- w)l o ldw <0,
o o

In addition, the so called stabje basis for the discrete wavelet transformation can be de-
fined using the following steps.

The function w(z) € L*(R) is called R-function, if the basis {wﬂ}, defined by {2.1), is
the Riesz basis in the sense that two constans 4, B (0 < 4 £ B < ®) exist for which the
following inequality

2
Afealf; < 2 eu¥al s Bfealf;
| jo =0 k=—0 5

holds for any bounded series with the property

. @ Py 2
]|{cjk}||:5 Y Zlea| <.
Jo—o k=—a

For any R -function there exists the basis {pf*} , Tepresenting number 2 of the basis
fwa), in the sense that <y j,:,w"" »>= 8,5, , and the following approximation holds

0= S<fvn > w0,

Jkwn
If y is the orthogonal wavelet and {w&} is the orthonormed basis, then {qﬂ"} overlap
and formula (6) becomes the inversed formula. If ¢ is non-orthonormed wavelet but is dy-

adic wavelet, then it has the partmer {y"}, which is used to construct a dyadic family
f x| similarly to the basis 2.1) .
v =y ()= 272y )= Rt -k}  jkel.
In a general case, the reconstructional formula (6) does not necessarily becomes a

wavelet series in the sense that |  is not a wavelet and j"}may not have dyadic basis

constructed using (2.4). )
2.1.4. Frequency-time localization. The Fourier transformation and the Fourier serics

are widely applied to analyse various processes. Any real signal belongs to L? (R) . The Fou-
rier transformation of a signal f (t) having finite amount of energy defined by the norm
|7}, represents a spectrum of this signal, i. e. '

72)= Jre=ar.

However, it appears that a physical interpretation of the mentioned formula is some-
times not obvious. Hence, in order to get a spectral information with regard to a given fre-
quency one.needs to know all previous and future information. This formuia does not con-
tain the required information. In words, it does not take into account a potential evolutionary
changes of frequency.



Besides, it is well known that 2 signal frequency is inversely proportional to its duration,
Therefore, in order to get information on a high frequency part, one should take relatively
small time intervals instead of taking the whole signal length into considerations. And vice
versa, 2 low frequency spectral information can be obtained using rather wide time intervals.

A part of the mentioned drawbacks is omitted applying the so called window Fourier
transformation, However, an infinite oscillating basis function (sinusoidal wave), does not
allow to obtain & localized information. An element of a basis of the wavelet transformation
fastly tends to zero cutside of a short interval and the so called ‘localized spectral analysis’
can be carried out. In words, the wavelet analysis inherently includes moving frequency-
time window, which is automaticaily narrow on small scales and wide on large scales.

Since both wavelet  and its Fourier transform w* quite fast overlap with each other,
they. can be used as the ‘window functions’ with a ‘center’ and ‘width’ defined in the fol-
{owing way. . .

For any non-trivial window like fimetion z(t) el? (R) (it is necessary that tz(t) also
belongs to I2(R)), its center ¢* and radius A, are defined by the following formulas

@ 2 - 2 ¥
¢ =)0 @0 me s, - (l/nzu:){_{(r - i) dr} .

A width of the window function is equal to 24, .

Lett ,A,, @ , A . are the centers and radiuses of a wavelet y and its Fourjer-
transform y", respectively, Then the integral wavelet transformation (2.5} is bounded by
the ‘time window’

[win] = [b + a" - 206" = 20, b + at" + 2an,].

In words, the time localization with the window centre in & + " and window width
2aA,, takes place. Given the function 7{w) = y" (@ + ©"), which is also a window like
function with a centre equal to zero and the radius A .. Using the formula
< f.g >=< f",g" > /2, the integral wavelet transformation (2.5) of the Fourier trans-

form can be cast in the following way
We.8)= " [ @)eHlelo - 0" )do, @)

If one omits a phase shift and a constant, then it is clear that the transformation of the
spectrum f* (r:o) of the signal f (t) with a ‘frequency window” has the form
(win,1=[0"/a - A, a0 fa+A,, /dl.

A frequency localization takes place in a vicinity of the window centre m‘ { @ with the
window width 24, /a.
Observe that a ratio of central frequency over a window width

(" 1a)fa,, 1a)= 0" fpa,,
does not depénd on location of a central frequency, and the frequency-time window
[win,]x [m‘nm], having the surface 4A w8y + becomes namrow (wide} for high (low) cen-
tral frequency @' /a (Fig. 1, a).

