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Abstract

The results of the investigations of occurrence of a chaotic stick-slip and slip-slip motion in a very weakly
forced oscillator, using both the Melnikov's technique and an approach based on the analysis of the wandering
trajectories, are compared. A good agreement of the analytical chaotic threshold and numerical simulation are

demonstrated.
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1 Introduction

It is well known that chaotic dynamical
systems may be quantified using Lyapunov
exponents in both smooth [1, 2] and non-smooth
[3, 4] cases. In [5] two key pointS of
investigation were addressed by the authors.
Namely, a new numerical method to trace
regular and chaotic domains of any nonlinear
system governed by ordinary differential
equations was proposed. The approach
introduced is tested using Duffing and Lorenz
type oscillators, as well as a non-smooth two
degrees-of-freedom mechanical system with
friction.

It has been shown, among other results, that
our method is much simpler and faster then the
well known Wolf’s algorithm.

In the paper [6] the Melnikov's method was
applied to a non-smooth one degree-of-freedom
very weakly forced (quasi-autonomous)
oscillator to predict onset of the stick-slip and

slip-slip chaos. It was shown using an analytical
approach that it is possible to predict stick-slip
chaos using extremely small external forcing.
The critical chaotic threshold points, where
infinitely small external periodic perturbations
applied to an autonomous system yields chaos,
has been found. Numerical simulation and
Poincaré maps have confirmed the validity of
the approach. The analytical results obtained
allow one to analyze and control the stick-slip
chaotic dynamics.

In the present paper we have obtained
domains (depending on the parameters) of the
stick-slip chaotic dynamics of the oscillator
referred to above using a technique based on the
analysis of wandering trajectories developed in
[5]. The analytical and numerical results.are
compared and discussed. We succeeded in
obtaining a more precise estimate then the
analytical prediction proposed in reference [6].

2. Stick-Slip Oscillator with Periodic
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Consider a mechanical system which
consist of a mass m riding on a driving belt
(as shown in Fig. 1). The belt is moving with
a constant velocity v». The mass m is
attached to inertial space by a Duffing type
spring,: where % and k; are stiffness
coefficients. A friction force 6, which
depends on the relative velocity, acts
between the mass m and belt. Additionally,
the mass m is forced by a small periodic
external excitation I'cosar. I and @ are the
amplitude and frequency of excitation,
respectively. The one degree-of-freedom
sﬁck-sﬁp oscillations are governed by the
following second-order differential equation

m5é-—k1x+k2x3 = e[l“oosat—ﬁ(:‘c—v.)],
where £>0 is the perturbation parameter,
8z -v) = Gysign(z — v )— A(x—w)+ Bk -w ),

and it qorresponds to the ratio of the friction

characteristic to the relative velocity. This

friction model is presented in Fig. 2. &), A,
and B are friction coefficients.
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Figure 1. The one degree-of-freedom
mechamcal system with stick-slip
oscillations.

It is possible to rewrite this equation in
- the dimensionless form

#—ax+bx® = ey cosax - T( - v.)] ¢y
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where:
Tk~ va)=T, sign( — v )— a(k —va )+ Bl - .,

and a=kim, b=kim, y=Ilm, T=8Im,
To=6/m, a=A/m, §=B/m.

0

~__—

V=

/'—\

Figure 2. Friction model.

In the paper [6] the Melnikov function
for mechanical system (1) has been obtained.
Then after computing the corresponding
integrals, the Melnikov criterion has been
applied to obtain the following inequality:

7w a4 2} a*
sec =350 +
o *{ ) % bJT Fle-3p2)

J b vi for e < -—mt
‘ s - ————y
£ 24° 4 T 27 2

(2)

This inequality gives the possibility of

chaotic threshold estimation in the forced
stick-slip oscillator (1).

3. Analysis of the Wandering Trajectories

The chaotic behavior of nonlinear
deterministic systems supposes that the
trajectories of motion wander around the
various equilibrium states. They are
characterized by unpredictability and
sensitive dependence on the initial conditions.



various equilibrium states. They are
characterized by unpredictability and
sensitive  dependence on the initial
~onditions. By analyzing trajectories of
motion of these systems, it is possible to find
the regions of chaotic vibrations in control
parameters space.

Let a dynamical system be expressed as
the following set of ordinary differential
equations

x=f(t3}, ©)

where x:R" is the state vector, f(z,x) is
defined in RxR" and describes the time
derivative of the state vector. It is supposed,
that f(:,x) is smooth enough to guarantee
existence and uniqueness of a solution of the
equations (3). The right-hand side can be
discontinuous while the solution of the set of

differential equations (3) remains continuous.

