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THE METHOD OF VIBRATION CONTROL IN THE
POINTS OF CONTINUOUS FLEXIBLE SYSTEMS
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A continvous flexible system harmonically excited is considered. Minimization of vibration in chosen
points of the flexible system is realized by means of joining an additional system characterized by suitable
receptances, which have to be calculated. The paper presents the method of determining the appropriate
receptances of additional system in order to cancel vibrations in the mentioned points of the main system.
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1. INTRODUCTION

In many technical problems it is necessary to achieve a considerable reduction of
vibration in chosen points of flexible continuous system. Places of fixation of sensitive
measurement equipments, and a work of machine operators, may be treated as chosen
points of a flexible vibrating construction. For solution of these problems the
receptances method was used, presented in the Refs. {1-4]. The possibility and advisa-
bility of applying this method results from the fact that most of vibrating structures
are continuous linear media of complex shapes, which causes that their precise
mathematical description is impossible. The receptance is determined as the ratio of
complex amplitude of the displacement of any peoint B in v direction to the amplitude
of the force in any point A in u direction.

If Fi(£) = F;, exp(iot), 53(f) = 55, explicwt), (1)
where

3, = Sp, exp(ipna),
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and a receptance is defined as follows:

o (iw) = ;,“i @

0

2. THEORETICAL ANALYSIS

The linear continuous flexible system under consideration is presented in Fig. 1.
This system is harmonically excited in any point 4 in u direction with a frequency .
In the points D;(i =1---p or oo) the system 1 is connected with the motionless base.
This connection can be continuous. A purpose of the consideration is minimization
of vibration in any chosen point B of the flexible continuous system 1 is realized by
means of joining an additional system 2 shown in Fig. 1. The system 2 is characterized
by suitable dynamic charaeteristics (receptance) in a point C, being the connection
of the system 1 and 2. Dynamic characteristics of additional system 2 have to be
calculated. The connected systems 1 and 2 in Fig. 1 can be divided in point C into
two subsystems 1 and 2 (see Fig. 2). Dynamic interaction R¥(#) between the subsystems
1 and 2must be considered. The dynamic interaction of the subsystems is described
by the continuity and equilibrium conditions which define the displacements and
forces at the division point C. Based on receptance shown earlier, complex amplitudes
of vibration in the points B and C of subsystem 1 (Fig. 2) read

E"Bu = a}?‘A(im)an + arg“é(im)Ra, 3)
58, = agy(iw)Fy, + aft(io)RE, . )]

Similarly for the subsystem 2 one gets
5¢, = Bec(iw)—Rg, ). &)

Suitable receptances in the (3), (4), (5} for simple continuous systems (¢.g. beams,
plates) can be calculated. The receptances of complex flexible systems cannot be

sa(t)

FIGURE 1 The analysed system.
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81 (t)
FIGURE 2 Two separated subsystems.
analysed with any sufficient accuracy. Hence, the need to determine the receptances

experimentally on real system and under actual condition of operation occurs [3, 6].
Taking into account (3)-(5) one obtains:

S8, = VaUi0)F g, (6)
where
. o' [aww T ﬁmv] — ™.
y;'fi(lw) — ZBA*CC CC. BCYCA . (7)

oge + Bee

Equations (6) and (7) yield a vibration at the considered point B, which is caused by
nulling of numerator of (7). It leads to condition

ﬂg}é (l w) — anC (iﬂ’)a?é (12’;&_(1:5‘,{ (iw)“'é'é(fw) . (8)

The value of receptance obtained from (8) of additional subsystem 2 may be realized by
both discrete or continuous models. For instance, a combination of mass, stiffness and
damping can be used for continuous systems such as beams or plates.

3. EXAMPLE

The presented method is illustrated by the use of constant cross-sectional beams on two
supports (pinned-pinned) without damping (Fig. 3). The harmonic force in point 4 in y
direction excites vibration of the beam shown in Fig. 3. To minimize the vibration in
any point B two cases of this method are considered:

1. In any point C of the beam additional mass m is attached;
2. In any point C of the beam additional massless spring with stiffness k in y direction
is attached.
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FIGURE 3 Beam on two supports with additional subsystem.

The snitable receptances of considered beam in the 4, B, C points can be calculated
using expressions:

sin(nr(xg/1)) sin(na(x4/1))
aBA(w) A l; L a2 _ wz 4 ]
wca(@) = ) Z S!n(mf(xc/ ) Smwz(mr(xA / ))
®
wpe(@) = o) E Sm(mr(xB/ l » Smmgnﬂ(xc/ )]
[sin(mr(xc/ l WP
o) = g3 L
where
n’ [El
oy = n2 ﬁ J—;.
The receptance of mass m.i's given by
1
| Bec,(w) = T (10)
whereas the receptance of spring has the Iform
Boa(@) =7 )
After putting (10} and (11) into (8) and transformations one obtains:
: apalw) -
™O) S e @cce) — aac@ci@] (2
(o) = _954(®) . 13)

apc(w)aca(w) — aps(w)acc(w)
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FIGURE 4 Calculation results.