13 &
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In Fig. 1, a, 2 localization in frequency-time space of the Fourier (Fig. 1, b) and Shan-
non (Fig. 1, c) transformations are reported. It is known, that the Fourier transform of a se-
ries with equal discretization in time Ar can not achieve higher discretization than
Aw = At/ 2 (recall a Nyquist frequency exhibiting a principle of undeterminizm between
time and frequency localization). Analogous boundness for the wavelet transformation can
be expressed by the inequality AtAw 2 1/{4x). It is seen from Fig. 1 that the Fourier trans-
form very well localizes frequency but without time localization; the Shannon transforma-
tion does not possess frequency localization; wavelet transformation has a moving window
localized in a vicinity of chosen time instant and widening with a scale increase, which is
the most required property for obtaining a spectral information.

Now we are going to compare the wavelet transformation (2.5) with often used short-
time Fourier transformation ’ ) -

Flo,b) = [f{t)zlt - b)e'™dr,

where z is the window type function. Observe that F(e, b) represents a signal development
with respect to 2 family of the functions z{t — b)e™ , which is constructed vsing one function
z{r) with a help of shifts b in time and the shifts @ with respect to frequency. On the ofher
hand, the wavelet transformation W(a, b) is the series development of a signal with respect to
the family w({t — b)/a), created by the one fimetion y(¢) with a help of shifts 5 in time and
the extensions @ also in time. In words, wavelet-transformation represents & continuous set of
window like Fourier transformations with different windows for each frequency.

It means that the basic fanctions of a window Fourier transformation have one and only
one solution in time and frequency (z(t), z* (w)) for all points of plane mapiaing, whereas the
basic functions of the wavelet-tranSformation have decreasing with scale time function
w(t / a) and increasing with scale frequency function w* (aw). This property of the wave-
let-transformation yields many advantages during signal analysis, since high frequency
characteristics correspond to low frequency signal part.

One may expect that the described advantages of wavelets can be very useful during
solutions of equations.

2.2, Basic functions of wavelet transformation. Up to now wavelet is treated as a
certain soliton like fimction with the described properties, Since there is a lack of a general
wavelet definition, we focused on wavelet characteristic features. Note that a majority of
Iimitations introduced for wavelets are caused by a requirement of inversed transformation.

2.2.1. Wavelet characteristic features. We list some necessary properties which are
required by a function in order to be a wavelet.

Localization. A wavelet transformation (contrary to the Fourier transformation) uses the
localized basis function. The wavelet should be localized both in time and frequency do-

mains. .
o
Zero average value - Ily(t)dt =0.

—a

It often appears, that all first m moments are required to be zero (so called m — th order
wavelet) ft"'w(t)dt_ =0

M -th order wavelets, ignoring mostly regularized polynomial parts of a signal, are es-
pecially suitable for analysis of small scale fluctuations and higher order singularities.

Boundeness Ily/(t”zdt <,
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An estimation of a proper localization and boundeness can be obtained in the form
()] < l/(l + Itf') or Iw"‘(m)l < 1!(1 + [k - a)ol"), where @,is the dominant wavelet fre-
quency, and n should be possibly large.

Self-similarity. This property belongs to most important wavelet features. All of wave-
lets of the family () have the same number of oscillations as mother wavelet ),

since all of them are obtained from y{f) using series of scaling and shifts,

Now we consider some examples from references [23, 49). There are three functions
being wavelets (three last examples), and three functions which are not wavelets (three first
examples). In Fig. 2, there are functions depending on time (first row) and their Fourier
imzges (second row).