The continuous dependence property on the
initial conditions x© =x(;,) of a solution of
the equations (3) will be used: for every
initial conditions x@, ¥®ecr", for every
number 7" > 0, no matter how large, and for
every preassigned arbitrary small >0 it is
possible to find a positive number §>0
such that if the distance p between x© and
0 pk),5@)<s and |f<7, the following
inequality is satisfied

plal) ()<= .

That is if the initial points are chosen
close enough, than during the preassigned
arbitrary large time interval -T<¢<T the
distance between simultaneous positions of
moving points will be less given positive
number &.

The metric p on R" can be determined in

various ways, for example
n I

p(x%)= Z(xi -%F . p (x%)= lei _Ffi|
i=l i=l

or  p(x%)=maxfx, -5 ,  Wwhere

1=isn

x={x, %, ) €R", ¥=(%,5%,..%,)eR".
It is assumed that the trajectories x(r)

remain in a closed bounded domain of the
space R', i.e.,

3C; eR: max]x,-(t)l <G.
t

To analyze trajectories of the set (3), we
introduce the characteristic  vibration
amplitudes 4; of components of the motion
x{ (i=12..n):

1 . .
4 =E::2ras)§"x"(t)-tls}27‘xi_(t* (i=1,2 ...n).

Here [4,T]<t.7] and [5,7] is the time
interval, in Wwhich the frajectory is
considered. The interval [r,,4] is the time
interval, in which all transient processes are
damped. The characteristic vibration
amplitudes 4; can be  calculated
simultaneously with the integration of the
trajectory. '

From the embedding theorem if
S.g(x)={ieR" : p(x,"x')<s} is the hyper-sphere
with centre at the point x and with radius ¢
and Py (x)={i:'eR" :|x,-—3?,-|<£,-} is the
n-dimensional parallelepiped then for any
&0 there is parallelepiped 7 . . (x) such

that P

£1 183 1eeiy

(x)<S,(x). And conversely, for
any parallelepiped 7, (x) it is possible
to indicate £>0 such that S,(x)< P, ., (x).

Let us choose in the parallelepiped
B 5.5 (x) two neighboring initial points

"

x@ and %©, such that |x,(0) —I,-(°)| <&;, where

& is small in comparison with 4, (i=1,2 ... n).
In the case of regular motion, it is expected
that the & in the inequality |x()-%(f) <& is
also small in comparison with 4; (i=1,2 ... n).
The wandering orbits attempt to fill some
bounded domain of the phase space. The
neighboring trajectories at the instant #
diverge exponentially on the average

157



afterwards. Hence, the absolute values of
differences |x(r)-%(t] for some instant #
can take values in the interval [0,24]. By
analyzing the equilibrium states of (3) it is
easy to choose an « parameter, 0<a<1, such
that from the truth of the statement

3 el Tl )- 50>, =12 n). @)

it follows that there is a time interval or set
of time intervals, for which the affixes of the
closed at the initial instant trajectories x(¢)
and %(f) move around various equilibrium
states or these trajectories are sensitive to
changing of the initial conditions. Thus,
these trajectories are wandering.

Indeed, as it has already been mentioned,
all trajectories are in the closed bounded
domain of the space R'. We choose the
measure of divergence of the trajectories,
which is inadmissible for the case of
‘regularity” of the motion. When the
characteristic vibration amplitudes 4; are
found, the divergence measures a4; of the
observable trajectories in the directions of
the generalized coordinates x; (i=/, 2, ... n)

are determined by a.

Let us briefly discuss the choice of the «
parameter. Note that this choice 1is
non-unique and the « parameter can take
various values of the interval (0, 2). There
are values of the a parameter, which a priori
correspond to the inadmissible divergence
measures ad; (i=1, 2, ... n) of the trajectories
in the sense of ‘regularity’. For example,

€ {l,l,-z—,-gi} . Other choices are possible. If

3234
the representative points of the observable
trajectories move chaotically, then for
another choice a from the set of a priori
‘appropriate’ a, the divergence of the
trajectories will be recorded at another time
. As numerical experiments show, the
domains of chaotic behaviour obtained with
various a priori ‘appropriate’ values of the
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parameter « are practically congruent.
Therefore, in this work figures for different
values of « are not presented.