Numerical calculations of expressions (12) and (13) were performed for the considered
beam for the dates given in Fig. 3. Obtained results of calculations are presented
in Fig. 4. The calculation results of m and k shown in Fig. 4 of vibration cancelling
arc positive or necgative. Negative values are not practically realized. Optimal
cases in a chosen point B of the beam for the presented dates are fixed (the
mass m=0.15kg in the half-length between point 4 and left support or in the
half of length between point B and right support). The best choice of a spring stiffness
corresponds to the value & = 12kN/m.

The presented method may be supplied to minimization of vibration of plates, floors
or the flexible three-dimensional constructions.

4, COMPUTATIONAL ALGORITHM

In order to carry out a practical implementation of the developed earlier method
of beam systems more complex in comparison to that illustrated in Example 3, an
algorithm for numerical computations has been prepared using the DELPHI language.

The program calculates the receptances of the chosen beam finite elements (it has
been discussed earlier during theoretical analysis). Next, using the obtained results
the additional parameters are calculated (mass m, stiffness k) of an attached discrete
system, which serves as a vibrational eliminator in an arbitrary chosen beam point.

The program computational abilities, a way of introducing input data and some
computational examples are given below.

» Using the material table (see Fig. 5) one chooses a beam material and its properties
(Young and Kirchoff moduli and material density). Then a beam length in meters
and the boundary conditions are chosen. In the latter case the following options
are possible: free, freely supported and clamped beam ends.

» Using the next table (see Fig. 6) a shape of a beam cross section is chosen and its
diameters are identified.

o In this step a beam model is chosen. A number of finite elements can be defined, with
an option of their different shapes and geometrical diameters. In addition, each of the
finite elements can be supported (see example given in Fig. 7).

¢ Now two computational paths can be taken: Either cigenfrequencies of the taken
beam model and the corresponding modes (see Fig. 8) or the path leading to vibration
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FIGURE 5 Initial material and geometrical properties, and the boundary conditions of a beam.
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FIGURE 6 Shapes of the cross sections of the beam finite clements.

FIGURE 7 Example of the chosen beam model.

minimization procedure of a beam harmonically excited by an appropriate
attachment of an additional system Fig. 8. In the last case there is an option of a
choice of arbitrary beam point of a harmonic excitation, its amplitude and frequency
{Fig. 9). One ¢an also trace a beam mode just before minimization procedure (Fig. 10).
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FIGURE 8 Eigenfrequencies and the corresponding beam modes.
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FIGURE 9 Parameters of the harmomec excitation and a minimization point.
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FIGURE 14 Beam mode before minimization procedure.
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In the next step a model of an additionally attached system is chosen. Here also there
are some options, i.e. different combinations of the systems including mass m and
stiffness k (Fig. 11). For example, if one of the control parameters is taken (say, stiff-
ness k) then the second one (mass 1) can be calculated and presented together with
the corresponding beam mode after the minimization procedure in a chosen beam

point (see Fig. 12).
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FIGURE 11 Examples of attached minimizing systems.
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FIGURE 12 Mass distribution of a chosen attached system (%, i) and vibration modes after minimization
procedure.

5. CONCLUSIONS

The work is concerned with passive control of vibration level in arbitrary chosen
points of continuous flexible systems (for instance beams or plates) using a structural
modification method. A target (elimination of vibrations) is achieved by an attachment
to a being analysed system an additional system composed of mass, spring or mass and
spring.

During dynamical analysis the method of receptances, has been applied.

As an example a simple beam model with constant cross section has been considered.

In order to analyse dynamical behaviour of more complex beam systems (for
instance those with changeable and different cross sections) an original program
has been developed in the DELPHI language. It opens a very promising research
to analyse continuous and non-linear beam systems.

NOMENCLATURE

u,v,w directions of the displacements (forces),
s5(), sE(D) displacements of the points B and C,
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complex and the real amplitudes of the displacements
(vibrations),

forces in the points 4 and C,

amplitudes of the forces,

phase (angle) of a displacement with respect to excitation,
suitable receptances between the points BA, BC,

CA, CC of main system

receptances of the additional system in the point C,
frequency of excitation,

successive frequency of the free vibration of a beam
n=123..),

length, width, height, cross-sectional area of the beam,
co-ordinates of the points 4, B, C of a beam,

Young’s modulus and moment of inertia of a beam,

mass density of a beam
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