Note that a good localized in £ -space & function looses this property in k -space (Fig. 2, a).
A good localized in & - space sinus is not iocalized in ¢ = space (Fig. 2, 5). Recall that the
Gabor function (Fig. 2, ¢}

Glr) = explinas - 1)- x’v]exp[— (-47 /20'2]/[0'(23)'/2]
is the modulated Gauss function with four parameters: shift ty, standard averaged squared
deviation ¢, modulation frequency © and phase shift v. A development into the Gabor
series refers to development into the moduizted parts of a sinusoid. Since the length of all
frequencies is the same and constant, it gives different number of oscillations for different
harmeonics. In words, good localized Gabor functions in both X and ¢ spaces do not exhibit
a self-similarity property, '

v w v v ¥
= o & H (e
— AR RAAa ”ut e
&L ¥ ¥ ¥ ¥
K e &_k &_i 'D_'—k
. ‘fk AN VAN S
Fig. 2

HAAR-wavelet (formula (1.3), Fig. 2, d) is an example of orthogonal discrete wavelet
with orthonormed basis. ( '

One of its main drawback is that of piece-wise linear components in # —~ space, which
causes an occurrence of infinite (decreasing of k™' order) tails in & —space, as well an
asymmetry of the form. However, in some applications those drawbacks are not essential
and even in some cases this behaviour can be treated as advantages. Often g symmetric
FHAT-wavelet (French hat) is applied, which is governed by the formula -

1 <13,
wlf) = {_ Y2, 13<rs, v (k) = 3H (k) sin k 1 & ~ sin 3k / 3k),
0, t>1, .

where: H (k) is the Heviside function.

In Fig. 2, e the so called LP-wavelet is reported (Littlewood, Paley). Contrary to the
FHAT wavelet, which is itregular in time space and slowly decreasing in frequency domain,
the LP-wavelet possesses strictly exhibited boundaries in the Fourier space and more wash
out boundaries in time domain. )

Both mentioned wavelets may be treated as the limiting ones and one can find a more
suitable wavelet located between them (their properties).

1]



2.2.2. Examples of wavelet functions. Since the wavelet transformation is represented
by a scalar product of analyzing wavelet and a being analysed signal, the coefficients
#(a,b) include & combined information on the wavelet and on the signal (similar to the
Fourier coefficients possessing information on a signal and on a sinusoidal wave). A choice
of a wavelet depends on a required information to be extracted from a signal. Each of
wavelets has characteristic singularities in time and frequency domains, and hence using
different wavelets one may detect and exhibit various properties of the analysed signal,

Recalling a comparison to a “mathematical microscope’, obsetve that the shify parameter
b fixes the microscope focus, the scale coefficient a exhibits the enlargement, and finally,
a choice of basis wavelet y is defined by optical microscope properties.

The rea! bases are often constructed using derivatives of the Gauss function
valt) = (- 1)o7 [exp— b /2], -&',: (k) = mfik)" exp(- " /2),

where 87 = 3™[ ]/&™. Higher derivatives allow to detect information of higher order
singularities of a signal, since they give zero moments.

[PRERFYTRIN TS
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Fig. 3

In Fig. 3a, b the waveléts for m = 1, m = 2 are shown, respectively. The first one is
called WAVE-wavelet, whercas the second is called MHAT-wavelet {Mexican hat),

Since the MEIAT-wavelet has a narrow energy spectrum and two zero moments, it is
well suitable to anzlyse complex signals. MHAT can be generalized to two dimensional
case, and it can be used to analyse isotropic fields. If one takes a derivative in one direction,
a non-isotropic basis with “good angle properties” is obtained [49]. In order to construct
such basis, one has to add a rotation to scale and shift transformations. In result, the
‘mathematical microscope’ has also polarization properties with the polarization angle pro-
portional to the rotation wavelet angle, .

Applying Gauss fimctions, one obtzins the well known DOG-wavelet (difference of
Gaussians)

vl = exsl- 12 - o5exol- 1 18),

v ®)= el b 12)- el 7).

Examples of complex wavelets are reported in Fig. 3¢, d (only their real parts are
shown), '
Often applied complex basis is constructed using well loczlized (in both & and ¢ do-
mains) Morlet wavelet [1] defined by the formulas

wir) = explikor)exp(- 2 12),u~(€) = H(k)exp]- (€ - &, /2],
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which describes a flat wave modulated by Gaussian of unit width. In Fig. 3c, the Morlet
wavelet for k; = 6 is shown. When &, is increased, the angie basis properties are im-
proved, but the space basis properties are worsed. :

The Pauli [50} wavelet

pl) =T+ )" -, yalk)= HER)E) expl- k)

s often applied in quantum mechanics and it is shown in Fig. 3d for m = 4. Increase of m
enlarges number of wavelet zero moments, The presented complex wavelets are progressive.
The latter have zero value Fourier coefficients for negative values of wave numbers, They
are well adapted for signals for which causality is valid; they conserve a time direction and
they do not introduce the parasite interferation between past and future,

Note that during analysis of complex one dimensional signal or during application of
complex analyzing wavelet, in output one gets two dimensional massive values of moduli of
coefficients and phase W(a, b) = ]W(a,b)l explid(a, b)).