A similar non-unique choice of
parameters occurs when applying another
criteria for the chaotic oscillations. For
instance, according to the procedure for
calculation of the Lyapunov exponents
d(t)=d,2* . Here X is a Lyapunov exponent,
dy 1s the initial distance measure between the
starting points, d(¢) is the distance between
trajectories at instant ¢. The base 2 is chosen
for a convenience. In all other respects the
parameter @> 1 in the relation d(t)=dya® is

arbitrary. That is a can takes values, for
example, a<{2,34,5 or other choices are
possible, In general, the specificity required
by numerical methods is such that, all
parameters have to be concrete and most of
them can be non-unique.

The parameter a might have another
physical interpretation. Assume that for the
nonlinear  dynamical  system  under
investigation, it is possible to identify the
singular points (equilibria). In the case, for
instance, of two-well potential systems we
have two nodes and one saddle. An extemal
periodic excitation applied to such
one-degree-of-freedom system may cause a
chaotic response. Chaos is characterized by
unpredictable switches between the two
potential wells. A phase point may wander
between all three singular points. Consider
two neighboring nodes. As a result of a
switch, representative points close at the
initial instant of the phase trajectories, are in
motion about different equilibrium states
afterward. Hence a choice of o, in the

relation aAis%d , is related to the distance d

between the two nodes separated by a saddle.
However, many nonlinear dynamical
systems do not have analytical solutions, and
sometimes it is laborious to find the singular



it is recommended the parameter « be taken
from a priori ‘appropriate’ values.

Our approach has been successfully
applied in the case of smooth and
non-smooth systems. By varying parameters
and using condition (4), it is possible to find
domains of chaotic motion (including
transient and alternating chaos) and domains
of regular motion.

Remark. All inequalities (4) do not have
to be checked for the case, when the
equations of motion under investigation can
be trrmszformed to a normal form. It means
that the inequalities related to velocities
x; =x, may be canceled. In another words,

solutions related to regular motion with
respect to x; are also regular in relation to
x,=%. Here i, je ,n}.

4. Comparison
Numerical Results

of Analytical and

The mechanical system (1) was
investigated using both Melnikov's technique
[6] and approach based on the wandering
trajectories analysis.

v,

Figure 3. Domains of stick-slip chaos in the
(vi, V) plane(@a=5h=1,a==T,~0.3,
@=2, x(0) =1, v(0) = 0.4). The smooth

chaotic threshold is obtained using
Melnikov's technique.

The results obtained for a=b=1,
a=B=7~03, @=2, x(0)=1, w0)=04 are
shown in the (v, y) plane in Fig. 3.

The y(v+) red curve presented in Fig. 3 is
plotted using an analytical prediction (2) and
separates the graph into two parts. Above
this curve, chaos can appear, because near
the line, the stable and unstable manifoids
intersect transversally.

The domains of the stick-slip chaotic
dynamics of the system (1), obtained on the
basis of the wandering trajectories analysis
are marked by blue dots. The condition (4)
reads

ar" e[, 7]: |x(t')-3'c’(t'1 >ad,

where: 4= 1| max x(t)- min xq .
2y si=r b st<T

The time period for the simulation is 300
non-dimensional  time  units.  During
computations, a half period corresponds to
the time interval [¢,.4], where transitional
processes are damped. The integration step
size is equal to 3x10” in non-dimensional
time units. The plane of parameters (vs, y) is
uniformly sampled in rectangle parallelepiped
(0<v«<l.l; 0<y<15) by 100x100 nodal
points. Initial conditions of the closed
trajectories are distinguished by 0.5 percent
with ratio to characteristic vibration
amplitudes 4 and « parameter is equal to 1/3.

The results obtained show a good
agreement between the analytical chaotic
threshold and  numerical simulation.
According to the approach applied in this
paper, chaotic motion of the oscillator is

observed before the cusp at
Y2 o7
b 2

5. Conclusions

Systems with friction are nonsmooth and
cause some difficulties in both the theoretical

159



Systems with friction are nonsmooth and
cause some difficulties in both the
theoretical and numerical analyses. We have
obtained a more precise definition to the
domains of the stick-slip and slip-slip
chaotic dynamics of a one
degree-of-freedom very weakly forced
oscillator in the (v+ ¥) plane using a new
approach based on analysis of the wandering
trajectories. A comparison with analytical
prediction, obtained using Melnikov's
technique [6], demonstrates a good
agreement with the results presented.

The standard numerical methods, in
particular the direct calculations of
Lyapunov exponents, are widely used in the
literature, but they are time-consuming. Our
approach is effective, convenient to use,
requires much less computational time in
comparison with other approaches, and can
be applied to an investigation of a wide class
of problems. According to this approach the
characteristic vibration amplitudes 4;'s_are
produced simultaneously to the integration
of the trajectory. Thus, it is sufficient to
integrate two equations only for each
selected trajectory.
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