In Fig. 3e, f, examples of wavelets often used for construction of orthogonal discrete
bases of type (1) using Mallat procedure [26, 27] are reported: LMB-wavelet (Lemarié,
Meyer, Battle) [46, 531 and on of the Daubechies wavelets [23]. :

2.3. Properties and application of wavelet transformation. Contrary to one-
dimensional Fourier transformation, yielding also one dimensional information about a rela-
tive contributions (amplitudes) of different scales (frequencies), a wavelet transformation of
onc dimensional series is two dimensional amplitudes massive of wavelet transformation-
the values of coefficients #{a, b}. A distribution of these values in the space (g, b) = (time
scale, time localization) gives information on evolution of a relative contribution of struc-
tures of different scale in time and is called (anzlogously to the amplitude spectrum or Fou-
rier coefficients) the spectrum of wavelet transformation coefficients, frequency-or time-
scale spectrum, or wavelet spectrum. To distinguish between the ¢lassical Fourier spectrum,
the latter is refereed to be single spectrum, ' .

2.3.1. Presentation of resuifs. A spectrum W(a, B) of one-dimensional signal represents
a surface in three dimensional space. One may use various ways of information visualiza-
tion, Besides the surfaces, often their projection into the {a,b) plane with isoclines or grey
intensity pictures, where one may trace wavelet transformation amplitudes, change in time
and frequency domains, as weil as graphs of local extremum of those surfaces (the so called
skeleton).

Since a rather wide scale interval is required, the (loga,b) coordinates are recom-
mended. .

2.3.2. Properties of wavelet transformation. The cocfficients of wavelet transformation
include combined information on analysed wavelet and signal. In spite of this drawback, the
wavelet transformation yields on objective information of a being analysed signal, since
certain wavelet properties do not depend on the wavelet choice. This is a very important
property. .

The fundamental elementary properties of wavelet transformation of the function §i0)
follow (the following notations are applied W, fl(a,8) = W(f} = W(a,b)).

1° Linearity : ' o

wlah )+ 8, 0] = aw (1 ]+ Bw1s,] = aWifa,6) + B, (a,5).

It means that a wavelet transformation of a ;'ectbr function yields a vector wif cotmpe-
nents being a wavelet transformation of each of the analysed vector components separately.
2", Shift invariance.

W= B = #la b~ by).

This yields commutativity'of differentiation, and in particular awlr]= wia,f ], where
one gets a transpositions also for derivatives of the vector.



3° Extension (stretching) invariance,
WD’(t/ao)]= (ilaoyl"(a /g, b/ ag}.

This property is used to detect singularities of the analysed function.

The cited properties do not depend on a choice of analyzing wavelet. Other important
propertles follow.

1'. Time-Frequency localization and occurrence of time- ﬁ'equency window and an an-
gle of influence (one may use the term scale-time localization). The parameters of a time-
frequency window are given in Sect. 2.1.4.

Differentiation.

whrsl- 1 Tr0erable.

—» |

It means that after differentiation a function or a wavelet gives the same result.

Note that often a function f is composed of series of numbers, whereas wavelet is
gwcn by a formula,

3!, For a wavele ﬂansﬁmnanon an analog of the Parsivale’s theorem holds, i.e.

[A0RE0 = C, . {[Wio,bJ7:(a,)dadb / a*.

It means that signal energy can be calculated via amplitudes (coefficients) of wavelet
transformation similarly to the Fourier transformation:

E = [£()dt = [|4e) - Blo)] do.

It should be emphasized, that definitions and properties of continuous one dimensional
wavelet transformation can be easily generalized into multi dimensional and discrete cases.
However, these problems are omitted here.

2.3.3. Wavelet analysis possibilities. Having wavelet spectra, many usefui characteris-
tics and properties of a being analysed process can be reconstructed. We briefly describe
how to analyse a signal singularities and its energetlc characteristics.

a) Local regularity [47, 49].

Consider certain implications of scale invariance 3°,

If f e C™(t), i e. 2 being analysed function is continucusly differentiable up to order

m in the point #,, then the coefficients of wavelet transformation for ¢ = #, should satisfy
the inequality W(a, %) < a™'a¥? for a - 0.

The multiplier al"2
the function f have to be investigated using I'- normalized coefficients. Recall, that L.

occurs, since due to scale invariance 3°, the skeleton properties of

and L? -normalized coefficients are coupled via simple relation _PK(a, ‘o) saw (a, b).
If f e A%(t), i. e. the analysed function belongs to Holder space of the functions ot
(in words, f is continnous but not necessarily differentiable in ¢f,, but

[l +15)~ £} = dto|®, @ <1, c=const > 0), then the coefficients of its wavelet

transformation for ¢ = £, should satisfy the relation (g, ,) ~ ca®a¥? for a —» 0.

A wavelet transformation is composed in such 2 way that even for a not-regular function

S0, the W(a, b) is regular. Whole potential information on f{?) singularities (¢, localization,
¢ intensity; & expoment) is exhibited by an asymptotic behaviour of the coefficients
W(a,t,) for small a. If the coefficients on the smafl scales are divergent, then f has a sin-

gularity in #, and the singularity exponent o« is defined by the inclination angle



logIW(a, to)[ to lega . In contrary, if the coefficients are located in zero vicinity in a neigh-

bourhood of Z, on small scales, hence f{#) is regular in the point £,.
Note that the described property is often used to analyse fractal and multifractal signals
[39, 45), since a typical property of fractals sets is their self-similarity. In words, watching

for fin a vicinity of 1, with different scales, we practically observe this function on different

scales: f(Ar+ Aty)- £ (A:) ] l"("')(f (t +1,) — f{t)). Transformation basis is self-similar.
It is not difficult to show, that the transformation coefficients are scaled with the same ex-
ponent, as that of the analysed function: W(ia,f, + b} = 2."(’°)W(a, t,). This property
serves to find the skeleton exponent aft,), which measures fractal dimension of a set.
Analysis of multi-fractal sets yields a spectrum of exponents and a spectrum of dimensions.

Note also that analysis of a local regularity is universal in some sense, since it does not
depend on the wavelet choice.

Energy characteristics [48, 49].

We consider some consequences of the property for a wavelet transformation implies
that in space of real functions, the full energy of the 3.

An existence of the Parsivale’s analog signal f can be described via amplitudes of the
Wavelet-transformation of the form

E; = [f2()dt = C, . [[W?(a,b)dadb  a*.

A density of the signal energy E,(a,b) = W2(a,b) characterizes energy levels (exci-
tation levels) of a being analysed signal f(#) in the space (a,b) = (scale, time).
Local epergy spectrum. One of the pecular property of the wavelet transformation is the

possibility to investigate localized istics and investigate local properties of processes.

Knowing density of energy £, a,bs), one may define a local energy density in the

point by (or £;) using the formula
Ef (“: ‘u) = IEw(a’ b};«b - ‘o)" a)db'

The window function £ acts on interval in vicinity of £, and satisfies the relation
jé(b)db = 1. If we take the Dirac function instead of £, then the local energy spectrum
has the form

EE("! :O) = Wz(a’ ‘o}

This characteristics is a very good tool to analyse time dynamics of energy transfer with
scales, i. &. energy exchange between process components with different scales in an arbi-
trary time instant.

Global energy spectrum. A full energy is distributed along the scales, and the global en-
ergy spectrum of wavelet transform coefficients reads

E,(a)= [W*{(a,b)db. (2.8)
This is called scalogram or wavelet variance. Describing energy spectrum Ew(a) via

Ia (m)lz we get

signal energy spectrum in the Fourier domain £, (w)=

2
E,(e)= [E¢ (@) ¥ (a0)[ do, (2.9)
and one may observe that wavelet-spectrum of the signal.comresponds to the Fourjer
spectrurn of the analysed signal.

Signal energy is defined via energy spectram by the formula
Ep=C,q [E.(a)dala®.

Therefore, £, is proportional to the surface under the curve E w(a)f a?, and the scalo-

gram exhibits a relative contribution of various scales into full energy, and also exhibits
cnergy distribution of the process along scales.



Since the being analysed function possesses the finite energy, and an analysing wavelet
has its mean value equal to zero, the energy spectrum E,,(a) must tend to zero on both ends
of the scales, and it must possess at least one maximum A location of similar spectrum
peaks of the Fourier spectrum £y () usually refers to frequencies and the corresponding

modes of a being analysed signal containing a fundamental part of the process energy, .
A relation between the scale yielded by the wavelet-transformation and the characteris-
tic scale obtained from Fourier spectrum is shown using the following example. Let

f (t) = sin(a)gt) = sin(lm‘ / TO). Its wavelet transformation (see formula (7)) reads,
W(a, b) = kxp(ia)ob) wh (aa)o) + cxp(— icogb)ly" (— amy, }]1 /2,
and spectrum E,,(a) = Iw“(amojlz. A necessary and sufficient condition of z peak occur-

rence on the scale @ = g is that of derivatives dlil"(amo)/da =0 for a = a,. This con-
dition is satisfied for ay@, = @,,, where @,, is the constant depending on the wavelet w
of a frequency dimension, For many wavelets the constant @, may be found in an analytic

way: for HAAR and MHAT wavelets it is equal to 1,484x and 2vz, respectively.
On the other hand, if the scalogram has 2 peak for @ = g, the characteristic time scale

is defined by d = % = .::_:r‘ The % cocfficient appears because a scale of an elementary
v
characteristic term is presented. In this interpretation, sinus has two such terms.

Note that o, can be only obtained for a relatively simple function. Extending the result

to an arbitrary signal (non-harmonic), we assume that the maximum £, (a) Iocation can be
interpreted as average extension of an elementary term, introducing the fundamental contri-
butions into energy of the analysed process. This behaviour holds for many known signals
with various wavelets and can be treated as a very good approximation (see, for instance,
reference [48]).

3. Parametric Vibrations of Flexible Rectangular Plates.

3.1. Problem formulation and solution algorithm. The problem of computations of
parametric vibrations of flexible plates from 2 point of view of qualitative theory of differ-
ential equations is rather rarely investigated. The known T. von Kérmén equations are cast
in the form [51]: .

azw aw I 2
e F)-A,w+q, .
= m_Vz)A w+LlwF)-A,w+q, (1)

A'F = --;-L(w,w). .

The system (2.1) is reduced to non-dimensional form in the following way
x=af, y=bj, w=2HW,A=alb, t=ti,¢c=0HE,

EQ2HY — EQH) — EQHY _
F==—F=F, F= (az)apqu= ‘Ezz)“q'

¥ b
The following notation is usedf q(;:, y,t) is the function of the tramsversal load;
P.(».1), P},(x,t) are the functions of longitudinal loads along the axes Ox and Oy, re-
spectively; 2H is the plate thickness; a,b are the plate dimensions; £ is the damping
coefficient; E is Young medulus; v is Poisson’s coefficient; w{x, ¥, t) and F (x, ¥, :) are
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deflection and Airy’s function, respectively. The coordinates origin is located in left down
angle. The Ox and 0y axes coincide with the plate edges, and z axis goes into the Earth
centre; (x,y}eG = {0 £x<li0gyx 1}, 0=e<t,,. The operators
Lw, F) A() 8,() have the form
PwolF 0w OF 2w i'F
ol ayz &ray axay ayz axz '
3. 220,20 4 . 6’() ()
A() axz ay2 4 AP()_ ayz ’
The squared plates (4 = 1) are further analysed, and the following initial conditions are
used

L(W,F)=

Wico= 012 ¥} W,y = 02(x. 7). (32)
For the space the boundary conditions are applied
w=w,=F=F,=0 (x=0}xeoy, (33
which correspond to the ball support on the flexible non-stretched in the tangent plane ribs,
Although the prepa.red algorithm allows for investigation of vatious boundary condi-

tions, only (3.3) are used in this paper.
The partial differential cquatmns (G1-(33) are reduced to the system of ordinary dif-

ferential equations using a difference method O ).
The partial derivatives with respect to x and y in system (3.1) are approximated by dif-

ference relations with the etror of O(hz), applying development into Taylor series in the
vicinity of the point (x;, y;) and using powers of & being the step of the following mesh

(7,, = {.’) Sxpy ShLx =ik j= E)_,—N—,h = UN}.

The difference relations for partial derivatives of second and fourth orders are obtained,
which are next used to obtain the system of ordinary differential equations in time and the

system of algebraic equations with respect to F;:

8wy,  Bw, ‘
a::u +e 7" = {A(wir')+ B(Wa.ﬁ'j)} +4y, (34

(F;) = Elw;).

The difference operators Az( )Bz( Fy )DZ (F lEz( ) occurting in {3.4) have the
following form

. 1 -
Alw, )= e (;, AWy + 2K A A wj)
A(w;,-,ﬁ‘,-,-): AWy y,F-. —P,)+A ,wy(A ,F —P) 2A ,wyszy;Fﬁ,
DlF;} =12 - v} )alF,),

2
E(w;,): Apwgh o Fy + [Alyw&-] ) .
where: A;g » (k = 0,2,4) are known difference operators of the corresponding derivatives.

The obtained system of non-linear differential-difference equations with respect to Wy
has the following vector form



i:-‘”; = Q(W,F,t) AF =P, (3.5)
where W is the being sought vector with components (w#), A is the matrix, F is the being

sought vector with components F,J- P is the vector of right hand side of the second equa-

tion of (3.5) depending on Wy .

3.2. Application of wavelet analysis to Investigate complex parametric. vibrations of
fexible plates. A stability of isotropic (v = 0,3) squared (}L = 1) plate subjected to a lon-
gitudinal load P, = Plsinaw, @ =8, & =1 is investigated. The following initial condi-
tions are applied

Weo= dsnmsinmla =1:107) % _ =0

In this report a transition to chaos using the control parameter {P?} is analysed. The
investigation is carried out using only one boundary conditions type, i e.

' wr=wil. = Fl_=FJ.=0, ‘
where I is the border of the space € = {x, y[O Sxsh0<y< I}, and n denotes a normal
to the G border. In the Figs. 4, § the graphs P°fw,. (0,50,)] corresponding to either
P, = P’sinox (Fig. 4) or P, = P, = P°sinet (Fig. 5) longitudinal loads are shown, In
both cases reported the same frequency @ = 8 is taken. —

On the vertical axes two scales are used; the values of the parameter P° and the nom-
bered qualitatively different spaces characterizing system dynamics. The found vibration

types and the corresponding numbers are included in Table.
An investigation of complex vibrations required a construction {for each point {if) of

the mesh G, ) of the time histories wy (1), Wy (1), phase portraits Wy (w;), Poincaré sec-
tions w;-' (w,g-' +r )) (where T denotes period of a longitudinal load), power spectrum Ig s(w)

and an application of wavelet analysis. The so-called Morlet-wavelet function is used, which

represents a harmonic wave, Contrary to a

standard Fourier analysis, where only fre-

w}p* quency (omega) dependend analysis yields
also time localization of the traced process,

9|28
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Space nurnber Vibration types

Lk fixed point

2 periodic vibrations

Andronov-Hopf bifurcation
quastperiodic. vibrations -

crisis

post-crisis

regular vibrations with a new frequency
quasiperiodie vibrations with new frequencies
intermittency

chaos

b - T - R R V)

—
(=]

the spectrum W(a,b) = A(w,¢) is constructed in the form of surfaces for each P° value. In
addition, further important informations are carried out by the projections into plane (t, w)
with iso-curves {iso-levels) and gray-scale representations of the evolution of local extre-
mum curves. Besides, the cross sections for ¢ = 50 of three dimensional spaces are reported
together with included FFT (Fast Fourier Transforms). The extremely large amount of com-
putations implies that the above mentioned characteristics are similar for all points () of
the mesh G, partition. Therefore, for some characteristics only the results for the plate cen-
tre are shawn (i = j = 0,5). In Figs. 6 - 8 the computational results for the amplifude of
exciting harmonic force P = 5:10; 12; 14; 14,7; 15,1; 18; 28; 30 for one sided stretching
are reported. In Figs. 9 — 12 similar like computation results for two sided stretching are
shown for P® = 2,5,3; 5; 7; 7,25; 8,25; 8,5; 9; 12;'13; 14; 19, In each figure blocks of three
groups of six windows are shown, and the signai W(t) begins each of the group {see the
attached P° value shown in the right higher window corner).

For P"= 5 all six chatacteristics describe petiodic vibrations with the excitation fre-
quency, which is clearly visible on both FFT and wavelet-analysis. For P°= 10 in A(w, #)
newly born frequencies are observed, which evaluate with time (see isoclines in plane {f, w)
and in gray-shadow picture (f, w)). Note that by FFT only the fundamental frequency is
caught. For P°= 12 the deflections increased more than two times, and the fundamental
frequency increased two time (period doubling (Hopf) bifurcation), Further increase of P°
leads to strange attractor (S4,) occurrence, which is reported for P*= 12. The frequencies
cssentially depend on time. A further slight increase of the forcing amplitude (see P°= 14)
results in & crisis, This conclusion is derived on observation of all characteristics. The de-
flections increased almost two times, and they behave in chaotic manner (see aiso the phase
portrait). All of the frequencies change with time and there does not exist any relations be-
tween them, but there are time instants where the series of Hopf bifurcation cccurs. Further
increase of the parameter P® [ P°= 14,7; 15,1] causes a qualitative change of plates vibra-
tions although the vibrations amplitude does not undergo any changes. Another type of a
strange attractor (S4,) appears on the phase plane. Further increase of P® (see Figs. come-
sponding to P°~ 18) only slightly changes vibrations character, but then intermittency
chaos is observed (see P%= 28). In chaotic responses the periodic windows are observed
. within time intervals 50 < ¢ £ 70 (see all characteristics associated with P%= 28). Fur-
ther increase of P (see P°= 30) leads to full chaos occurrence. Wavelet analysis tools (see
A(w,7) and (1, w), and grey-shadowing pictures) exhibit full irregularity, and frequencies
depend on time, N

In general, the characteristics flexible plate vibrations features subjected to two sided
periodic excitations are similar to that of one sided periodic excitation.
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4. Concluding Remarks. First, both a background and an overview of wavelet-based
approach are outlined. Second, Fourier transform and Fourier series analysis versus wavelet-
based methods is illustrated and discussed. A special attention is paid to wavelet method
advantages owing to frequency-time localization. Basic functions of wavelet transformation
are overviewed. Properties and application of the wavelet transformation are rigorously dis-
cussed. In the second part of this paper, i.c. section 3, parametric regular and chaotic vibra-
tions, as well as various bifurcations, exhibited by flexible rectangular plates are analysed,
The von Karman partial differential equations are transformed to  set of ordinary differen-
tial and algebraic equations, which is further analysed using the wavelet-based technique.
Among others, it is shown that the applied Morlet-wavelet function representing a harmonic
wave yields a larger information amount in comparison te a standard FFT approach.

Two main concluding remarks with respect to flexible plate dynamics follow:

1. Fourier-analysis and wavelet-analysis overlap only in the case of simple type of
longitudinally and sinuscidally driven plate vibrations,

2. Wavelet-analysis seems to be a very good tool for detailed investigation of spatial
structure dynamics (here a plate) including al! remarkable feature of regular (periodic and
quasi-periodic), and chaotic dynamics, as well as bifurcation, crises and intermittent states,

PE3I0OME . Jlano ornan MeTonis, OcHoBamHX Ha BelmMeTax, | OKpecneno ix feperary B Nopinnans;
3 CTOHMPTHMME migxomamy. [Jlani noni6mmit zo selnnetsoro amamz sacTocosamo s AOCHITHEH A
napaMeTPHMHUX KONMBAHML THYYKMX ILIACTHH, Ha AKi Ji€ CHHYCOTZAILHE HABAHTAKEHHSA. 3oxpema,
NpoananiIoBAH0 CLEHAPiHi MePeXoay BiA PeryMApHONG pyxy 0 Xaocy.

SUMM AR Y. Wavelets-based methods are reviewed, and their advantages in comparison 1o
standard approaches are outlined. Then, a wavelet-like analysis is applied to investigate parametric
vibrations of flexible plates sinusoidally loaded. In particular, a scenario leading from regular motion to

chaos is analysed.

Key words: flexible plates, parametric vibrations, regular motion, chaos, wavelets-
based methods. i
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